A Concise Review of Liquid Chromatography-Mass Spectrometry-Based Quantification Methods for Short Chain Fatty Acids as Endogenous Biomarkers
Abstract
:1. Introduction
2. Pretreatment and Derivatization of Biological Samples for SCFAs
3. Methods for SCFAs Quantification
3.1. Chromatographic Analysis
3.2. Detection Methods
Method | Ionization Source | SCFAs | BioMatrix (Volume) | Analytical Column | Analysis Run Time (min) | Mobile Phase | Linearity | Extraction Solvent/Method | Derivatizing Agent & Conditions | Internal Standard | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
LC-MS/MS Single reaction monitoring (SRM) | Heated-ESI | BA, HA | Blood (25–100 μL) | Ascentis Express Phenyl-Hexyl (5 cm × 2.1 mm, 2.7 μm) | 10 | A: 5 mM ammonium acetate; B: IPA; C: MeOH | 0.12–10,000 pmol | Saponification KOH-EtOH 80 °C, 45 min | 2-NPH/EDC 20 min, 60 °C | undecanoic acid | [61] |
LC-MS/MS Single ion monitoring (SIM) | ESI negative mode | BA, VA, HA and branched forms | Serum (50 μL) | Restek Raptor C18 (2.1 × 100 mm, 2.7 μm) | 18 | A: 0.1% FA in water; B: ACN | 10–2500 ng/mL | IPA | 3-NPH Pyridine/EDC in MeOH 37 °C, 30 min | 2-isobutoxyacetic acid | [1] |
LC-MS/MS Multiple reaction monitoring (MRM) | ESI positive mode | PA, IBA, BA, 2-MBA, IVA, VA, 3-MVA, IHA, HA | Plasma | Kinetex Evo C18 (50 × 2.1 mm, 1.7 μm) | 7.5 | A: 0.1% FA in water; B: 0.1% FA in EtOH | Ethyl acetate | O-BHA EDC/pyridine RT, 10 min | d3-AA, d3-PA, d2-BA, d3-IBA, d2-VA, d2-IVA, d2-HA | [34] | |
LC-MS/MS | ESI positive mode | 12 SCFAs | Exhaled breath condensates (1 mL) | Pursuit 5 C18 (150 × 2.0 mm) | 35 | A: 0.1% FA in water; B: 0.1% FA in ACN | 0.1–1000 μM | Water | AABD-SH TPP/DPDS in DCM RT, 5 min | d3-AA, d6-AA, d7-BA, d4-VA, d5-HA | [37] |
LC-MS/MS | ESI negative mode | AA, PA, BA | Plasma (50 μL) | Alltima ODS RP (250 × 2.1 mm, 5 μm) | 25 | A: 1.5 mM HCl; B: 5% EtOH in water (0.75 mM HCl) | 0–250 μM | 100% MeOH | 75 μM AA, BA, PA | [50] | |
HPLC-MS/MS | ESI positive mode | Free and esterified AA, PA, BA, IBA, 2-MBA, VA, IVA, HA | Plasma (50 μL) | Acquity UPLC HSS T3 (2.1 × 100 mm, 1.8 μm) | 15 | A: 0.1% FA in water; B: 0.1% FA in IPA | 1–10,000 nmol | HClO4/NaOH 90 °C, 20 h | Glycine ethyl ester/EDC 2 h | 13C-PA and 13C-BA; deuterated AA and VA | [67] |
LC-MS/MS (MRM) | ESI negative mode | AA, PA, IBA, BA, IVA, VA, IHA, HA | Serum | ACE C18-AR (100 × 2.1 mm, 1.7 μm) | 15 | A: water B: ACN | 0.015–25 μg/mL | ACN/methyl tert-butyl ether (MTBE) | 3-NPH-HCl/EDC-HCl 40 °C, 30 min | 13C2-AA, d7-BA, 2-EtBA | [68] |
UHPLC-MS/MS | ESI negative mode | AA, PA, BA, IBA, 2-MBA, IVA, VA | Plasma | ZORBAX Eclipse Plus C18 (2.1 × 100 mm, 1.8 μm) | 20 | A: 0.1% FA in water; B: 0.1% FA in IPA:ACN (3:1, v/v) | 5–2000 ng/mL (300–30,000 ng/mL for AA) | MeOH | 3-NPH/EDC 40 °C, 20 min | isotope-labeled derivatized with 13C6-3-NPH | [57] |
Method | Ionization Source | SCFAs | BioMatrix (Volume) | Analytical Column | Analysis Run Time (min) | Mobile Phase | Linearity | Extraction Solvent/Method | Derivatizing Agent & Conditions | Internal Standard | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
LC-MS/MS (MRM) | ESI positive mode | PA, IBA, BA, 2-MBA, IVA, VA, 3-MVA, IHA, HA | Urine | Kinetex Evo C18 (50 × 2.1 mm, 1.7 μm) | 7.5 | A: 0.1% FA in water; B: 0.1% FA in EtOH | Ethyl acetate | O-BHA EDC/pyridine RT, 10 min | d3-AA, d3-PA, d2-BA, d3-IBA, d2-VA, d2-IVA, d2-HA | [34] | |
LC-MS/MS (MRM) | ESI positive mode | 12 SCFAs | Feces (250 mg) | Acquity UPLC HSS T3 (2.1 × 100 mm, 1.8 μm) | 15 | A: 0.1% FA in water; B: 0.1% FA in IPA | 1–10,000 nmol | 50% ACN | 12C-/13C-aniline EDC 4 °C, 2 h (quenching: succinic acid/2-mercaptoethanol; 4 °C, 120 min) | d5-benzoic acid | [32] |
LC-MS/MS (MRM) | ESI negative mode | AA, PA, BA, IBA | Feces (2 mg DW/mL) | Kinetex XB-C18 (50 × 2.1 mm, 2.6 μm) | 4 | A: 0.1% FA in water; B: 0.1% FA in ACN | 70% IPA | 3-NPH/EDC FA 40 °C, 30 min | [13C,d3]-AA, d5-PA, d7-BA | [49] | |
