Elucidating the Genetic Relationships on the Original Old Sicilian Triticum Spp. Collection by SNP Genotyping
Abstract
:1. Introduction
2. Results
2.1. Genetic Relationships among Triticum Species in the Entire Dataset
2.2. Morphological Diversity of Triticum Landraces
2.3. Population Genetics and Diversity of Sicilian Historical Varieties Belonging to Durum Wheat
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Bio-Morphological Traits
4.3. Statistical Analysis for Morphological and Quality-Related Traits
4.4. DNA Extraction and SNP Genotyping
4.5. Cluster, PCoA, and Fst Analysis
4.6. Population Structure Analysis
4.7. Population Genetics and Diversity of Sicilian Varieties Belonging to T. durum
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poole, N.; Donovan, J.; Erenstein, O. Viewpoint: Agri-Nutrition Research: Revisiting the contribution of maize and wheat to human nutrition and health. Food Policy 2021, 100, 101976. [Google Scholar] [CrossRef] [PubMed]
- Shewry, P.R.; Hey, S.J. The Contribution of Wheat to Human Diet and Health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Available online: http://www.fao.org/faostat (accessed on 24 May 2022).
- Guzmán, C.; Autrique, J.E.; Mondal, S.; Singh, R.P.; Govindan, V.; Morales-Dorantes, A.; Posadas-Romano, G.; Crossa, J.; Ammar, K.; Peña, R.J. Response to drought and heat stress on wheat quality, with special emphasis on bread-making quality, in durum wheat. Field Crop. Res. 2016, 186, 157–165. [Google Scholar] [CrossRef]
- ISTAT. Available online: http://dati.istat.it/Index.aspx?DataSetCode=DCSP_COLTIVAZIONI (accessed on 24 May 2022).
- McFadden, E.S.; Sears, E.R. The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Hered. 1946, 37, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Moreno, F.; Solís, I.; Noguero, D.; Blanco, A.; Özberk, İ.; Nsarellah, N.; Elias, E.; Mylonas, I.; Soriano, J.M. Durum wheat in the mediterranean rim: Historical evolution and genetic resources. Genet. Resour. Crop Evol. 2020, 67, 1415–1436. [Google Scholar] [CrossRef]
- Petersen, G.; Seberg, O.; Yde, M.; Berthelsen, K. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol. Phylogenet. Evol. 2006, 39, 70–82. [Google Scholar] [CrossRef]
- de Sousa, T.; Ribeiro, M.; Sabença, C.; Igrejas, G. The 10,000-year success story of wheat! Foods 2021, 10, 2124. [Google Scholar] [CrossRef]
- Tanksley, S.D.; McCouch, S.R. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 1997, 277, 1063–1066. [Google Scholar] [CrossRef]
- Scarascia Mugnozza, G.T. The contribution of Italian wheat geneticists: From Nazareno Strampelli to Francesco D’ Amato. Rome Accad. Naz. Delle Sci. 2005, 2005, 53–75. [Google Scholar]
- Álvaro, F.; Isidro, J.; Villegas, D.; García del Moral, L.F.; Royo, C. Breeding effects on grain filling, biomass partitioning, and remobilization in mediterranean durum wheat. Agron. J. 2008, 100, 361–370. [Google Scholar] [CrossRef]
- Spina, A.; Dinelli, G.; Palumbo, M.; Whittaker, A.; Cambrea, M.; Negri, L.; Bosi, S. Evaluation of standard physico-chemical and rheological parameters in predicting bread-making quality of durum wheat (Triticum Turgidum L. ssp. durum [Desf.] Husn.). Int. J. Food Sci. Technol. 2021, 56, 3278–3288. [Google Scholar] [CrossRef]
