The Effects of Silencing PTX3 on the Proteome of Human Endothelial Cells
Abstract
:1. Introduction
2. Results
2.1. Proteomic Analysis of PTX3-Silenced ECs
2.2. The Effect of Silencing PTX3 on In Vitro Angiogenesis
2.3. The Effect of Silencing PTX3 on the Inflammatory Profile of ECs
2.4. The Effect of Silencing PTX3 on the Redox Status of ECs
3. Discussion
4. Materials and Methods
4.1. Cell Cultures
4.2. Label-Free Mass Spectrometry (LC-MSE) Analysis
4.3. Gene Ontology Analysis
4.4. Small Interfering RNA (siRNA) Transfection
4.5. Total RNA Extraction and Reverse Transcription and Quantitative Real-Time PCR (RT-qPCR)
4.6. Immunoblotting
4.7. In Vitro Angiogenesis
4.8. Measurement of Hydrogen Peroxide and GSH/GSSG Ratio
4.9. Statistical Procedures
4.10. Reagents and Antibodies
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chatterjee, S. Endothelial Mechanotransduction, Redox Signaling and the Regulation of Vascular Inflammatory Pathways. Front. Physiol. 2018, 9, 524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.; Ilyas, I.; Little, P.J.; Li, H.; Kamato, D.; Zheng, X.; Luo, S.; Li, Z.; Liu, P.; Han, J.; et al. Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. Pharmacol. Rev. 2021, 73, 924–967. [Google Scholar] [CrossRef]
- Goveia, J.; Stapor, P.; Carmeliet, P. Principles of Targeting Endothelial Cell Metabolism to Treat Angiogenesis and Endothelial Cell Dysfunction in Disease. EMBO Mol. Med. 2014, 6, 1105–1120. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.G.; Lee, A.; Chang, W.; Lee, M.-S.; Kim, J. Endothelial to Mesenchymal Transition Represents a Key Link in the Interaction between Inflammation and Endothelial Dysfunction. Front. Immunol. 2018, 9, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, Y.; Osto, E.; Schmidt-Trucksass, A.; Shechter, M.; Trifunovic, D.; Duncker, D.J.; Aboyans, V.; Back, M.; Badimon, L.; Cosentino, F.; et al. Endothelial Function in Cardiovascular Precision Medicine: A Consensus Paper of the European Society of Cardiology Working Groups on Atherosclerosis and Vascular Biology, Aorta and Peripheral Vascular Diseases, Coronary Pathophysiology and Microcirculation, and Thrombosis. Cardiovasc. Res. 2021, 117, 29–42. [Google Scholar]
- Knapp, M.; Tu, X.; Wu, R. Vascular Endothelial Dysfunction, a Major Mediator in Diabetic Cardiomyopathy. Acta Pharmacol. Sin. 2019, 40, 1–8. [Google Scholar] [CrossRef]
- Montiel, V.; Lobysheva, I.; Gérard, L.; Vermeersch, M.; Perez-Morga, D.; Castelein, T.; Mesland, J.-B.; Hantson, P.; Collienne, C.; Gruson, D.; et al. Oxidative Stress-Induced Endothelial Dysfunction and Decreased Vascular Nitric Oxide in COVID-19 Patients. eBioMedicine 2022, 77, 103893. [Google Scholar] [CrossRef]
- Shao, Y.; Saredy, J.; Yang, W.Y.; Sun, Y.; Lu, Y.; Saaoud, F.; Drummer, C.; Johnson, C.; Xu, K.; Jiang, X.; et al. Vascular Endothelial Cells and Innate Immunity. Arterioscler. Thromb. Vasc. Biol. 2020, 40, e138–e152. [Google Scholar] [CrossRef]
- Erreni, M.; Manfredi, A.A.; Garlanda, C.; Mantovani, A.; Rovere-Querini, P. The Long Pentraxin PTX3: A Prototypical Sensor of Tissue Injury and a Regulator of Homeostasis. Immunol. Rev. 2017, 280, 112–125. [Google Scholar] [CrossRef]
- Doni, A.; Stravalaci, M.; Inforzato, A.; Magrini, E.; Mantovani, A.; Garlanda, C.; Bottazzi, B. The Long Pentraxin PTX3 as a Link Between Innate Immunity, Tissue Remodeling, and Cancer. Front. Immunol. 2019, 10, 712. [Google Scholar] [CrossRef] [Green Version]
- Burghoff, S.; Schrader, J. Secretome of Human Endothelial Cells under Shear Stress. J. Proteome Res. 2011, 10, 1160–1169. [Google Scholar] [CrossRef]
- Brioschi, M.; Lento, S.; Tremoli, E.; Banfi, C. Proteomic Analysis of Endothelial Cell Secretome: A Means of Studying the Pleiotropic Effects of Hmg-CoA Reductase Inhibitors. J. Proteom. 2013, 78, 346–361. [Google Scholar] [CrossRef]
- Cattaneo, M.G.; Banfi, C.; Brioschi, M.; Lattuada, D.; Vicentini, L.M. Sex-Dependent Differences in the Secretome of Human Endothelial Cells. Biol. Sex Differ. 2021, 12, 7. [Google Scholar] [CrossRef]
- Rovere, P.; Peri, G.; Fazzini, F.; Bottazzi, B.; Doni, A.; Bondanza, A.; Zimmermann, V.S.; Garlanda, C.; Fascio, U.; Sabbadini, M.G.; et al. The Long Pentraxin PTX3 Binds to Apoptotic Cells and Regulates Their Clearance by Antigen-Presenting Dendritic Cells. Blood 2000, 96, 4300–4306. [Google Scholar] [CrossRef]
- Jaillon, S.; Jeannin, P.; Hamon, Y.; Frémaux, I.; Doni, A.; Bottazzi, B.; Blanchard, S.; Subra, J.-F.; Chevailler, A.; Mantovani, A.; et al. Endogenous PTX3 Translocates at the Membrane of Late Apoptotic Human Neutrophils and Is Involved in Their Engulfment by Macrophages. Cell Death Differ. 2009, 16, 465–474. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Ke, L.; Qi, B.; Wan, J.; Ge, J.; Bai, L.; Cheng, B. PTX3 Is Located at the Membrane of Late Apoptotic Macrophages and Mediates the Phagocytosis of Macrophages. J. Clin. Immunol. 2012, 32, 330–339. [Google Scholar] [CrossRef]
- Vezzoli, M.; Sciorati, C.; Campana, L.; Monno, A.; Doglio, M.G.; Rigamonti, E.; Corna, G.; Touvier, T.; Castiglioni, A.; Capobianco, A.; et al. Clearance of Cell Remnants and Regeneration of Injured Muscle Depend on Soluble Pattern Recognition Receptor PTX3. Mol. Med. 2016, 22, 809–820. [Google Scholar] [CrossRef]
- Doni, A.; Mantovani, A.; Bottazzi, B.; Russo, R.C. PTX3 Regulation of Inflammation, Hemostatic Response, Tissue Repair, and Resolution of Fibrosis Favors a Role in Limiting Idiopathic Pulmonary Fibrosis. Front. Immunol. 2021, 12, 676702. [Google Scholar] [CrossRef]
- Bonacina, F.; Baragetti, A.; Catapano, A.L.; Norata, G.D. Long Pentraxin 3: Experimental and Clinical Relevance in Cardiovascular Diseases. Available online: https://www.hindawi.com/journals/mi/2013/725102/ (accessed on 14 July 2020). [CrossRef] [Green Version]
- Casula, M.; Montecucco, F.; Bonaventura, A.; Liberale, L.; Vecchié, A.; Dallegri, F.; Carbone, F. Update on the Role of Pentraxin 3 in Atherosclerosis and Cardiovascular Diseases. Vasc. Pharmacol. 2017, 99, 1–12. [Google Scholar] [CrossRef]
- Ristagno, G.; Fumagalli, F.; Bottazzi, B.; Mantovani, A.; Olivari, D.; Novelli, D.; Latini, R. Pentraxin 3 in Cardiovascular Disease. Front. Immunol. 2019, 10, 823. [Google Scholar] [CrossRef] [Green Version]
- Eelen, G.; Treps, L.; Li, X.; Carmeliet, P. Basic and Therapeutic Aspects of Angiogenesis Updated. Circ. Res. 2020, 127, 310–329. [Google Scholar] [CrossRef] [PubMed]
- Coulthard, M.G.; Morgan, M.; Woodruff, T.M.; Arumugam, T.V.; Taylor, S.M.; Carpenter, T.C.; Lackmann, M.; Boyd, A.W. Eph/Ephrin Signaling in Injury and Inflammation. Am. J. Pathol. 2012, 181, 1493–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jezkova, K.; Rathouska, J.; Nemeckova, I.; Fikrova, P.; Dolezelova, E.; Varejckova, M.; Vitverova, B.; Bernabeu, C.; Novoa, J.M.; Chlopicki, S.; et al. High Levels of Soluble Endoglin Induce Inflammation and Oxidative Stress in Aorta Compensated with Preserved No-Dependent Vasodilatation Mice Fed High Fat Diet. Atherosclerosis 2016, 252, e160. [Google Scholar] [CrossRef]
- Finney, A.C.; Funk, S.D.; Green, J.M.; Yurdagul, A.; Rana, M.A.; Pistorius, R.; Henry, M.; Yurochko, A.; Pattillo, C.B.; Traylor, J.G.; et al. EphA2 Expression Regulates Inflammation and Fibroproliferative Remodeling in Atherosclerosis. Circulation 2017, 136, 566–582. [Google Scholar] [CrossRef]
- Varejckova, M.; Gallardo-Vara, E.; Vicen, M.; Vitverova, B.; Fikrova, P.; Dolezelova, E.; Rathouska, J.; Prasnicka, A.; Blazickova, K.; Micuda, S.; et al. Soluble Endoglin Modulates the Pro-Inflammatory Mediators NF-ΚB and IL-6 in Cultured Human Endothelial Cells. Life Sci. 2017, 175, 52–60. [Google Scholar] [CrossRef]
- Park, E.S.; Kim, S.; Yao, D.C.; Savarraj, J.P.J.; Choi, H.A.; Chen, P.R.; Kim, E. