Integrating Metabolomics and Transcriptomics to Unveil Atisine Biosynthesis in Aconitum gymnandrum Maxim
Abstract
:1. Introduction
2. Results
2.1. Metabonomic Analysis of Sterilized Seedlings in A. gymnandrum
2.2. Induction Effect of MJ on Metabolites in A. gymnandrum
2.3. Transcriptomic Analysis of MJ-Induced A. gymnandrum
2.4. Identification of Full-Length Transcripts Putatively Involved in Das Biosynthesis
2.5. Functional Characterization of Diterpene Synthase from A. gymnandrum
2.6. WGCNA Analysis of Genes Associated with the C20-DAs Biosynthesis Pathway
2.7. Co-Expression Network Analysis of Module Green
3. Discussion
3.1. DAs from A. gymnandrum Have Different Response to MJ
3.2. New Diterpene Precursor Was Found in A. gymnandrum
3.3. Establishing the Atisine Biosynthesis Pathway in A. gymnandrum
4. Materials and Methods
4.1. Plant Materials and MJ Treatment
4.2. Ditepenoid Alkaloids Extraction and UPLC-Q-TOF-MS Analysis
4.3. RNA Extraction, RNA Sequencing, and Iso-Seq Library Construction
4.4. Iso-Seq Data Processing and Annotation
4.5. Cloning of the Full-Length DiTPS Genes
4.6. Heterologous Expression in E. coli
4.7. In Vitro Enzyme Assay
4.8. Terpene Product Analysis by GC–MS Chromatography
4.9. Data Analyzing Software
4.10. GenBank Accessions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, H.L.; Li, Y.L.; Gan, Y.M.; Shu, G. Study on anti-inflammatory and analgesic effects of Aconitum gymnandrum in Northwest Sichuan Plateau. Zhongguo Shouyi Zazhi 2005, 41, 34–36. [Google Scholar]
- Wang, L.-L.; Zhang, C.; Yang, M.-L.; Zhang, G.-P.; Zhang, Z.-Q.; Yang, Y.-P.; Duan, Y.-W. Intensified wind pollination mediated by pollen dimorphism after range expansion in an ambophilous biennial Aconitum gymnandrum. Ecol. Evol. 2016, 7, 541–549. [Google Scholar] [CrossRef]
- Zhao, Z.; Hou, M.; Wang, Y.; Du, G. Phenological variation of flower longevity and duration of sex phases in a protandrous alpine plant: Potential causes and fitness significance. BMC Plant Biol. 2020, 20, 137. [Google Scholar] [CrossRef] [Green Version]
- Lan, D.; Zhao, M.F.; Zhang, C.; Yang, Y.P.; Duan, Y.W. Changes in reproductive allocation after expansion from the glacial refugium and implications for the distribution range in the qinghai-tibet plateau native herb, gymnaconitum gymnandrum (ranunculaceae). Plant Divers. Resour. 2014, 36, 661–667. [Google Scholar]
- Wang, L.; Abbott, R.J.; Zheng, W.; Chen, P.; Wang, Y.; Liu, J. History and evolution of alpine plants endemic to the Qing-hai-Tibetan Plateau: Aconitum gymnandrum (Ranunculaceae). Mol. Ecol. 2009, 18, 709–721. [Google Scholar] [CrossRef]
- Meng, J.-L.; Zhou, X.-H.; Zhao, Z.-G.; Du, G.-Z. Covariance of Floral and Vegetative Traits in Four Species of Ranunculaceae: A Comparison between Specialized and Generalized Pollination Systems. J. Integr. Plant Biol. 2008, 50, 1161–1170. [Google Scholar] [CrossRef]
- Duan, Y.W.; Zhang, T.F.; He, Y.P.; Liu, J.Q. Insect and wind pollination of an alpine biennial Aconitum gymnandrum (Ra-nunculaceae). Plant Biol. 2009, 11, 796–802. [Google Scholar] [CrossRef]
- Zhao, Z.G.; Meng, J.L.; Fan, B.L.; Du, G.Z. Size-dependent sex allocation in Aconitum gymnandrum (Ranunculaceae): Physiological basis and effects of maternal family and environment. Plant Biol. 2008, 10, 694–703. [Google Scholar] [CrossRef]
- Lu, N.N.; Ma, Y.; Hou, M.; Zhao, Z.G. The function of floral traits and phenotypic selection in Aconitum gymnandrum (Ra-nunculaceae). Plant Biol. 2021, 23, 931–938. [Google Scholar] [CrossRef]