- Cappelli, A.; Cini, E. Challenges and opportunities in wheat flour, pasta, bread, and bakery product production chains: A systematic review of innovations and improvement strategies to increase sustainability, productivity, and product quality. Sustainability 2021, 13, 2608. [Google Scholar] [CrossRef]
- Brown, A.H.D. Variation under domestication in plants: 1859 and today. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2523–2530. [Google Scholar] [CrossRef] [PubMed]
- FAO. How to Feed the World—2050: High-Level Expert Forum; FAO: Rome, Italy, 2009. [Google Scholar]
- De Vita, P.; Nicosia, O.L.D.; Nigro, F.; Platani, C.; Riefolo, C.; Di Fonzo, N.; Cattivelli, L. Breeding progress in morpho-physiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century. Eur. J. Agron. 2007, 26, 39–53. [Google Scholar] [CrossRef]
- Dwivedi, S.L.; Ceccarelli, S.; Blair, M.W.; Upadhyaya, H.D.; Are, A.K.; Ortiz, R. Landrace germplasm for improving yield and abiotic stress adaptation. Trends Plant Sci. 2016, 21, 31–42. [Google Scholar] [CrossRef]
- Lopes, M.S.; El-Basyoni, I.; Baenziger, P.S.; Singh, S.; Royo, C.; Ozbek, K.; Aktas, H.; Ozer, E.; Ozdemir, F.; Manickavelu, A.; et al. Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J. Exp. Bot. 2015, 66, 3477–3486. [Google Scholar] [CrossRef] [PubMed]
- Landi, S.; Hausman, J.-F.; Guerriero, G.; Esposito, S. Poaceae vs. abiotic stress: Focus on drought and salt stress, recent insights and perspectives. Front. Plant Sci. 2017, 8, 1214. [Google Scholar] [CrossRef]
- Venora, G.; Blangiforti, S. I Grani Antichi Siciliani; Le Fate, Ed.; 2017; ISBN 978-88-94096-6-5. [Google Scholar]
- De Cillis, U. I Frumenti Siciliani; Tipografia Zuccarello & Izzi: Catania, Italy, 1942; ISBN 88-7751-229-6. [Google Scholar]
- Theophrastus. Enquiry into Plants, Volume II: Books 6-9. In On Odours. Weather Signs; Hort, A.F., Ed.; Harvard University Press: Cambridge, MA, USA, 1916. [Google Scholar]
- Giancaspro, A.; Colasuonno, P.; Zito, A.; Blanco, A.; Pasqualone, A.; Gadaleta, A. Varietal traceability of bread ‘Pane Nero di Castelvetrano’ by denaturing high pressure liquid chromatography analysis of single nucleotide polymorphisms. Food. Control. 2016, 59, 809–817. [Google Scholar] [CrossRef]
- Sicilia, A.; Anastasi, U.; Bizzini, M.; Montemagno, S.; Nicotra, C.; Blangiforti, S.; Spina, A.; Cosentino, S.L.; Lo Piero, A.R. Genetic and morpho-agronomic characterization of sicilian tetraploid wheat germplasm. Plants 2022, 11, 130. [Google Scholar] [CrossRef]
- Dubcovsky, J.; Dvorak, J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 2007, 316, 1862–1866. [Google Scholar] [CrossRef]
- Quaranta, F.; Belocchi, A.; Fornara, M.; Ripa, C.; D’Egidio, M.G. Le Varietà di Frumento duro in Italia: Risultati della rete Nazionale di Sperimentazione 1999–2012. In Proceedings of the Council for Agricultural Research and Economics, Rome, Italy, 2013; ISBN 978-88-97081-31-9. [Google Scholar]
- Balsamo, P. Giornale del Viaggio Fatto in Sicilia e Particolarmente Nella Contea di Modica; Reale Stamperia: Palermo, Italy, 1809; Volume 15. [Google Scholar]
- Legislative Decree n. 149, of the 29/10/2009 GU n. 254. 31 October 2009. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC090693 (accessed on 16 August 2022).
