Rapid Detection of Fusarium oxysporum Using Insulated Isothermal PCR and a Rapid, Simple DNA Preparation Protocol
Abstract
:1. Introduction
2. Results
2.1. Optimization of Fo iiPCR Assay
2.2. Sensitivity and Specificity Evaluations of the Fo iiPCR Assay
2.3. Comparison of the Experimental Variability of the Molecular Detection Systems in Field Detection
2.4. Field Detection by Fo iiPCR Assay of FW in Banana Plants at Different Growth Stages
2.5. Rapid Field Detection of FW Using Fo iiPCR Assay and a Simple DNA Preparation Protocol
3. Discussion
4. Materials and Methods
4.1. Pathogens and Growth Conditions
4.2. Primer and Hydrolysis Probe Design
4.3. Sample Preparation for Sensitivity Evaluation of Fo iiPCR
4.4. Fo iiPCR Assay
4.5. Specificity Determination and Sensitivity Evaluation
4.6. Sampling Criteria for Infected Tissues and MDIP Assay
4.7. Molecular Detection Assays
4.8. Molecular Field Detection Assays
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bardin, M.; Gullino, M.L. Fungal Diseases. In Integrated Pest and Disease Management in Greenhouse Crops; Gullino, M.L., Albajes, R., Nicot, P.C., Eds.; Springer: Cham, Switzerland, 2020; pp. 55–100. ISBN 978-3-030-22304-5. [Google Scholar]
- de Lamo, F.J.; Takken, F.L. Biocontrol by Fusarium oxysporum using endophyte-mediated resistance. Front. Plant Sci. 2020, 11, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, K.; Sutton, D.A.; Rinaldi, M.G.; Magnon, K.C.; Cox, P.A.; Revankar, S.G.; Sanche, S.; Geiser, D.M.; Juba, J.H.; van Burik, J.A.H.; et al. Genetic diversity of human pathogenic members of the Fusarium oxysporum complex inferred from multilocus DNA sequence data and amplified fragment length polymorphism analyses: Evidence for the recent dispersion of a geographically widespread clonal lineage and nosocomial origin. J. Clin. Microbiol. 2004, 42, 5109–5120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ploetz, R.C. Management of Fusarium wilt of banana: A review with special reference to tropical race 4. Crop Prot. 2015, 73, 7–15. [Google Scholar] [CrossRef]
- Lombard, L.; Sandoval-Denis, M.; Lamprecht, S.C.; Crous, P.W. Epitypification of Fusarium oxysporum–clearing the taxonomic chaos. Pers. Mol. Phylogeny Evol. Fungi 2019, 43, 1–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.H.; Lin, Y.J.; Chang, T.D.; Hong, L.L.; Chen, T.Y.; Chang, P.F.L. Development of a TaqMan probe-based insulated isothermal polymerase chain reaction (iiPCR) assay for detection of Fusarium oxysporum f. sp. cubense race 4. PLoS ONE 2016, 11, e0159681. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.J.; Lin, H.K.; Lin, Y.H. Construction of Raman spectroscopic fingerprints for the detection of Fusarium wilt of banana in Taiwan. PLoS ONE 2020, 15, e0230330. [Google Scholar] [CrossRef]
- Siamak, S.B.; Zheng, S. Banana Fusarium wilt (Fusarium oxysporum f. sp. cubense) control and resistance, in the context of developing wilt-resistant bananas within sustainable production systems. Hortic. Plant J. 2018, 4, 208–218. [Google Scholar] [CrossRef]
- Beckman, C.H.; Roberts, E.M. On the nature and genetic basis for resistance and tolerance to fungal wilt diseases of plants. Adv. Bot. Res. 1995, 21, 35–77. [Google Scholar] [CrossRef]
- O’Donnell, K.; Kistler, H.C.; Cigelnik, E.; Ploetz, R.C. Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. USA 1998, 95, 2044–2049. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.H.; Chen, K.S.; Chang, J.Y.; Wan, Y.L.; Hsu, C.C.; Huang, J.W.; Chang, P.F.L. Development of the molecular methods for rapid detection and differentiation of Fusarium oxysporum and F. oxysporum f. sp. niveum in Taiwan. New Biotechnol. 2010, 27, 409–418. [Google Scholar] [CrossRef]