UPLC-MS/MS (MRM) | ESI negative mode | 10 SCFAs | Feces (2 g) | Waters BEH C18 (2.1 × 100 mm, 1.7 μm) | 11 | A: 0.1% FA in water; B: 0.1% FA in ACN | 0.12–2500 nM | 50% ACN | 12C/13C6-3-NPH EDC/pyridine 40 °C, 30 min | Stable isotope-labeled versions derivatized with 13C6-3-NPH | [51] |
LC-MS | ESI positive/negative switching | AA, PA, BA | Urine (100 μL) | ZICHILIC (4.6 × 150 mm, 3.5 μm) | 25 | A: 0.1% FA in water; B: 0.1% FA in ACN | 0.05–1.6 μg/mL | THF:water (1:1) | N,N-dimethyl-p-phenylenediamine (DPD)/EDC 60 °C, 45 min | 13C2-AA, 2H2-PA, 2H5-BA | [62] |
UPLC-MS/MS (MRM) | ESI positive mode | Feces (3 g) | Waters BEH C18 (2.1 × 100 mm, 1.7 μm) | 5.5 | A: 0.1% FA in water; B: 0.1% FA in MeOH | 1.5–10,000 μM | EtOH | HATU 4-AMQ/DIPEA (1000:1, v/v) in ACN RT, 20 min LLE: Dulbecco’s phosphate buffered saline/MTBE | d4-AA (surrogate analyte), stable isotope labeled standards | [47] | |
LC-MS | AA, BA | Urine | ~15 min | ACN/ Triethanolamine | 12C/13C-DmPA 90 °C, 60 min (Quenching: TPA) | 113 carboxylic acid standard library | [52] |
Method | Ionization Source | SCFAs | BioMatrix | Analytical Column | Analysis Run Time (min) | Mobile Phase | Linearity | Extraction Solvent | Derivatizing Agent & Conditions | Internal Stds | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
LC-MS/MS | ESI positive mode | 12 SCFAs | Feces (20–25 mg), plasma (200 μL) | Pursuit 5 C18 (150 × 2.0 mm) | 35 | A: 0.1% FA in water; B: 0.1% FA in ACN | 0.1–1000 (μM) | Water | AABD-SH/ TPP/DPDS in DCM RT, 5 min | d3-AA, d6-PA, d7-BA, d4-VA, d5-HA | [37] |
LC-MS/MS (MRM) | ESI positive mode | 10 SCFAs | Feces (100 mg), plasma | Kinetex C18 (100 × 2.1 mm, 2.6 μm) | 5.3 | A: 0.1% FA in 10 mM NH4COOH; B: 0.1% FA in MeOH:IPA (9:1 v/v) | 0.04–250 μM | 50% MeOH; DCM | O-BHA/EDC 25 °C, 1 hr | d5-PA, d7-BA, d1-HA | [44] |
UHPLC-MS/MS | ESI positive mode | AA, PA, BA, IBA, VA, IVA, HA, IHA, SA | Feces (2 mg) | Acquity BEH C18 (2.1 × 100 mm, 1.7 μm) | 10 | A: 0.1% FA in water; B: 0.1% FA in MeOH | MeOH QuEChERs method | 2-picolylamine/ DPDS/TPP 60 °C, 10 min | d4-AA, d6-PA, d9-VA, d11-HA | [69] | |
UHPLC-MS/MS | ESI positive mode | 21 SCFAs (alkyl, carbonyl, hydroxy, and alkenyl) | Feces (20 mg) | Acquity UPLC BEH C18 (50 × 2.1 mm, 1.7 μm) | 45 | A: 0.1% FA in water; B: ACN | 0.015–1000 ng/mL | Liquid nitrogen evaporation; HCl pH 1.0 Ether | 4-AMBA and 4-AMBA-d5 40 °C, 10 min | 4-AMBA-d5 labeled SCFAs | [58] |
UHPLC-LTQ-Orbitrap MS | ESI negative mode | AA, PA, BA, IBA, VA, IVA, HA, 2-MBA | Bronco- alveolar lavage fluid (2.4–3 mL) | Acquity BEH C18 (2.1 × 100 mm, 1.7 μm) | 13.5 | A: 0.01% FA in water; B: 0.01% FA in ACN | 0.05–15,360 nmol/L | ACN | 3-NPH EDC/pyridine 40 °C, 30 min | d4-AA | [56] |
LC-MS/MS (MRM) | ESI positive mode | AA, PA, BA, VA, IVA, HA, IHA | Hamster plasma (50 μL) & feces (0.2 g) | xBridge C18 (100 × 2.1 mm, 3.5 μm) | 27 | A: 0.1% FA in water; B: MeOH | 1–50,000 ng/mL | ACN | 2-bromo-acetophenone (BP) 40 °C, 20 min | Methyl 2-methyl-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate | [39] |
LC-MS (full scan/SIM) | ESI positive mode | 2,2-dimethylbutyrate (DMB) | Rat plasma (200 μL) | Synergi Hydro-RP (2 × 100 mm, 4 μm) | 30 | A: 0.1% FA in ACN; B: 0.1% FA in water | 100–10,000 ng/mL | CAN | benzylamine; deoxo-Fluor/ iPr2NEt, DCM −20 °C, 20 min | Dimethylvaleric acid (DMV) | [70] |
UHPLC-MS/MS Parallel reaction monitoring (PRM) | 10 SCFAs and 30 OH-SCFAs | Feces (20 mg), serum (50 μL), liver tissue (5 mg) | Phenomenex polar C18 column (1.6 μm, 2.1 × 150 mm) | 14 | A: 0.1% FA in water; B: ACN | 0.1–200 ng/mL | MeOH | d0/d6-DHPP EDCI <30 °C, 10 s | Derivatized with d6-DHPP | [41] | |