- Aghaee, M.; Mohammadi, R.; Nabovati, S. Agro-morphological characterization of durum wheat accessions using pattern analysis. Aust. J. Crop Sci. 2010, 4, 505–514. [Google Scholar]
- Gurcan, K.; Demirel, F.; Tekin, M.; Demirel, S.; Akar, T. Molecular and agro-morphological characterization of ancient wheat landraces of turkey. BMC Plant. Biol. 2017, 17, 171. [Google Scholar] [CrossRef] [PubMed]
- Gharib, M.A.A.H.; Qabil, N.; Salem, A.H.; Ali, M.M.A.; Awaad, H.A.; Mansour, E. Characterization of wheat landraces and commercial cultivars based on morpho-phenological and agronomic traits. Cereal Res. Commun. 2021, 49, 149–159. [Google Scholar] [CrossRef]
- Wang, S.X.; Zhu, Y.L.; Zhang, D.X.; Shao, H.; Liu, P.; Hu, J.B.; Zhang, H.; Zhang, H.P.; Chang, C.; Lu, J.; et al. Genome-wide association study for grain yield and related traits in elite wheat varieties and advanced lines using SNP markers. PLoS ONE 2017, 12, e0188662. [Google Scholar] [CrossRef] [PubMed]
- Mourad, A.M.; Sallam, A.; Belamkar, V.; Wegulo, S.; Bowden, R.; Jin, Y.; Mahdy, E.; Bakheit, B.; El-Wafaa, A.A.; Poland, J.; et al. Genome-wide association study for identification and validation of novel snp markers for Sr6 stem rust resistance gene in bread wheat. Front. Plant Sci. 2018, 9, 380. [Google Scholar] [CrossRef]
- Alemu, A.; Feyissa, T.; Letta, T.; Abeyo, B. Genetic diversity and population structure analysis based on the high density snp markers in ethiopian durum wheat (Triticum Turgidum ssp. durum). BMC Genet. 2020, 21, 18. [Google Scholar] [CrossRef]
- Rufo, R.; Alvaro, F.; Royo, C.; Soriano, J.M. From landraces to improved cultivars: Assessment of genetic diversity and population structure of Mediterranean wheat using SNP markers. PLoS ONE 2019, 14, e0219867. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Chhokar, V.; Sheoran, S.; Singh, R.; Sharma, P.; Jaiswal, S.; Iquebal, M.A.; Jaiswar, A.; Jaisri, J.; Angadi, U.B.; et al. Characterization of genetic diversity and population structure in wheat using array based SNP markers. Mol. Biol. Rep. 2020, 47, 293–306. [Google Scholar] [CrossRef]
- Poland, J.; Endelman, J.; Dawson, J.; Rutkoski, J.; Wu, S.; Manes, Y.; Dreisigacker, S.; Crossa, J.; Sánchez-Villeda, H.; Sorrells, M.; et al. Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 2012, 5, 103–113. [Google Scholar] [CrossRef]
- Belamkar, V.; Guttieri, M.J.; Hussain, W.; Jarquín, D.; El-basyoni, I.; Poland, J.; Lorenz, A.J.; Baenziger, P.S. Genomic selection in preliminary yield trials in a winter wheat breeding program. G3 Genes Genomes Genet. 2018, 8, 2735–2747. [Google Scholar] [CrossRef]
- Larkin, D.L.; Lozada, D.N.; Mason, R.E. Genomic Selection—Considerations for successful implementation in wheat breeding programs. Agronomy 2019, 9, 479. [Google Scholar] [CrossRef]
- Assanga, S.O.; Fuentealba, M.; Zhang, G.; Tan, C.; Dhakal, S.; Rudd, J.C.; Ibrahim, A.M.H.; Xue, Q.; Haley, S.; Chen, J.; et al. Mapping of quantitative trait loci for grain yield and its components in a US popular winter wheat TAM 111 using 90K SNPs. PLoS ONE 2017, 12, e0189669. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.; Fan, T.; Chen, S.; Chen, Y.; Ou, X.; Jiang, Q.; Peng, W.; Ren, Z.; Tan, F.; Luo, P.; et al. Identification and validation of quantitative trait loci for the functional stay green trait in common wheat (Triticum aestivum L.) via high-density SNP-based genotyping. Theor. Appl. Genet. 2022, 135, 1429–1441. [Google Scholar] [CrossRef] [PubMed]
- Martos, V.; Royo, C.; Rharrabti, Y.; Garcia Del Moral, L.F. Using AFLPs to determine phylogenetic relationships and genetic erosion in durum wheat cultivars released in Italy and Spain throughout the 20th century. F. Crop. Res. 2005, 91, 107–116. [Google Scholar] [CrossRef]