- Magdama, F.; Monserrate-Maggi, L.; Serrano, L.; Sosa, D.; Geiser, D.M.; Jiménez-Gasco, M.D.M. Comparative analysis uncovers the limitations of current molecular detection methods for Fusarium oxysporum f. sp. cubense race 4 strains. PLoS ONE 2019, 14, e0222727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.H.; Chang, J.Y.; Liu, E.T.; Chao, C.P.; Huang, J.W.; Chang, P.F.L. Development of a molecular marker for specific detection of Fusarium oxysporum f. sp. cubense race 4. Eur. J. Plant Pathol. 2009, 123, 353–365. [Google Scholar] [CrossRef]
- Li, B.; Du, J.; Lan, C.; Liu, P.; Weng, Q.; Chen, Q. Development of a loop-mediated isothermal amplification assay for rapid and sensitive detection of Fusarium oxysporum f. sp. cubense race 4. Eur. J. Plant Pathol. 2013, 135, 903–911. [Google Scholar] [CrossRef]
- Lin, Y.H.; Su, C.C.; Chao, C.P.; Chen, C.Y.; Chang, C.J.; Huang, J.W.; Chang, P.F.L. A molecular diagnosis method using real-time PCR for quantification and detection of Fusarium oxysporum f. sp. cubense race 4. Eur. J. Plant Pathol. 2013, 135, 395–405. [Google Scholar] [CrossRef]
- Yin, H.Y.; Lin, Y.Y.; Lin, C.H.; Tsai, W.C.; Wen, H.W. Rapid and sensitive detection of Staphylococcus aureus in processed foods using a field-deployed device to perform an insulated isothermal polymerase chain reaction-based assay. J. Food Saf. 2019, 39, e12690. [Google Scholar] [CrossRef]
- Ploetz, R.C. Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. Phytopathology 2006, 96, 653–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Zhang, J.; Wang, Y.; Zheng, X. Molecular detection of Fusarium oxysporum f. sp. niveum and Mycosphaerella melonis in infected plant tissues and soil. FEMS Microbiol. Lett. 2005, 249, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Ambagala, A.; Fisher, M.; Goolia, M.; Nfon, C.; Furukawa-Stoffer, T.; Ortega Polo, R.; Lung, O. Field-deployable reverse transcription-insulated isothermal PCR (RT-ii PCR) assay for rapid and sensitive detection of foot-and-mouth disease virus. Transbound. Emerg. Dis. 2017, 64, 1610–1623. [Google Scholar] [CrossRef]
- Balasuriya, U.B.; Lee, P.Y.; Tiwari, A.; Skillman, A.; Nam, B.; Chambers, T.M.; Tsai, Y.L.; Ma, L.J.; Yang, P.C.; Chang, H.F.C.; et al. Rapid detection of equine influenza virus H3N8 subtype by insulated isothermal RT-PCR (iiRT-PCR) assay using the POCKIT™ Nucleic Acid Analyzer. J. Virol. Methods 2014, 207, 66–72. [Google Scholar] [CrossRef]
- Carossino, M.; Lee, P.Y.A.; Nam, B.; Skillman, A.; Shuck, K.M.; Timoney, P.J.; Tsai, Y.L.; Ma, L.J.; Chang, H.F.G.; Wang, H.T.T.; et al. Development and evaluation of a reverse transcription-insulated isothermal polymerase chain reaction (RT-iiPCR) assay for detection of equine arteritis virus in equine semen and tissue samples using the POCKIT™ system. J. Virol. Methods 2016, 234, 7–15. [Google Scholar] [CrossRef]
- Chua, K.H.; Lee, P.C.; Chai, H.C. Development of insulated isothermal PCR for rapid on-site malaria detection. Malar. J. 2016, 15, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, H.C.; Lo, D.Y.; Chen, C.L.; Tsai, Y.L.; Ping, J.F.; Lee, C.H.; Chang, H.F.G. Rapid and sensitive detection of Mycoplasma synoviae by an insulated isothermal polymerase chain reaction-based assay on a field-deployable device. Poult. Sci. 2017, 96, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Lung, O.; Pasick, J.; Fisher, M.; Buchanan, C.; Erickson, A.; Ambagala, A. Insulated isothermal reverse transcriptase PCR (iiRT-PCR) for rapid and sensitive detection of classical swine fever virus. Transbound. Emerg. Dis. 2015, 63, e395–e402. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, V.J.; Benitez, O.J.; Tsai, Y.L.; Lee, P.Y.A.; Tsai, C.F.; Lin, Y.C.; Chang, H.F.G.; Wang, H.T.T.; Bartlett, P. On-site detection of bovine leukemia virus by a field-deployable automatic nucleic extraction plus insulated isothermal polymerase chain reaction system. J. Virol. Methods 2018, 259, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Mueller, W.C.; Beckman, C.H. Ultrastructural responses of vessel contact cells in cotton plants resistant or susceptible to infection by Fusarium oxysporum f. sp. vasinfectum. Physiol. Mol. Plant Pathol. 1991, 38, 211–222. [Google Scholar] [CrossRef]
- Tsai, J.J.; Liu, W.L.; Lin, P.C.; Huang, B.Y.; Tsai, C.Y.; Lee, P.Y.A.; Tsai, Y.L.; Chou, P.H.; Chung, S.; Liu, L.T.; et al. A fully automated sample-to-answer PCR system for easy and sensitive detection of dengue virus in human serum and mosquitos. PLoS ONE 2019, 14, e0218139. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.L.; Lin, Y.C.; Chou, P.H.; Teng, P.H.; Lee, P.Y. Detection of white spot syndrome virus by polymerase chain reaction performed under insulated isothermal conditions. J. Virol. Methods 2012, 181, 134–137. [Google Scholar] [CrossRef]
- Tsai, Y.L.; Wang, H.T.T.; Chang, H.F.G.; Tsai, C.F.; Lin, C.K.; Teng, P.H.; Su, C.; Jeng, C.C.; Lee, P.Y. Development of TaqMan probe-based insulated isothermal PCR (iiPCR) for sensitive and specific on-site pathogen detection. PLoS ONE 2013, 7, e45278. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Jia, R.; Liu, Y.; Zhou, J.; Qi, Y.; Chen, Y.; Liu, D.; Zhao, J.; Shi, H.; Zhang, J.; et al. Development of a novel quantitative real-time PCR assay with lyophilized powder reagent to detect African swine fever virus in blood samples of domestic pigs in China. Transbound. Emerg. Dis. 2020, 67, 284–297. [Google Scholar] [CrossRef]
- Wilkes, R.P.; Anis, E.; Dunbar, D.; Lee, P.Y.A.; Tsai, Y.L.; Lee, F.C.; Chang, H.F.G.; Wang, H.T.T.; Graham, E.M. Rapid and sensitive insulated isothermal PCR for point-of-need feline leukaemia virus detection. J. Feline Med. Surg. 2018, 20, 362–369. [Google Scholar] [CrossRef]
- Yang, L.L.; Sun, L.X.; Ruan, X.L.; Qiu, D.Y.; Chen, D.H.; Cai, X.Q.; Li, H.P. Development of a single-tube duplex real-time fluorescence method for the rapid quantitative detection of Fusarium oxysporum f. sp. cubense race 1 (FOC1) and race 4 (FOC4) using TaqMan probes. Crop Prot. 2015, 68, 27–35. [Google Scholar] [CrossRef]
- Zhang, J.; Nfon, C.; Tsai, C.F.; Lee, C.H.; Fredericks, L.; Chen, Q.; Sinha, A.; Bade, S.; Harmon, K.; Piñeyro, P.; et al. Development and evaluation of a real-time RT-PCR and a field-deployable RT-insulated isothermal PCR for the detection of Seneca Valley virus. BMC Vet. Res. 2019, 15, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhang, H.; Pu, J.; Qi, Y.; Yu, Q.; Xie, Y.; Peng, J. Development of a real-time fluorescence loop-mediated isothermal amplification assay for rapid and quantitative detection of Fusarium oxysporum f. sp. cubense tropical race 4 in soil. PLoS ONE 2013, 8, e82841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.F.G.; Tsai, Y.L.; Tsai, C.F.; Lin, C.K.; Lee, P.Y.; Teng, P.H.; Su, C.; Jeng, C.C. A thermally baffled device for highly stabilized convective PCR. Biotechnol. J. 2012, 7, 662–666. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.N.; Lin, Y.J.; Wen, C.J.; Chen, Y.J.; Chu, S.C.; Lin, Y.H. Development of the molecular methods for rapid detection of Fusarium oxysporum in Taiwan. J. Plant Med. 2020, 62, 1–11. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press Inc.: New York, NY, USA, 1990; pp. 315–322. ISBN 978-0-123-72181-5. [Google Scholar]
- Kang, T.S. Basic principles for developing real-time PCR methods used in food analysis: A review. Trends Food Sci. Technol. 2019, 91, 574–585. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [Green Version]
- Lecomte, C.; Alabouvette, C.; Edel-Hermann, V.; Robert, F.; Steinberg, C. Biological control of ornamental plant diseases caused by Fusarium oxysporum: A review. Biol. Control 2016, 101, 17–30. [Google Scholar] [CrossRef]
- Ren, Y.; Yue, H.; Zhu, L.; Tang, C.; Zhang, B. Development and evaluation of reverse transcription-insulated isothermal PCR assay to detect duck hepatitis A virus type A in liver samples using the POCKITTM system. J. Vet. Med. Sci. 2019, 81, 1533–1539. [Google Scholar] [CrossRef] [Green Version]
- Skottrup, P.; Frøkiær, H.; Hearty, S.; O’Kennedy, R.; Hejgaard, J.; Nicolaisen, M.; Justesen, A.F. Monoclonal antibodies for the detection of Puccinia striiformis urediniospores. Mycol. Res. 2007, 111, 332–338. [Google Scholar] [CrossRef]
- van Dam, P.; Fokkens, L.; Schmidt, S.M.; Linmans, J.H.; Kistler, H.C.; Ma, L.J.; Rep, M. Effector profiles distinguish formae speciales of Fusarium oxysporum. Environ. Microbiol. 2016, 18, 4087–4102. [Google Scholar] [CrossRef] [PubMed]
- Fraczek, M.G.; Zhao, C.; Dineen, L.; Lebedinec, R.; Bowyer, P.; Bromley, M.; Delneri, D. Fast and reliable PCR amplification from Aspergillus fumigatus spore suspension without traditional DNA extraction. Curr. Protoc. Microbiol. 2019, 54, e89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixit, R.P.; Barhate, C.R.; Padhye, S.G.; Viswanathan, C.L.; Nagarsenker, M.S. Stability indicating RP-HPLC method for simultaneous determination of simvastatin and ezetimibe from tablet dosage form. Indian J. Pharm. Sci. 2010, 72, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Soltan, M.A.; Tsai, Y.L.; Lee, P.Y.A.; Tsai, C.F.; Chang, H.F.G.; Wang, H.T.T.; Wilkes, R.P. Comparison of electron microscopy, ELISA, real time RT-PCR and insulated isothermal RT-PCR for the detection of Rotavirus group A (RVA) in feces of different animal species. J. Virol. Methods 2016, 235, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Nash, S.M.; Snyder, W.C. Quantitative estimations by plate counts of propagules of the bean root rot Fusarium in field soils. Phytopathology 1962, 52, 567–572. [Google Scholar]
- Antiabong, J.F.; Ngoepe, M.G.; Abechi, A.S. Semi-quantitative digital analysis of polymerase chain reaction-electrophoresis gel: Potential applications in low-income veterinary laboratories. Vet. World 2016, 9, 935–939. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.H.; Lin, Y.H.; Wan, Y.L.; Chen, K.S.; Huang, J.W.; Chang, P.F.L. Degenerated virulence and irregular development of Fusarium oxysporum f. sp. niveum induced by successive subculture. J. Fungi 2020, 6, 382. [Google Scholar] [CrossRef]
Isolate Code Number | Diseases/Predict Species (Complex) | Original Host/Tissue | Geographic Locations | PCR-Based Identification Methods Used in the Study | ||
---|---|---|---|---|---|---|
ITS1/ITS4 a | FnSc-1/FnSc-2 b | Fo iiPCR c | ||||
ATCC38741 | Fusarium wilt (FW)/Fusarium oxysporum (Fusarium oxysporum species complex, FOSC) | Banana (Musa sp.)/Pseudostem (P) | Taiwan | + | + | + |
ATCC76243 | FW/Fusarium oxysporum (FOSC) | Banana/P | Queensland, Australia | + | + | + |
ATCC 76257 | FW/Fusarium oxysporum (FOSC) | Banana/P | Honduras | + | + | + |
ATCC 76262 | FW/Fusarium oxysporum (FOSC) | Banana/P | Taiwan | + | + | + |
ATCC96285 | FW/Fusarium oxysporum (FOSC) | Banana/P | Southeastern Queensland, Australia | + | + | + |
ATCC96290 | FW/Fusarium oxysporum (FOSC) | Banana/P | Southeastern Queensland, Australia | + | + | + |
YHL-F015 | FW/Fusarium oxysporum (FOSC) | Banana/P | Pingtung, Taiwan | + | + | + |
YJL-F044 | FW/Fusarium oxysporum (FOSC) | Banana/P | Pingtung, Taiwan | + | + | + |
YJL-F068 | FW/Fusarium oxysporum (FOSC) | Banana/P | Taichung, Taiwan | + | + | + |
YHL-F006 | FW/Fusarium oxysporum (FOSC) | Bitter gourd (Momordica charantia L.)/Stem (S) | Kaohsiung, Taiwan | + | + | + |
YHL-F002 | FW/Fusarium oxysporum (FOSC) | Chickpea (Cicer arietinum L.)/S | Pingtung, Taiwan | + | + | + |
YHL-F003 | FW/Fusarium oxysporum (FOSC) | Cowpea (Vigna sesquipedalis L.)/S | Changhua, Taiwan | + | + | + |
GFH-F009 | FW/Fusarium oxysporum (FOSC) | Cucumber (Cucumis sativus L.)/S | Pingtung, Taiwan | + | + | + |
YHL-F019 | FW/Fusarium oxysporum (FOSC) | Gladiolus (Gladiolus psittacinus L.)/S | Taichung, Taiwan | + | + | + |
ATCC76616 | FW/Fusarium oxysporum (FOSC) | Lettuce (Lactuca sativa L.)/S | California, USA | + | + | + |
YHL-F021 | FW/Fusarium oxysporum (FOSC) | Lettuce/S | Taitung, Taiwan | + | + | + |
YHL-F035 | Basal rot/Fusarium oxysporum (FOSC) | Lily (Lilium sp.)/Root (R) | Taoyuan, Taiwan | + | + | + |
YHL-F038 | FW/Fusarium oxysporum (FOSC) | Loofah (Luffa cylindrica L.)/P | Nantou, Taiwan | + | + | + |
TDC-F009 | FW/Fusarium oxysporum (FOSC) | Melon (Cucumis melo L.)/S | Kaohsiung, Taiwan | + | + | + |
YHL-F040 | FW/Fusarium oxysporum (FOSC) | Onion (Allium cepa)/S | Taichung, Taiwan | + | + | + |
YHL-F041 | FW/Fusarium oxysporum (FOSC) | Radish (Raphanus sativus L.)/R | Nantou, Taiwan | + | + | + |
DWH1 | FW/Fusarium oxysporum (FOSC) | Strawberry (Fragaria × ananassa)/S | Miaoli, Taiwan | + | + | + |
YHL-F042 | FW/Fusarium oxysporum (FOSC) | Tomato (Solanum lycopersicum)/S | Taichung, Taiwan | + | + | + |
ATCC18467 | FW/Fusarium oxysporum (FOSC) | Watermelon (Citrullus lanatus Thunb.)/S | South Carolina, USA | + | + | + |
ATCC62940 | FW/Fusarium oxysporum (FOSC) | Watermelon/Seed | Texas, USA | + | + | + |
YHL-F018 | Fusarium blight/F. acuminatum (Fusarium tricinctum species complex) | Bermuda Grass (Cynodon dactylon L.)/S | Taoyuan, Taiwan | + | − | − |
PFW-F11 | Wilt/F. lateritium (Fusarium lateritium species complex) | Coffee (Coffea sp.)/S | Taoyuan, Taiwan | + | − | − |
PFW-L10 | Wilt/F. xylarioides (Fusarium fujikuroi species complex, FFSC) | Coffee/S | Taoyuan, Taiwan | + | − | − |
YHL-F056 | Panicle rot/F. verticillioides (FFSC) | Rice (Oryza sativa L.)/Panicle | Pingtung, Taiwan | + | − | − |
YJL-F108 | Alternaria speckle/A. alternata | Banana/Leaf (L) | Pingtung, Taiwan | + | − | − |
YJL-F115 | Anthracnose/Colletotrichum gloeosporioides | Banana/L | Pingtung, Taiwan | + | − | − |
YJL-F150 | Cordana leaf spot/Neocordana musae | Banana/L | Pingtung, Taiwan | + | − | − |
YJL-F119 | Deightoniella leaf spot/Deightoniella torulosa | Banana/L | Pingtung, Taiwan | + | − | − |
CJW-F024 | Anthracnose/Colletotrichum sp. | Cocoa (Theobroma cacao)/L | Pingtung, Taiwan | + | − | − |
PFW-L3 | Anthracnose/C. theobromicola | Coffee/L | Taoyuan, Taiwan | + | − | − |
LLH-F001 | Anthracnose/C. orbiculare | Cucumber/L | Tainan, Taiwan | + | − | − |
CJW-F026 | Anthracnose/Colletotrichum sp. | Eggplant (Solanum melongena)/Fruit (F) | Pingtung, Taiwan | + | − | − |
JSH-F005 | Phytophthora blight/Phytophthora capsici | Eggplant/F | Pingtung, Taiwan | + | − | − |
CJW-F011 | Anthracnose/C. gloeosporioides | Guava (Psidium guajava L.)/F | Pingtung, Taiwan | + | − | − |
SSH-F096 | Guava scab/Neopestalotiopsis sp. | Guava/F | Kaohsiung, Taiwan | + | − | − |
CJW-F0025 | Anthracnose/Colletotrichum sp. | Jujube (Ziziphus mauritiana)/F | Pingtung, Taiwan | + | − | − |
CJW-F0012 | Anthracnose/C. gloeosporioides | Mango (Mangifera indica)/F | Pingtung, Taiwan | + | − | − |
TDC-F016 | Fruit rot/Alternaria sp. | Melon/F | Kaohsiung, Taiwan | + | − | − |
TDC-F013 | Anthracnose/C. gloeosporioides | Melon/F | Kaohsiung, Taiwan | + | − | − |