LC-MS | ESI positive mode | AA, PA, BA, VA, IBA, 2-MBA, IVA | Piglet plasma (100 μL), cecum digesta (100 mg) | ACQUITY UPLC BEH C18 column (2.1 × 150 mm, 1.7 μm) | 7 | A: 0.1% FA in water; B: 0.1% FA in ACN | 0.1–500 μg/L | 80% MeOH | 12C/14N or 13C/15N-DMAQ EDC/HOBt 20 °C, 15 min | Stable isotope-labeled | [40] |
LC-MS/MS (SIM) | ESI positive mode | AA, PA, BA, IBA, VA, IVA, 2-MBA, IHA, 3-MPA, HA, 2-MHA | Rat serum | XDB-C18 (2.1 × 100 mm, 1.8 μm) | ~20 | A: 0.1% FA in water; B: MeOH | 0.02–100 μM | ethyl acetate/FA | Dns-PP/HATU 37 °C, 150 min | Dens-PP labeled standards | [60] |
4. Calibration Approaches for Quantification of SCFAs
5. SCFA Quantitation in Different Biological Matrices
5.1. Human Blood, Plasma and Serum
5.2. Human Urine and Feces
5.3. Mouse Plasma, Serum, and Feces
5.4. Bacterial Cell Culture
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Dei Cas, M.; Paroni, R.; Saccardo, A.; Casagni, E.; Arnoldi, S.; Gambaro, V.; Saresella, M.; Mario, C.; La Rosa, F.; Marventano, I.; et al. A straightforward LC-MS/MS analysis to study serum profile of short and medium chain fatty acids. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020, 1154, 121982. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, C.; Caramujo, M.J. The Various Roles of Fatty Acids. Molecules 2018, 23, 2583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dasgupta, S.; Ray, S.K. Diverse Biological Functions of Sphingolipids in the CNS: Ceramide and Sphingosine Regulate Myelination in Developing Brain but Stimulate Demyelination during Pathogenesis of Multiple Sclerosis. J. Neurol. Psychol. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Ganapathy, V.; Gopal, E.; Miyauchi, S.; Prasad, P.D. Biological functions of SLC5A8, a candidate tumour suppressor. Biochem. Soc. Trans. 2005, 33, 237–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halestrap, A.P.; Wilson, M.C. The monocarboxylate transporter family—Role and regulation. IUBMB Life 2012, 64, 109–119. [Google Scholar] [CrossRef]
- Iwanaga, T.; Takebe, K.; Kato, I.; Karaki, S.; Kuwahara, A. Cellular expression of monocarboxylate transporters (MCT) in the digestive tract of the mouse, rat, and humans, with special reference to slc5a8. Biomed. Res. 2006, 27, 243–254. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The role of short-chain fatty acids in health and disease. Adv. Immunol. 2014, 121, 91–119. [Google Scholar] [CrossRef]
- Tedelind, S.; Westberg, F.; Kjerrulf, M.; Vidal, A. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: A study with relevance to inflammatory bowel disease. World J. Gastroenterol. 2007, 13, 2826–2832. [Google Scholar] [CrossRef]
- Tazoe, H.; Otomo, Y.; Karaki, S.; Kato, I.; Fukami, Y.; Terasaki, M.; Kuwahara, A. Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed. Res. 2009, 30, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Waldecker, M.; Kautenburger, T.; Daumann, H.; Busch, C.; Schrenk, D. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J. Nutr. Biochem. 2008, 19, 587–593. [Google Scholar] [CrossRef]
- Hinnebusch, B.F.; Meng, S.; Wu, J.T.; Archer, S.Y.; Hodin, R.A. The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation. J. Nutr. 2002, 132, 1012–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiefer, J.; Beyer-Sehlmeyer, G.; Pool-Zobel, B.L. Mixtures of SCFA, composed according to physiologically available concentrations in the gut lumen, modulate histone acetylation in human HT29 colon cancer cells. Br. J. Nutr. 2006, 96, 803–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, I.; Inoue, D.; Maeda, T.; Hara, T.; Ichimura, A.; Miyauchi, S.; Kobayashi, M.; Hirasawa, A.; Tsujimoto, G. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl. Acad. Sci. USA 2011, 108, 8030–8035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brody, T. Nutritional Biochemistry, 2nd ed.; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Canfora, E.E.; Jocken, J.W.; Blaak, E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 2015, 11, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mojsak, P.; Rey-Stolle, F.; Parfieniuk, E.; Kretowski, A.; Ciborowski, M. The role of gut microbiota (GM) and GM-related metabolites in diabetes and obesity. A review of analytical methods used to measure GM-related metabolites in fecal samples with a focus on metabolites’ derivatization step. J. Pharm. Biomed. Anal. 2020, 191, 113617. [Google Scholar] [CrossRef]