- Wang, F.P.; Chen, Q.H.; Liu, X.Y. Diterpenoid alkaloids. Nat. Prod. Rep. 2010, 27, 529–570. [Google Scholar] [CrossRef]
- Shen, Y.; Liang, W.-J.; Shi, Y.-N.; Kennelly, E.J.; Zhao, D.-K. Structural diversity, bioactivities, and biosynthesis of natural diterpenoid alkaloids. Nat. Prod. Rep. 2020, 37, 763–796. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Ke, B.W.; Qin, Y.; Wang, F.P. The diterpenoid alkaloids. The Alkaloids. Chem. Biol. 2022, 87, 1–360. [Google Scholar]
- Xiao, P.G.; Wang, F.P.; Gao, F.; Yan, L.P.; Chen, D.L.; Liu, Y. A pharmacophylogenetic study of Aconitum L. (Ranunculaceae) from China. Acta Phytotaxon. Sin. 2006, 44, 1–46. [Google Scholar] [CrossRef]
- Zhao, D.; Shen, Y.; Shi, Y.; Shi, X.; Qiao, Q.; Zi, S.; Zhao, E.; Yu, D.; Kennelly, E.J. Probing the transcriptome of Aconitum carmichaelii reveals the candidate genes associated with the biosynthesis of the toxic aconitine-type C19-diterpenoid alkaloids. Phytochemistry 2018, 152, 113–124. [Google Scholar] [CrossRef]
- Mao, L.; Jin, B.; Chen, L.; Tian, M.; Ma, R.; Yin, B.; Zhang, H.; Guo, J.; Tang, J.; Chen, T.; et al. Functional identification of the terpene synthase family involved in diterpenoid alkaloids biosynthesis in Aconitum carmichaelii. Acta Pharm. Sin. B 2021, 11, 3310–3321. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-L.; Lai, C.-J.; Mao, L.-Y.; Yin, B.-W.; Tian, M.; Jin, B.-L.; Wei, X.-Y.; Chen, J.-L.; Ge, H.; Zhao, X.; et al. Chemical constituents in different parts of seven species of Aconitum based on UHPLC-Q-TOF/MS. J. Pharm. Biomed. Anal. 2020, 193, 113713. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-H.; Zhu, M.; Wang, Z.-X.; Liu, X.-Y.; Song, H.; Zhang, D.; Wang, F.-P.; Qin, Y. Synthesis of Atisine, Ajaconine, Denudatine, and Hetidine Diterpenoid Alkaloids by a Bioinspired Approach. Angew. Chem. Int. Ed. 2016, 55, 15667–15671. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Wang, F.-P.; Qin, Y. Synthesis of Three-Dimensionally Fascinating Diterpenoid Alkaloids and Related Diterpenes. Acc. Chem. Res. 2020, 54, 22–34. [Google Scholar] [CrossRef]
- Kumar, V.; Malhotra, N.; Pal, T.; Chauhan, R.S. Molecular dissection of pathway components unravel atisine biosynthesis in a non-toxic Aconitum species, A. heterophyllum Wall. 3 Biotech 2016, 6, 106. [Google Scholar] [CrossRef] [Green Version]
- Yin, B.W.; Chen, L.L.; Mao, L.Y.; Li, X.L.; Li, W.Y.; Cui, G.H.; Huang, L.Q. Establishment of C20 diterpene alkaloid cell line from Aconitum gymnandrum. Mol. Plant Breed. 2021, 19, 10. [Google Scholar]
- Ding, L.S.; Wu, F.E.; Chen, Y.Z. Diterpenoid alkaloids from Aconitum gymnandrum. Yao Xue Xue Bao Acta Pharm. Sin. 1993, 28, 188–191. [Google Scholar]
- Zhao, J.Q.; Wang, Y.M.; Wang, S.; Dang, J.; Shi, Y.P.; Mei, L.J.; Tao, Y.D. A new isocoumarin from the aerial parts of Aconitum gymnandrum. Nat. Prod. Res. 2016, 30, 1746–1752. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.R.; Bhat, W.W.; Bibik, J.; Turmo, A.; Hamberger, B.; Genomics, C.; Evolutionary, M.; Hamberger, B. A data-base-driven approach identifies additional diterpene synthase activities in the mint family (Lamiaceae). J. Biol. Chem. 2019, 294, 1349–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, B.; Cui, G.; Guo, J.; Tang, J.; Duan, L.; Lin, H.; Shen, Y.; Chen, T.; Zhang, H.; Huang, L. Functional Diversification of Kaurene Synthase-Like Genes in Isodon rubescens. Plant Physiol. 2017, 174, 943–955. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.-Y.; Li, J.-Y.; Li, D.; Huang, F.-J.; Wang, D.; Li, H.; Xing, Q.; Zhu, H.-B.; Shi, L. Full-Length Transcriptome Sequencing and Modular Organization Analysis of the Naringin/Neoeriocitrin-Related Gene Expression Pattern in Drynaria roosii. Plant Cell Physiol. 2018, 59, 1398–1414. [Google Scholar] [CrossRef]