- Figliuolo, G.; Mazzeo, M.; Greco, I. Temporal variation of diversity in Italian durum wheat germplasm. Genet. Resour. Crop Evol. 2007, 54, 615–626. [Google Scholar] [CrossRef]
- Ormoli, L.; Costa, C.; Negri, S.; Perenzin, M.; Vaccino, P. Diversity trends in bread wheat in Italy during the 20th century assessed by traditional and multivariate approaches. Sci. Rep. 2015, 5, 8574. [Google Scholar] [CrossRef]
- Taranto, F.; D’Agostino, N.; Rodriguez, M.; Pavan, S.; Minervini, A.P.; Pecchioni, N.; Papa, R.; De Vita, P. Whole genome scan reveals molecular signatures of divergence and selection related to important traits in durum wheat germplasm. Front. Genet. 2020, 11, 217. [Google Scholar] [CrossRef]
- Mangini, G.; Margiotta, B.; Marcotuli, I.; Signorile, M.A.; Gadaleta, A.; Blanco, A. Genetic diversity and phenetic analysis in wheat (Triticum turgidum subsp. durum and Triticum aestivum subsp. aestivum) landraces based on SNP markers. Genet. Resour. Crop Evol. 2017, 64, 1269–1280. [Google Scholar] [CrossRef]
- Fiore, M.C.; Mercati, F.; Spina, A.; Blangiforti, S.; Venora, G.; Dell’Acqua, M.; Lupini, A.; Preiti, G.; Monti, M.; Pè, M.E.; et al. High-throughput genotype, morphology, and quality traits evaluation for the assessment of genetic diversity of wheat landraces from sicily. Plants 2019, 8, 116. [Google Scholar] [CrossRef]
- Feldman, M. Origin of Cultivated Wheat. In The World Wheat Book: A History of Wheat Breeding; Bonjean, A.P., Angus, W.J., Eds.; Tec & Doc/Intercept Ltd.: Paris, France, 2001; pp. 3–56. [Google Scholar]
- Perrino, P.; Hammer, K. Sicilian wheat varieties. Die Kulturpflanze 1983, 31, 227–279. [Google Scholar] [CrossRef]
- Mazzola, P.; Raimondo, F.M.; Schicchi, R. The agro-biodiversity of Sicily in ancient herbaria and illustrated works. Bocconea 2003, 16, 311–321. [Google Scholar]
- Percival, J. The Wheat Plant; Duckworth and Co.: London, UK, 1921; p. 628. [Google Scholar] [CrossRef]
- Pecetti, L.; Doust, M.A.; Calcagno, L.; Raciti, C.N.; Boggini, G. Variation of morphological and agronomical traits, and protein composition in durum wheat germplasm from eastern Europe. Genet. Resour. Crop Evol. 2001, 48, 609–620. [Google Scholar] [CrossRef]
- Sciacca, F.; Cambrea, M.; Licciardello, S.; Pesce, A.; Romano, E.; Spina, A.; Virzì, N.; Palumbo, M. Evolution of Durum Wheat from Sicilian Landraces to Improved Varieties. In Options Méditerranéennes: Série A. Séminaires Méditerranéens, Proceedings of the International Symposium on Genetics and Breeding of Durum Wheat, Rome, Italy, 27–30 May 2013; Porceddu, E., Damania, A.B., Qualset, C.O., Eds.; Centre International de Hautes Etudes Agronomiques Méditerranéennes: Montpellier, France, 2014; pp. 139–145. [Google Scholar]
- Ouaja, M.; Bahri, B.A.; Aouini, L.; Ferjaoui, S.; Medini, M.; Marcel, T.C.; Hamza, S. Morphological characterization and genetic diversity analysis of Tunisian durum wheat (Triticum turgidum var. durum) accessions. BMC Genom. 2021, 22, 3. [Google Scholar] [CrossRef] [PubMed]
- Senturk Akfirat, F.; Uncuoglu, A.A. Genetic Diversity of Winter Wheat (Triticum aestivum L.) Revealed by SSR Markers. Biochem. Genet. 2013, 51, 223–229. [Google Scholar] [CrossRef]
- Sajjad, M.; Khan, S.H.; Shahzad, M. Patterns of allelic diversity in spring wheat populations by SSR-markers. Cytol. Genet. 2018, 52, 155–160. [Google Scholar] [CrossRef]
- Marzario, S.; Logozzo, G.; David, J.L.; Zeuli, P.S.; Gioia, T. Molecular genotyping (SSR) and agronomic phenotyping for utilization of durum wheat (Triticum durum Desf.) Ex situ collection from southern Italy: A combined approach including pedigreed varieties. Genes 2018, 9, 465. [Google Scholar] [CrossRef] [PubMed]