- Patterson, E.; Ryan, P.M.; Cryan, J.F.; Dinan, T.G.; Ross, R.P.; Fitzgerald, G.F.; Stanton, C. Gut microbiota, obesity and diabetes. Postgrad. Med. J. 2016, 92, 286–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, D.; Li, F.; Zhao, J.; Zhang, H.; Liu, B.; Pan, J.; Zhang, W.; Chen, W.; Xu, Y.; Jiang, S.; et al. Effect of an infant formula containing sn-2 palmitate on fecal microbiota and metabolome profiles of healthy term infants: A randomized, double-blind, parallel, controlled study. Food Funct. 2022, 13, 2003–2018. [Google Scholar] [CrossRef]
- Cummings, J.H.; Pomare, E.W.; Branch, W.J.; Naylor, C.P.; Macfarlane, G.T. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987, 28, 1221–1227. [Google Scholar] [CrossRef] [Green Version]
- Macfarlane, G.T.; Macfarlane, S. Bacteria, colonic fermentation, and gastrointestinal health. J. AOAC Int. 2012, 95, 50–60. [Google Scholar] [CrossRef]
- Pluznick, J. A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut. Microbes 2014, 5, 202–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruijschop, R.M.A.J.; Boelrijk, A.E.M.; te Giffel, M.C. Satiety effects of a dairy beverage fermented with propionic acid bacteria. Int. Dairy J. 2008, 18, 945–950. [Google Scholar] [CrossRef]
- Smith, P.M.; Howitt, M.R.; Panikov, N.; Michaud, M.; Gallini, C.A.; Bohlooly, Y.M.; Glickman, J.N.; Garrett, W.S. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013, 341, 569–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebert, M.N.; Beyer-Sehlmeyer, G.; Liegibel, U.M.; Kautenburger, T.; Becker, T.W.; Pool-Zobel, B.L. Butyrate induces glutathione S-transferase in human colon cells and protects from genetic damage by 4-hydroxy-2-nonenal. Nutr. Cancer 2001, 41, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T.; et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013, 504, 446–450. [Google Scholar] [CrossRef]
- Hague, A.; Butt, A.J.; Paraskeva, C. The role of butyrate in human colonic epithelial cells: An energy source or inducer of differentiation and apoptosis? Proc. Nutr. Soc. 1996, 55, 937–943. [Google Scholar] [CrossRef] [Green Version]
- Scharlau, D.; Borowicki, A.; Habermann, N.; Hofmann, T.; Klenow, S.; Miene, C.; Munjal, U.; Stein, K.; Glei, M. Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutat. Res. 2009, 682, 39–53. [Google Scholar] [CrossRef]
- Singh, N.; Gurav, A.; Sivaprakasam, S.; Brady, E.; Padia, R.; Shi, H.; Thangaraju, M.; Prasad, P.D.; Manicassamy, S.; Munn, D.H.; et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014, 40, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.R.; Osadchiy, V.; Kalani, A.; Mayer, E.A. The Brain-Gut-Microbiome Axis. Cell Mol. Gastroenterol. Hepatol. 2018, 6, 133–148. [Google Scholar] [CrossRef] [Green Version]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. (Lausanne) 2020, 11, 25. [Google Scholar] [CrossRef]
- Chan, J.C.; Kioh, D.Y.; Yap, G.C.; Lee, B.W.; Chan, E.C. A novel LCMSMS method for quantitative measurement of short-chain fatty acids in human stool derivatized with (12)C- and (13)C-labelled aniline. J. Pharm. Biomed. Anal. 2017, 138, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Gagnon, S.; Eckle, T.; Borchers, C.H. Metabolomic analysis of key central carbon metabolism carboxylic acids as their 3-nitrophenylhydrazones by UPLC/ESI-MS. Electrophoresis 2013, 34, 2891–2900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaochico, A.; Sangaraju, D.; Shahidi-Latham, S.K. A rapid derivatization based LC–MS/MS method for quantitation of short-chain fatty acids in human plasma and urine. Bioanalysis 2019, 11, 741–753. [Google Scholar] [CrossRef]