JSH-F025 | Anthracnose/C. gloeosporioides | Papaya (Carica papaya)/F | Tainan, Taiwan | + | − | − |
ZWY-F002 | Black spot/Cercospora cydoniae | Papaya/L | Pingtung, Taiwan | + | − | − |
CJW-F033 | Phytophthora blight/Phytophthora palinuora | Papaya/F | Pingtung, Taiwan | + | − | − |
JSH-F004 | Leaf spot/A. alternata | Papaya/L | Pingtung, Taiwan | + | − | − |
SMS-F012 | Sheath blight (SB)/Rhizoctonia solani | Rice/Leaf sheath | Pingtung, Taiwan | + | − | − |
824 | Rice blast/Pyricularia oryzae | Rice/L | Pingtung, Taiwan | + | − | − |
PTS-F012 | Lasiodiplodia rot/Lasiodiplodia pseudotheobromae | Soybean (Glycine max)/S | Pingtung, Taiwan | + | − | − |
PTS-F021 | Lasiodiplodia rot/L. theobromae | Soybean/S | Pingtung, Taiwan | + | − | − |
PTS-F031 | Lasiodiplodia rot/L. iranensis | Soybean/S | Pingtung, Taiwan | + | − | − |
PTS-F022 | Charcoal rot/Macrophomina phaseolina | Soybean/S | Pingtung, Taiwan | + | − | − |
CHY-F001 | Gray mold/Botrytis cinerea | Strawberry/F | Pingtung, Taiwan | + | − | − |
ML123 | Anthracnose/C. gloeosporioides | Strawberry/F | Miaoli, Taiwan | + | − | − |
SSH-F142 | Pestalotia leaf spot/Pestalotia longiseta | Strawberry/L | Pingtung, Taiwan | + | − | − |
M0029 | Anthracnose/C. camelliae | Tea (Camellia sinensis L.)/L | Taoyuan, Taiwan | + | − | − |
T0013 | Gray blight/Pseudopestalotiopsis theae | Tea/L | Taoyuan, Taiwan | + | − | − |
PJH-F048 | Early blight/A. alternata | Tomato/L | Pingtung, Taiwan | + | − | − |
PP151 | Leaf spot/A. solani | Tomato/L | Pingtung, Taiwan | + | − | − |
PP086 | Anthracnose/C. gloeosporioides | Tomato/F | Pingtung, Taiwan | + | − | − |
PP102 | Target leaf spot/Corynespora cassiicola | Tomato/L | Pingtung, Taiwan | + | − | − |
YHL-F061 | Endophyte/F. oxysporum | Banana/P | Pingtung, Taiwan | + | − | − |
JYY-F068 | Endophyte/F. oxysporum | Banana/P | Pingtung, Taiwan | + | − | − |
JYY-F073 | Endophyte/F. oxysporum | Banana/L | Pingtung, Taiwan | + | − | − |
LNH-F104 | Endophyte/F. oxysporum | Strawberry/L | Miaoli, Taiwan | + | − | − |
CJW-F038 | Endophyte/F. oxysporum | Tomato/L | Pingtung, Taiwan | + | − | − |
Infected Samples a | Reproducibility Assay (Coefficient of Variation (CV), %) b | |||||||
---|---|---|---|---|---|---|---|---|
cPCR | SYBR-qPCR | Probe-qPCR | iiPCR | |||||
Intraday | Interday | Intraday | Interday | Intraday | Interday | Intraday | Interday | |
Symptomless samples | 39.96 ± 8.68 b | 59.65 ± 17.88 a | 1.41 ± 0.46 f | 1.55 ± 0.66 f | 2.08 ± 0.81 ef | 1.62 ± 0.47 f | 5.37 ± 2.88 cdef | 5.43 ± 2.15 cdef |
Mild symptom samples | 18.10 ± 8.73 cd | 20.66 ± 8.58 cd | 0.54 ± 0.11 f | 0.75 ± 0.14 f | 0.47 ± 0.21 f | 0.43 ± 0.22 f | 4.31 ± 1.39 def | 2.99 ± 0.29 def |
Moderate symptom samples | 17.66 ± 6.58 cde | 17.31 ± 6.66 c | 0.75 ± 0.22 f | 0.53 ± 0.07 f | 0.37 ± 0.06 f | 0.54 ± 0.14 f | 3.38 ± 1.58 def | 3.74 ± 1.66 def |
Severe symptom samples | 16.65 ± 6.00 ab | 19.42 ± 9.20 b | 0.93 ± 0.17 f | 0.64 ± 0.16 f | 0.56 ± 0.20 ef | 0.64 ± 0.20 f | 4.06 ± 0.58 def | 3.87 ± 1.32 cdef |
Infected Samples a | MDIP Assay b | In Planta Detection c | ||||
---|---|---|---|---|---|---|
cPCR | SYBR-qPCR | Probe-qPCR | iiPCR | |||
Detection Rate (%) | Detection Rate (%) | Detection Rate (%) | Detection Rate (%) | S/N Ratio | ||
Symptomless samples | 30/30 (100) | 20/30 (66) | 30/30 (100) | 30/30 (100) | 30/30 (100) | 1.363 ± 0.047 |
Mild symptom samples | 36/36 (100) | 31/36 (86) | 36/36 (100) | 36/36 (100) | 36/36 (100) | 1.411 ± 0.047 |
Moderate symptom samples | 36/36 (100) | 33/36 (92) | 36/36 (100) | 36/36 (100) | 36/36 (100) | 1.479 ± 0.038 |
Severe symptom samples | 36/36 (100) | 35/36 (97) | 36/36 (100) | 36/36 (100) | 36/36 (100) | 1.540 ± 0.052 |
Age Stage of Banana Plants a | MDIP Assay b | In Planta Detection c | ||||
---|---|---|---|---|---|---|
cPCR | SYBR-qPCR | Probe-qPCR | iiPCR | |||
Detection Rate (%) | Detection Rate (%) | Detection Rate (%) | Detection Rate (%) | S/N Ratio | ||
1 | 10/10 (100) | 9/10 (90) | 10/10 (100) | 10/10 (100) | 10/10 (100) | 1.443 ± 0.020 |
2 | 10/10 (100) | 9/10 (90) | 10/10 (100) | 10/10 (100) | 10/10 (100) | 1.411 ± 0.047 |
3 | 10/10 (100) | 9/10 (90) | 10/10 (100) | 10/10 (100) | 10/10 (100) | 1.420 ± 0.051 |
4 | 10/10 (100) | 9/10 (90) | 10/10 (100) | 10/10 (100) | 10/10 (100) | 1.463 ± 0.050 |
Age Stage of Banana Plants a | Reproducibility Test (Coefficient of Variation (CV), %) b | |||||||
---|---|---|---|---|---|---|---|---|
cPCR | SYBR-qPCR | Probe-qPCR | iiPCR | |||||
Intraday | Interday | Intraday | Interday | Intraday | Interday | Intraday | Interday | |
1 | 46.21 ± 3.24 a | 43.8 ± 6.43 a | 1.40 ± 0.41 e | 1.02 ± 0.40 e | 1.83 ± 0.98 e | 0.95 ± 0.22 e | 3.46 ± 0.69 e | 4.72 ± 2.24 de |
2 | 18.10 ± 8.73 bc | 20.66 ± 8.58 bc | 0.54 ± 0.11 e | 0.75 ± 0.14 e | 0.47 ± 0.21 e | 0.43 ± 0.22 e | 4.31 ± 1.39 de | 2.99 ± 0.29 e |
3 | 20.25 ± 6.74 bc | 24.61 ± 6.16 b | 0.64 ± 0.10 e | 0.70 ± 0.26 e | 0.67 ± 0.09 e | 0.55 ± 0.08 e | 3.14 ± 2.56 e | 2.93 ± 1.74 e |
4 | 16.16 ± 8.66 bcd | 11.91 ± 8.19 cde | 0.46 ± 0.18 e | 0.50 ± 0.12 e | 0.60 ± 0.28 e | 0.59 ± 0.15 e | 2.75 ± 1.62 e | 2.45 ± 1.78 e |
Fo-Infected Samples a | MDIP Assay b | In Planta Detection c | ||||
---|---|---|---|---|---|---|
cPCR | SYBR-qPCR | Probe-qPCR | iiPCR | |||
Detection Rate (%) | Detection Rate (%) | Detection Rate (%) | Detection Rate (%) | S/N Ratio | ||
Symptomless samples | 12/12 (100) | 7/12 (58) | 12/12 (100) | 12/12 (100) | 12/12 (100) | 1.765 ± 0.212 |
Mild symptom samples | 12/12 (100) | 9/12 (75) | 12/12 (100) | 12/12 (100) | 12/12 (100) | 1.715 ± 0.166 |
Moderate symptom samples | 12/12 (100) | 9/12 (75) | 12/12 (100) | 12/12 (100) | 12/12 (100) | 1.713 ± 0.178 |
Severe symptom samples | 12/12 (100) | 9/12 (75) | 12/12 (100) | 12/12 (100) | 12/12 (100) | 1.630 ± 0.208 |
Fo-Infected Samples a | Reproducibility Assay (Coefficient of Variation (CV), %) b | |||||||
---|---|---|---|---|---|---|---|---|
cPCR | SYBR-qPCR | Probe-qPCR | iiPCR | |||||
Intraday | Interday | Intraday | Interday | Intraday | Interday | Intraday | Interday | |
Symptomless samples | 53.04 ± 10.86 a | 49.40 ± 17.88 a | 1.86 ± 0.74 d | 1.48 ± 1.08 d | 1.09 ± 0.39 d | 0.84 ± 0.08 d | 6.92 ± 3.51 d | 7.35 ± 3.06 d |
Mild symptom samples | 28.72 ± 29.12 bc | 29.12 ± 5.95 bc | 0.59 ± 0.50 d | 1.06 ± 0.16 d | 0.45 ± 0.10 d | 0.51 ± 0.08 d | 5.57 ± 3.02 d | 7.10 ± 2.76 d |
Moderate symptom samples | 42.08 ± 8.50 ab | 27.29 ± 6.86 c | 0.49 ± 0.26 d | 0.85 ± 0.26 d | 0.54 ± 0.15 d | 0.40 ± 0.08 d | 5.60 ± 1.96 d | 6.41 ± 2.26 d |
Severe symptom samples | 30.07 ± 12.44 bc | 28.62 ± 6.00 bc | 0.63 ± 0.14 d | 0.71 ± 0.24 d | 0.42 ± 0.35 d | 0.57 ± 0.29 d | 7.52 ± 1.18 d | 4.80 ± 3.16 d |
Age Stage of Banana Plants a | MDIP Assay b | In Planta Detection c | ||||
---|---|---|---|---|---|---|
cPCR | SYBR-qPCR | Probe-qPCR | iiPCR | |||
Detection Rate (%) | Detection Rate (%) | Detection Rate (%) | Detection Rate (%) | S/N Ratio | ||
1 | 12/12 (100) | 9/12 (75) | 12/12 (100) | 12/12 (100) | 12/12 (100) | 1.606 ± 0.174 |
2 | 12/12 (100) | 9/12 (75) | 12/12 (100) | 12/12 (100) | 12/12 (100) | 1.715 ± 0.166 |
3 | 12/12 (100) | 9/12(75) | 12/12 (100) | 12/12 (100) | 12/12 (100) | 1.592 ± 0.171 |
4 | 13/13 (100) | 9/13 (69) | 13/13 (100) | 13/13 (100) | 13/13 (100) | 1.618 ± 0.132 |
Age Stage of Banana Plants a | Reproducibility Test (Coefficient of Variation (CV), %) b | |||||||
---|---|---|---|---|---|---|---|---|
cPCR | SYBR-qPCR | Probe-qPCR | iiPCR | |||||
Intraday | Interday | Intraday | Interday | Intraday | Interday | Intraday | Interday | |
1 | 27.70 ± 8.66 a | 27.42 ± 10.77 a | 0.51 ± 0.13 d | 0.73 ± 0.30 d | 0.34 ± 0.04 d | 0.44 ± 0.10 d | 6.09 ± 2.20 bcd | 6.55 ± 3.07 bcd |
2 | 28.72 ± 5.01 a | 29.12 ± 5.95 a | 0.59 ± 0.50 d | 1.06 ± 0.16 d | 0.45 ± 0.10 d | 0.51 ± 0.08 d | 5.57 ± 3.02 cd | 7.10 ± 2.76 bcd |
3 | 19.53 ± 11.37 abc | 33.48 ± 12.11 a | 0.62 ± 0.21 d | 0.46 ± 0.14 d | 0.35 ± 0.10 d | 0.24 ± 0.10 d | 4.85 ± 1.99 cd | 5.37 ± 0.65 cd |
4 | 23.05 ± 3.81 a | 21.09 ± 10.81 ab | 0.82 ± 0.28 d | 0.34 ± 0.22 d | 0.46 ± 0.05 d | 0.63 ± 0.30 d | 5.27 ± 2.27 cd | 5.75 ± 1.17 cd |
Protocols/Samples Used | Precision a | Recall b | Accuracy c | F1 Score d |
---|---|---|---|---|
Asymptomatic samples | ||||
Automatic DNA extraction protocol–cPCR | 1.000 | 0.667 | 0.667 | 0.800 |
Automatic DNA extraction protocol–SYBR-qPCR | 1.000 | 1.000 | 1.000 | 1.000 |
Automatic DNA extraction protocol–Probe-qPCR | 1.000 | 1.000 | 1.000 | 1.000 |
Automatic DNA extraction protocol–iiPCR | 1.000 | 1.000 | 1.000 | 1.000 |
Rapid DNA extraction protocol–cPCR | 1.000 | 0.583 | 0.583 | 0.737 |
Rapid DNA extraction protocol–SYBR-qPCR | 1.000 | 1.000 | 1.000 | 1.000 |
Rapid DNA extraction protocol–Probe-qPCR | 1.000 | 1.000 | 1.000 | 1.000 |
Rapid DNA extraction protocol–iiPCR | 1.000 | 1.000 | 1.000 | 1.000 |
Symptomatic samples | ||||
Automatic DNA extraction protocol–cPCR | 1.000 | 0.913 | 0.913 | 0.955 |
Automatic DNA extraction protocol–SYBR-qPCR | 1.000 | 1.000 | 1.000 | 1.000 |
Automatic DNA extraction protocol–Probe-qPCR | 1.000 | 1.000 | 1.000 | 1.000 |
Automatic DNA extraction protocol–iiPCR | 1.000 | 1.000 | 1.000 | 1.000 |
Rapid DNA extraction protocol–cPCR | 1.000 | 0.740 | 0.740 | 0.850 |
Rapid DNA extraction protocol–SYBR-qPCR | 1.000 | 1.000 | 1.000 | 1.000 |
Rapid DNA extraction protocol–Probe-qPCR | 1.000 | 1.000 | 1.000 | 1.000 |
Rapid DNA extraction protocol–iiPCR | 1.000 | 1.000 | 1.000 | 1.000 |
Associated Pathogen | Name of Marker a | Amplification Primers | |
---|---|---|---|
Names | Sequences (5′-3′) | ||
Fusarium oxysporum | iiFoc104 | LNHFnF-1 LNHFnR-1 | CAGGGGATGTATGAGGAGGCTA CGGAAACAGACTCTTGCCATTC |
All fungal pathogens | ITS1-5.8S-ITS2 | ITS1 ITS4 | TCCGTAGGTGAACCTGCGG TCCTCCGCTTATTGATATGC |
F. oxysporum | Fn327 | FnSc-1 FnSc-2 | TACCACTTGTTGCCTCGGCGGATCAG TTGAGGAACGCGAATTAACGCGAGTC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, T.-D.; Huang, L.-N.; Lin, Y.-J.; Wu, Z.-B.; Tsai, S.-H.; Lin, Y.-H. Rapid Detection of Fusarium oxysporum Using Insulated Isothermal PCR and a Rapid, Simple DNA Preparation Protocol. Int. J. Mol. Sci. 2022, 23, 13253. https://doi.org/10.3390/ijms232113253
Chang T-D, Huang L-N, Lin Y-J, Wu Z-B, Tsai S-H, Lin Y-H. Rapid Detection of Fusarium oxysporum Using Insulated Isothermal PCR and a Rapid, Simple DNA Preparation Protocol. International Journal of Molecular Sciences. 2022; 23(21):13253. https://doi.org/10.3390/ijms232113253
Chicago/Turabian StyleChang, Tsai-De, Li-Nian Huang, Yi-Jia Lin, Zhong-Bin Wu, Shang-Han Tsai, and Ying-Hong Lin. 2022. "Rapid Detection of Fusarium oxysporum Using Insulated Isothermal PCR and a Rapid, Simple DNA Preparation Protocol" International Journal of Molecular Sciences 23, no. 21: 13253. https://doi.org/10.3390/ijms232113253
APA StyleChang, T. -D., Huang, L. -N., Lin, Y. -J., Wu, Z. -B., Tsai, S. -H., & Lin, Y. -H. (2022). Rapid Detection of Fusarium oxysporum Using Insulated Isothermal PCR and a Rapid, Simple DNA Preparation Protocol. International Journal of Molecular Sciences, 23(21), 13253. https://doi.org/10.3390/ijms232113253