- Yang, J.; Ren, Y.; Zhang, D.; Chen, X.; Huang, J.; Xu, Y.; Aucapiña, C.B.; Zhang, Y.; Miao, Y. Transcriptome-Based WGCNA Analysis Reveals Regulated Metabolite Fluxes between Floral Color and Scent in Narcissus tazetta Flower. Int. J. Mol. Sci. 2021, 22, 8249. [Google Scholar] [CrossRef]
- Ghorbel, M.; Brini, F.; Sharma, A.; Landi, M. Role of jasmonic acid in plants: The molecular point of view. Plant Cell Rep. 2021, 40, 1471–1494. [Google Scholar] [CrossRef]
- Li, N.; Uhrig, J.F.; Thurow, C.; Huang, L.-J.; Gatz, C. Reconstitution of the Jasmonate Signaling Pathway in Plant Protoplasts. Cells 2019, 8, 1532. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.; Werck-Reichhart, D. A P450-centric view of plant evolution. Plant J. 2011, 66, 194–211. [Google Scholar] [CrossRef]
- Nelson, D.R. Progress in tracing the evolutionary paths of cytochrome P450. Biochim. Biophys. Acta 2010, 1814, 14–18. [Google Scholar] [CrossRef]
- Giddings, L.-A.; Liscombe, D.K.; Hamilton, J.P.; Childs, K.L.; DellaPenna, D.; Buell, C.R.; O’Connor, S.E. A Stereoselective Hydroxylation Step of Alkaloid Biosynthesis by a Unique Cytochrome P450 in Catharanthus roseus. J. Biol. Chem. 2011, 286, 16751–16757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Z.; Baerson, S.R.; Wang, M.; Bajsa-Hirschel, J.; Rimando, A.M.; Wang, X.; Nanayakkara, N.; Noonan, B.P.; Fromm, M.E.; Dayan, F.E.; et al. A cytochrome P450 CYP71 enzyme expressed in Sorghum bicolor root hair cells participates in the bio-synthesis of the benzoquinone allelochemical sorgoleone. New Phytol. 2018, 218, 616–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, P.; Wang, Y.H.; Wang, G.D.; Essenberg, M.; Chen, X.Y. Molecular cloning and functional identification of (+)-delta-cadinene-8-hydroxylase, a cytochrome P450 mono-oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis. Plant J. 2001, 28, 95–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AraúJo, W.L.; Martins, A.O.; Fernie, A.R.; Tohge, T. 2-Oxoglutarate: Linking TCA cycle function with amino acid, glucosinolate, flavonoid, alkaloid, and gibberellin biosynthesis. Front. Plant Sci. 2014, 5, 552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawai, Y.; Ono, E.; Mizutani, M. Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants. Plant J. 2014, 78, 328–343. [Google Scholar] [CrossRef]
- Zeng, L.; Zhang, Q.; Jiang, C.; Zheng, Y.; Zuo, Y.; Qin, J.; Liao, Z.; Deng, H. Development of Atropa belladonna L. Plants with High-Yield Hyoscyamine and without Its Derivatives Using the CRISPR/Cas9 System. Int. J. Mol. Sci. 2021, 22, 1731. [Google Scholar] [CrossRef]
- Zimmermann, S.E.; Benstein, R.M.; Flores-Tornero, M.; Blau, S.; Anoman, A.D.; Rosa-Téllez, S.; Gerlich, S.C.; Salem, M.A.; Alseekh, S.; Kopriva, S.; et al. The phosphorylated pathway of serine biosynthesis links plant growth with nitrogen metabolism. Plant Physiol. 2021, 186, 1487–1506. [Google Scholar] [CrossRef]