- Nyangale, E.P.; Mottram, D.S.; Gibson, G.R. Gut microbial activity, implications for health and disease: The potential role of metabolite analysis. J. Proteome Res. 2012, 11, 5573–5585. [Google Scholar] [CrossRef] [PubMed]
- Primec, M.; Micetic-Turk, D.; Langerholc, T. Analysis of short-chain fatty acids in human feces: A scoping review. Anal. Biochem. 2017, 526, 9–21. [Google Scholar] [CrossRef]
- Song, H.E.; Lee, H.Y.; Kim, S.J.; Back, S.H.; Yoo, H.J. A Facile Profiling Method of Short Chain Fatty Acids Using Liquid Chromatography-Mass Spectrometry. Metabolites 2019, 9, 173. [Google Scholar] [CrossRef] [Green Version]
- Song, W.-S.; Park, H.-G.; Kim, S.-M.; Jo, S.-H.; Kim, B.-G.; Theberge, A.B.; Kim, Y.-G. Chemical derivatization-based LC–MS/MS method for quantitation of gut microbial short-chain fatty acids. J. Ind. Eng. Chem. 2020, 83, 297–302. [Google Scholar] [CrossRef]
- Ma, S.R.; Tong, Q.; Zhao, Z.X.; Cong, L.; Yu, J.B.; Fu, J.; Han, P.; Pan, L.B.; Gu, R.; Peng, R.; et al. Determination of berberine-upregulated endogenous short-chain fatty acids through derivatization by 2-bromoacetophenone. Anal. Bioanal. Chem. 2019, 411, 3191–3207. [Google Scholar] [CrossRef]
- Feng, X.; Tang, Z.; Chen, B.; Feng, S.; Liu, Y.; Meng, Q. A high-efficiency quantitation method for fatty aldehyde based on chemical isotope-tagged derivatisation. J. Food Compos. Anal. 2022, 107, 104381. [Google Scholar] [CrossRef]
- Wei, J.; Xiang, L.; Li, X.; Song, Y.; Yang, C.; Ji, F.; Chung, A.C.K.; Li, K.; Lin, Z.; Cai, Z. Derivatization strategy combined with parallel reaction monitoring for the characterization of short-chain fatty acids and their hydroxylated derivatives in mouse. Anal. Chim. Acta 2020, 1100, 66–74. [Google Scholar] [CrossRef]
- Zhang, Y.; Bala, V.; Mao, Z.; Chhonker, Y.S.; Murry, D.J. A concise review of quantification methods for determination of vitamin K in various biological matrices. J. Pharm. Biomed. Anal. 2019, 169, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kwon, J.; Choi, S.Y.; Ahn, Y.G. Method development for the quantitative determination of short chain fatty acids in microbial samples by solid phase extraction and gas chromatography with flame ionization detection. J. Anal. Sci. Technol. 2019, 10, 1–6. [Google Scholar] [CrossRef]
- Zeng, M.; Cao, H. Fast quantification of short chain fatty acids and ketone bodies by liquid chromatography-tandem mass spectrometry after facile derivatization coupled with liquid-liquid extraction. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1083, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Nyman, M.; Jönsson, J.A. Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water-extraction and direct-injection gas chromatography. Biomed. Chromatogr. 2006, 20, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Hunter, G. A method for deproteinization of blood and other body fluids. J. Clin. Pathol. 1957, 10, 161–164. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.; Zhang, Q.L.; Huang, X.W.; Ma, Z.H.; Zheng, X.L.; Li, S.L.; Duan, H.N.; Sun, X.C.; Lin, F.F.; Zhao, L.J.; et al. A rapid and convenient derivatization method for quantitation of short-chain fatty acids in human feces by ultra-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2020, 34, e8730. [Google Scholar] [CrossRef]
- Torii, T.; Kanemitsu, K.; Wada, T.; Itoh, S.; Kinugawa, K.; Hagiwara, A. Measurement of short-chain fatty acids in human faeces using high-performance liquid chromatography: Specimen stability. Ann. Clin. Biochem. 2010, 47, 447–452. [Google Scholar] [CrossRef]
- Liebisch, G.; Ecker, J.; Roth, S.; Schweizer, S.; Ottl, V.; Schott, H.F.; Yoon, H.; Haller, D.; Holler, E.; Burkhardt, R.; et al. Quantification of Fecal Short Chain Fatty Acids by Liquid Chromatography Tandem Mass Spectrometry-Investigation of Pre-Analytic Stability. Biomolecules 2019, 9, 121. [Google Scholar] [CrossRef] [Green Version]
- van Eijk, H.M.; Bloemen, J.G.; Dejong, C.H. Application of liquid chromatography-mass spectrometry to measure short chain fatty acids in blood. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009, 877, 719–724. [Google Scholar] [CrossRef]
- Han, J.; Lin, K.; Sequeira, C.; Borchers, C.H. An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 2015, 854, 86–94. [Google Scholar] [CrossRef]
- Guo, K.; Li, L. High-performance isotope labeling for profiling carboxylic acid-containing metabolites in biofluids by mass spectrometry. Anal. Chem. 2010, 82, 8789–8793. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Wang, N.; Chen, D.; Li, Y.; Lu, Y.; Huan, T.; Xu, W.; Li, L.; Li, L. Dansylation isotope labeling liquid chromatography mass spectrometry for parallel profiling of human urinary and fecal submetabolomes. Anal. Chim. Acta 2016, 903, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Bruheim, P.; Kvitvang, H.F.; Villas-Boas, S.G. Stable isotope coded derivatizing reagents as internal standards in metabolite profiling. J. Chromatogr. A 2013, 1296, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Miwa, H.; Yamamoto, M.; Nishida, T.; Nunoi, K.; Kikuchi, M. High-performance liquid chromatographic analysis of serum long-chain fatty acids by direct derivatization method. J. Chromatogr. 1987, 416, 237–245. [Google Scholar] [CrossRef]
- Jin, Y.Y.; Shi, Z.Q.; Chang, W.Q.; Guo, L.X.; Zhou, J.L.; Liu, J.Q.; Liu, L.F.; Xin, G.Z. A chemical derivatization based UHPLC-LTQ-Orbitrap mass spectrometry method for accurate quantification of short-chain fatty acids in bronchoalveolar lavage fluid of asthma mice. J. Pharm. Biomed. Anal. 2018, 161, 336–343. [Google Scholar] [CrossRef]
- Liao, H.Y.; Wang, C.Y.; Lee, C.H.; Kao, H.L.; Wu, W.K.; Kuo, C.H. Development of an Efficient and Sensitive Chemical Derivatization-Based LC-MS/MS Method for Quantifying Gut Microbiota-Derived Metabolites in Human Plasma and Its Application in Studying Cardiovascular Disease. J. Proteome Res. 2021, 20, 3508–3518. [Google Scholar] [CrossRef]
- Zheng, J.; Zheng, S.J.; Cai, W.J.; Yu, L.; Yuan, B.F.; Feng, Y.Q. Stable isotope labeling combined with liquid chromatography-tandem mass spectrometry for comprehensive analysis of short-chain fatty acids. Anal. Chim. Acta 2019, 1070, 51–59. [Google Scholar] [CrossRef]
- Bollinger, J.G.; Naika, G.S.; Sadilek, M.; Gelb, M.H. LC/ESI-MS/MS detection of FAs by charge reversal derivatization with more than four orders of magnitude improvement in sensitivity. J. Lipid Res. 2013, 54, 3523–3530. [Google Scholar] [CrossRef] [Green Version]
- Jiang, R.; Jiao, Y.; Zhang, P.; Liu, Y.; Wang, X.; Huang, Y.; Zhang, Z.; Xu, F. Twin Derivatization Strategy for High-Coverage Quantification of Free Fatty Acids by Liquid Chromatography-Tandem Mass Spectrometry. Anal. Chem. 2017, 89, 12223–12230. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, Y.; Shrestha, R.; Gao, Z.; Zhao, Y.; Miura, Y.; Tamakoshi, A.; Chiba, H.; Hui, S.P. Determination of total, free and esterified short-chain fatty acid in human serum by liquid chromatography-mass spectrometry. Ann. Clin. Biochem. 2019, 56, 190–197. [Google Scholar] [CrossRef]
- Alothaim, I.; Gaya, D.R.; Watson, D.G. Development of a Sensitive Liquid Chromatography Mass Spectrometry Method for the Analysis of Short Chain Fatty Acids in Urine from Patients with Ulcerative Colitis. Curr. Metab. 2018, 6, 124–130. [Google Scholar] [CrossRef]
- Dobrowolska-Iwanek, J.; Lauterbach, R.; Huras, H.; Paśko, P.; Prochownik, E.; Woźniakiewicz, M.; Chrząszcz, S.; Zagrodzki, P. HPLC-DAD method for the quantitative determination of short-chain fatty acids in meconium samples. Microchem. J. 2020, 155, 1–7. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, H.; Zhu, M.J. A sensitive GC/MS detection method for analyzing microbial metabolites short chain fatty acids in fecal and serum samples. Talanta 2019, 196, 249–254. [Google Scholar] [CrossRef]
- De Baere, S.; Eeckhaut, V.; Steppe, M.; De Maesschalck, C.; De Backer, P.; Van Immerseel, F.; Croubels, S. Development of a HPLC-UV method for the quantitative determination of four short-chain fatty acids and lactic acid produced by intestinal bacteria during in vitro fermentation. J. Pharm. Biomed. Anal. 2013, 80, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Lemay, J.A.; Yamamoto, M.; Kroezen, Z.; Shanmuganathan, M.; Ly, R.; Hart, L.; Pai, N.; Britz-McKibbin, P. Lyophilized fecal short-chain fatty acid and electrolyte determination by capillary electrophoresis with indirect UV detection for assessment of pediatric inflammatory bowel disease. J. Pharm. Biomed. Anal. 2021, 192, 113658. [Google Scholar] [CrossRef]
- Sowah, S.A.; Hirche, F.; Milanese, A.; Johnson, T.S.; Grafetstatter, M.; Schubel, R.; Kirsten, R.; Ulrich, C.M.; Kaaks, R.; Zeller, G.; et al. Changes in Plasma Short-Chain Fatty Acid Levels after Dietary Weight Loss Among Overweight and Obese Adults over 50 Weeks. Nutrients 2020, 12, 452. [Google Scholar] [CrossRef] [Green Version]
- Shafaei, A.; Vamathevan, V.; Pandohee, J.; Lawler, N.G.; Broadhurst, D.; Boyce, M.C. Sensitive and quantitative determination of short-chain fatty acids in human serum using liquid chromatography mass spectrometry. Anal. Bioanal. Chem. 2021, 413, 6333–6342. [Google Scholar] [CrossRef]
- Nagatomo, R.; Okada, Y.; Ichimura, M.; Tsuneyama, K.; Inoue, K. Application of 2-Picolylamine Derivatized Ultra-high Performance Liquid Chromatography Tandem Mass Spectrometry for the Determination of Short-chain Fatty Acids in Feces Samples. Anal. Sci. 2018, 34, 1031–1036. [Google Scholar] [CrossRef] [Green Version]
- Parise, R.A.; Beumer, J.H.; Kangani, C.O.; Holleran, J.L.; Eiseman, J.L.; Smith, N.F.; Covey, J.M.; Perrine, S.P.; Egorin, M.J. Liquid chromatography-mass spectrometric assay for quantitation of the short-chain fatty acid, 2,2-dimethylbutyrate (NSC 741804), in rat plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2008, 862, 168–174. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.; Tan, L.; Dorshorst, D.; Morrissey, K.; Mahrus, S.; Milanowski, D.; McKnight, J.; Cape, S.; Dean, B.; Liang, X. A validated surrogate analyte LC-MS/MS assay for quantitation of endogenous kynurenine and tryptophan in human plasma. Bioanalysis 2018, 10, 1307–1317. [Google Scholar] [CrossRef]
- Chhonker, Y.S.; Haney, S.L.; Bala, V.; Holstein, S.A.; Murry, D.J. Simultaneous quantitation of isoprenoid pyrophosphates in plasma and cancer cells using LC-MS/MS. Molecules 2018, 23, 3275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Chhonker, Y.S.; Bala, V.; Hagg, A.; Snetselaar, L.G.; Wahls, T.L.; Murry, D.J. Reversed phase UPLC/APCI-MS determination of Vitamin K1 and menaquinone-4 in human plasma: Application to a clinical study. J. Pharm. Biomed. Anal. 2020, 183, 113147. [Google Scholar] [CrossRef] [PubMed]
- Rox, K.; Rath, S.; Pieper, D.H.; Vital, M.; Brönstrup, M. A simplified LC-MS/MS method for the quantification of the cardiovascular disease biomarker trimethylamine-N-oxide and its precursors. J. Pharm. Anal. 2021, 11, 523–528. [Google Scholar] [CrossRef]
- Ho, S.; Gao, H. Surrogate matrix: Opportunities and challenges for tissue sample analysis. Bioanalysis 2015, 7, 2419–2433. [Google Scholar] [CrossRef] [PubMed]
- Thakare, R.; Chhonker, Y.S.; Gautam, N.; Alamoudi, J.A.; Alnouti, Y. Quantitative analysis of endogenous compounds. J. Pharm. Biomed. Anal. 2016, 128, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Pekmez, C.T.; Larsson, M.W.; Lind, M.V.; Vazquez Manjarrez, N.; Yonemitsu, C.; Larnkjaer, A.; Bode, L.; Mølgaard, C.; Michaelsen, K.F.; Dragsted, L.O. Breastmilk Lipids and Oligosaccharides Influence Branched Short-Chain Fatty Acid Concentrations in Infants with Excessive Weight Gain. Mol. Nutr. Food Res. 2020, 64, e1900977. [Google Scholar] [CrossRef]
- Martignoni, M.; Groothuis, G.M.; de Kanter, R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert. Opin. Drug Metab. Toxicol. 2006, 2, 875–894. [Google Scholar] [CrossRef]
- Atweh, G.F.; Sutton, M.; Nassif, I.; Boosalis, V.; Dover, G.J.; Wallenstein, S.; Wright, E.; McMahon, L.; Stamatoyannopoulos, G.; Faller, D.V.; et al. Sustained induction of fetal hemoglobin by pulse butyrate therapy in sickle cell disease. Blood 1999, 93, 1790–1797. [Google Scholar]
- Collins, A.F.; Pearson, H.A.; Giardina, P.; McDonagh, K.T.; Brusilow, S.W.; Dover, G.J. Oral sodium phenylbutyrate therapy in homozygous beta thalassemia: A clinical trial. Blood 1995, 85, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Dover, G.J.; Brusilow, S.; Charache, S. Induction of fetal hemoglobin production in subjects with sickle cell anemia by oral sodium phenylbutyrate. Blood 1994, 84, 339–343. [Google Scholar] [CrossRef] [Green Version]
- Pace, B.S.; White, G.L.; Dover, G.J.; Boosalis, M.S.; Faller, D.V.; Perrine, S.P. Short-chain fatty acid derivatives induce fetal globin expression and erythropoiesis in vivo. Blood 2002, 100, 4640–4648. [Google Scholar] [CrossRef] [PubMed]
- Perrine, S.P.; Castaneda, S.A.; Boosalis, M.S.; White, G.L.; Jones, B.M.; Bohacek, R. Induction of fetal globin in beta-thalassemia: Cellular obstacles and molecular progress. Ann. N. Y. Acad. Sci. 2005, 1054, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, T. Analysis of Short-Chain Fatty Acids/Organic Acids (3-NPH Derivatives) in Fecal Specimens from SPF and Antibiotic-Fed Mice. Shimadzu Corporation. 2018. Available online: https://www.shimadzu.com/an/literature/lcms/jpo118020.html (accessed on 24 October 2022).
- Lotti, C.; Rubert, J.; Fava, F.; Tuohy, K.; Mattivi, F.; Vrhovsek, U. Development of a fast and cost-effective gas chromatography-mass spectrometry method for the quantification of short-chain and medium-chain fatty acids in human biofluids. Anal. Bioanal. Chem. 2017, 409, 5555–5567. [Google Scholar] [CrossRef] [PubMed]
- Bihan, D.G.; Rydzak, T.; Wyss, M.; Pittman, K.; McCoy, K.D.; Lewis, I.A. Method for absolute quantification of short chain fatty acids via reverse phase chromatography mass spectrometry. PLoS ONE 2022, 17, e0267093. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trivedi, N.; Erickson, H.E.; Bala, V.; Chhonker, Y.S.; Murry, D.J. A Concise Review of Liquid Chromatography-Mass Spectrometry-Based Quantification Methods for Short Chain Fatty Acids as Endogenous Biomarkers. Int. J. Mol. Sci. 2022, 23, 13486. https://doi.org/10.3390/ijms232113486
Trivedi N, Erickson HE, Bala V, Chhonker YS, Murry DJ. A Concise Review of Liquid Chromatography-Mass Spectrometry-Based Quantification Methods for Short Chain Fatty Acids as Endogenous Biomarkers. International Journal of Molecular Sciences. 2022; 23(21):13486. https://doi.org/10.3390/ijms232113486
Chicago/Turabian StyleTrivedi, Neerja, Helen E. Erickson, Veenu Bala, Yashpal S. Chhonker, and Daryl J. Murry. 2022. "A Concise Review of Liquid Chromatography-Mass Spectrometry-Based Quantification Methods for Short Chain Fatty Acids as Endogenous Biomarkers" International Journal of Molecular Sciences 23, no. 21: 13486. https://doi.org/10.3390/ijms232113486
APA StyleTrivedi, N., Erickson, H. E., Bala, V., Chhonker, Y. S., & Murry, D. J. (2022). A Concise Review of Liquid Chromatography-Mass Spectrometry-Based Quantification Methods for Short Chain Fatty Acids as Endogenous Biomarkers. International Journal of Molecular Sciences, 23(21), 13486. https://doi.org/10.3390/ijms232113486