- Mangini, G.; Nigro, D.; Margiotta, B.; De Vita, P.; Gadaleta, A.; Simeone, R.; Blanco, A. Exploring SNP diversity in wheat landraces germplasm and setting of a molecular barcode for fingerprinting. Genet. Resour. Crop Evol. 2018, 46, 377–387. [Google Scholar] [CrossRef]
- Gao, L.; Jia, J.; Kong, X. A SNP-based molecular barcode for characterization of common wheat. PLoS ONE 2016, 11, e0150947. [Google Scholar] [CrossRef]
- Dreisigacker, S.; Sharma, R.K.; Huttner, E.; Karimov, A.; Obaidi, M.Q.; Singh, P.K.; Sansaloni, C.; Shrestha, R.; Sonder, K.; Braun, H.J. Tracking the adoption of bread wheat varieties in Afghanistan using DNA fingerprinting. BMC Genomics 2019, 20, 660. [Google Scholar] [CrossRef]
- Ganugi, P.; Masoni, A.; Sbrana, C.; Dell’Acqua, M.; Pietramellara, G.; Benedettelli, S.; Avio, L.M. Genetic variability assessment of 127 Triticum turgidum L. accessions for mycorrhizal susceptibility-related traits detection. Sci. Rep. 2021, 11, 13426. [Google Scholar] [CrossRef]
- Taranto, F.; Di Serio, E.; Miazzi, M.M.; Pavan, S.; Saia, S.; De Vita, P.; D’Agostino, N. Intra and inter-population genetic diversity of “Russello” and “Timilia” landraces from Sicily: A proxy towards the identification of favorable alleles in durum wheat. Agronomy 2022, 12, 1326. [Google Scholar] [CrossRef]
- Sansaloni, C.; Franco, J.; Santos, B.; Percival-Alwyn, L.; Singh, S.; Petroli, C.; Campos, J.; Dreher, K.; Pixley, K. Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints. Nat. Commun. 2020, 11, 4572. [Google Scholar] [CrossRef] [PubMed]
- Sissons, M.J.; Hare, R.A. Tetraploid wheat—A resource for genetic improvement of durum wheat quality. Cereal Chem. 2002, 79, 78–84. [Google Scholar] [CrossRef]
- Mac Key, J. Wheat: Its Concept, Evolution and Taxonomy. In Durum Wheat Breeding: Current Approaches and Future Strategies; Royo, C., Nachit, M.M., Di Fonzo, N., Araus, J.L., Pfeiffer, W.H., Slafer, G.A., Eds.; Food Products Press: Binghamton, NY, USA, 2005; Volume 1, pp. 3–61. [Google Scholar]
- Iannucci, A.; Codianni, P. Phenotypic parent selection within a khorasan wheat collection and genetic variation in advanced breeding lines derived by hybridization with durum wheat. Front. Plant Sci. 2019, 10, 1460. [Google Scholar] [CrossRef] [PubMed]
- Tavoletti, S.; Pasquini, M.; Mozzon, M.; Servadio, D.; Merletti, A.; Mannozzi, C.; Foligni, R. Discrimination among varieties of Triticum turgidum subspecies (dicoccon, turanicum and durum) based on the fatty acid profile. J. Cereal Sci. 2021, 99, 103213. [Google Scholar] [CrossRef]
- Semenov, M.A.; Shewry, P.R. Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Sci. Rep. 2011, 1, 66. [Google Scholar] [CrossRef]
- Van de Wouw, M.; Kik, C.; Van Hintum, T.; Van Treuren, R.; Visser, B. Genetic erosion in crops: Concept, research results and challenges. Plant Genet. Res. 2010, 8, 1–15. [Google Scholar] [CrossRef]
- Van de Wouw, M.; Van Hintum, T.; Kik, C.; Van Treuren, R.; Visser, B. Genetic diversity trends in twentieth century crop cultivars: A meta analysis. Theor. Appl. Genet. 2010, 120, 1241–1252. [Google Scholar] [CrossRef]
- Kahiluoto, H.; Kaseva, J.; Balek, J.; Olesen, J.E.; Ruiz-Ramos, M.; Gobin, A.; Kersebaum, K.C.; Takáč, J.; Ruget, F.; Ferrise, R.; et al. Decline in climate resilience of European wheat. Proc. Natl. Acad. Sci. USA 2019, 116, 123–128. [Google Scholar] [CrossRef]
- Kyratzis, A.C.; Nikoloudakis, N.; Katsiotis, A. Genetic variability in landraces populations and the risk to lose genetic variation. The example of landrace ‘Kyperounda’ and its implications for ex situ conservation. PLoS ONE 2019, 14, e0224255. [Google Scholar] [CrossRef]
- International Union for the Protection of New Varieties of Plants (UPVO) Wheat and Durum Wheat. 2012. Available online: https://www.upov.int (accessed on 20 May 2022).
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Husson, F.; Josse, J.; Lê, S. FactoMineR: An R Package for multivariate analysis. J. Stat. Soft. 2008, 25, 1–18. [Google Scholar]
- Wang, S.; Wong, D.; Forrest, K.; Allen, A.; Chao, S.; Huang, B.E.; Maccaferri, M.; Salvi, S.; Milner, S.G.; Cattivelli, L.; et al. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotech. J. 2014, 12, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Mercati, F.; De Lorenzis, G.; Mauceri, A.; Zerbo, M.; Brancadoro, L.; D’Onofrio, C.; Morcia, C.; Barbagallo, M.G.; Bignami, C.; Gardiman, M.; et al. Integrated bayesian approaches shed light on the dissemination routes of the eurasian grapevine germplasm. Front. Plant Sci. 2021, 12, 692661. [Google Scholar] [CrossRef]
- Nei, M. Genetic distance between populations. Am. Nat. 1972, 106, 283–292. [Google Scholar] [CrossRef]
- Kamvar, Z.N.; Brooks, J.C.; Grünwald, N.J. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front. Genet. 2015, 6, 208. [Google Scholar] [CrossRef] [PubMed]
- Jombart, T. ADEGENET: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef] [PubMed]
- Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinform. 2020, 69, e96. [Google Scholar] [CrossRef]
- Wright, T. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 1965, 19, 395–420. [Google Scholar] [CrossRef]
- Goudet, J. Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 2005, 5, 184–186. [Google Scholar] [CrossRef]
- Raj, A.; Stephens, M.; Pritchard, J.K. fastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics 2014, 197, 573–589. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Neath, A.A.; Cavanaugh, J.E. The Bayesian information criterion: Background, derivation, and applications. WIREs Comput. Stat. 2012, 4, 199–203. [Google Scholar] [CrossRef]
- Privé, F.; Aschard, H.; Blum, M.G.B. Efficient management and analysis of large-scale genome-wide data with two R packages: Bigstatsr and bigsnpr. bioRxiv 2017. bioRxiv:190926. [Google Scholar] [CrossRef]
- Zheng, X.; Levine, D.; Shen, J.; Gogarten, S.M.; Laurie, C.; Weir, B.S. A High-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 2012, 28, 3326–3328. [Google Scholar] [CrossRef] [PubMed]
Group | Ho | He | AR | Fis |
---|---|---|---|---|
T. turgidum subsp. durum | 0.15 | 0.17 | 1.167 | 0.130 |
T. turgidum subsp. durum-R | 0.16 | 0.14 | 1.142 | −0.037 |
T. turgidum subsp. durum-RI | 0.20 | 0.14 | 1.138 | −0.301 |
T. turgidum subsp. durum-T | 0.18 | 0.13 | 1.131 | −0.199 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiore, M.C.; Blangiforti, S.; Preiti, G.; Spina, A.; Bosi, S.; Marotti, I.; Mauceri, A.; Puccio, G.; Sunseri, F.; Mercati, F. Elucidating the Genetic Relationships on the Original Old Sicilian Triticum Spp. Collection by SNP Genotyping. Int. J. Mol. Sci. 2022, 23, 13378. https://doi.org/10.3390/ijms232113378
Fiore MC, Blangiforti S, Preiti G, Spina A, Bosi S, Marotti I, Mauceri A, Puccio G, Sunseri F, Mercati F. Elucidating the Genetic Relationships on the Original Old Sicilian Triticum Spp. Collection by SNP Genotyping. International Journal of Molecular Sciences. 2022; 23(21):13378. https://doi.org/10.3390/ijms232113378
Chicago/Turabian StyleFiore, Maria Carola, Sebastiano Blangiforti, Giovanni Preiti, Alfio Spina, Sara Bosi, Ilaria Marotti, Antonio Mauceri, Guglielmo Puccio, Francesco Sunseri, and Francesco Mercati. 2022. "Elucidating the Genetic Relationships on the Original Old Sicilian Triticum Spp. Collection by SNP Genotyping" International Journal of Molecular Sciences 23, no. 21: 13378. https://doi.org/10.3390/ijms232113378
APA StyleFiore, M. C., Blangiforti, S., Preiti, G., Spina, A., Bosi, S., Marotti, I., Mauceri, A., Puccio, G., Sunseri, F., & Mercati, F. (2022). Elucidating the Genetic Relationships on the Original Old Sicilian Triticum Spp. Collection by SNP Genotyping. International Journal of Molecular Sciences, 23(21), 13378. https://doi.org/10.3390/ijms232113378