- Zhao, P.-J.; Gao, S.; Fan, L.-M.; Nie, J.-L.; He, H.-P.; Zeng, Y.; Shen, Y.-M.; Hao, X.-J. Approach to the Biosynthesis of Atisine-Type Diterpenoid Alkaloids. J. Nat. Prod. 2009, 72, 645–649. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Lyu, P.; Chen, L.; Shen, C.; Sun, C. Comparative transcriptomic analysis reveals the regulation mechanism underlying MJ-induced accumulation of alkaloids in Dendrobium officinale. J. Plant Res. 2019, 132, 419–429. [Google Scholar] [CrossRef]
- Fraser, V.N.; Philmus, B.; Megraw, M. Metabolomics analysis reveals both plant variety and choice of hormone treatment modulate vinca alkaloid production in Catharanthus roseus. Plant Direct 2020, 4, e00267. [Google Scholar] [CrossRef]
- Han, J.; Liu, H.-T.; Wang, S.-C.; Wang, C.-R.; Miao, G.-P. A class I TGA transcription factor from Tripterygium wilfordii Hook.f. modulates the biosynthesis of secondary metabolites in both native and heterologous hosts. Plant Sci. 2020, 290, 110293. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.; Rai, A.; Kawano, N.; Yoshimatsu, K.; Takahashi, H.; Suzuki, H.; Kawahara, N.; Saito, K.; Yamazaki, M. De Novo RNA Sequencing and Expression Analysis of Aconitum carmichaelii to Analyze Key Genes Involved in the Biosynthesis of Diterpene Alkaloids. Molecules 2017, 22, 2155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zi, J.; Mafu, S.; Peters, R.J. To Gibberellins and Beyond! Surveying the Evolution of (Di)Terpenoid Metabolism. Annu. Rev. Plant Biol. 2014, 65, 259–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nisar, M.; Obaidullah; Ahmad, M.; Wadood, N.; Lodhi, M.A.; Shaheen, F.; Choudhary, M.I. New diterpenoid alkaloids from Aconitum heterophyllum Wall: Selective butyrylcholinestrase inhibitors. J. Enzym. Inhib. Med. Chem. 2008, 24, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zhang, H.; Liu, Y.; Liu, Y.-X.; Huang, L. EVenn: Easy to create repeatable and editable Venn diagrams and Venn networks online. J. Genet. Genom. 2021, 48, 863–866. [Google Scholar] [CrossRef]
- Chen, T.; Liu, Y.X.; Huang, L.Q. ImageGP: An easy-to-use data visualization web server for scientific researchers. iMeta 2022, 1, e5. [Google Scholar] [CrossRef]
- Chen, C.J.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.H.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Otasek, D.; Morris, J.H.; Bouças, J.; Pico, A.R.; Demchak, B. Cytoscape Automation: Empowering workflow-based network analysis. Genome Biol. 2019, 20, 185–200. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Tian, M.; Jin, B.; Yin, B.; Chen, T.; Guo, J.; Tang, J.; Cui, G.; Huang, L. Integrating Metabolomics and Transcriptomics to Unveil Atisine Biosynthesis in Aconitum gymnandrum Maxim. Int. J. Mol. Sci. 2022, 23, 13463. https://doi.org/10.3390/ijms232113463
Chen L, Tian M, Jin B, Yin B, Chen T, Guo J, Tang J, Cui G, Huang L. Integrating Metabolomics and Transcriptomics to Unveil Atisine Biosynthesis in Aconitum gymnandrum Maxim. International Journal of Molecular Sciences. 2022; 23(21):13463. https://doi.org/10.3390/ijms232113463
Chicago/Turabian StyleChen, Lingli, Mei Tian, Baolong Jin, Biwei Yin, Tong Chen, Juan Guo, Jinfu Tang, Guanghong Cui, and Luqi Huang. 2022. "Integrating Metabolomics and Transcriptomics to Unveil Atisine Biosynthesis in Aconitum gymnandrum Maxim" International Journal of Molecular Sciences 23, no. 21: 13463. https://doi.org/10.3390/ijms232113463
APA StyleChen, L., Tian, M., Jin, B., Yin, B., Chen, T., Guo, J., Tang, J., Cui, G., & Huang, L. (2022). Integrating Metabolomics and Transcriptomics to Unveil Atisine Biosynthesis in Aconitum gymnandrum Maxim. International Journal of Molecular Sciences, 23(21), 13463. https://doi.org/10.3390/ijms232113463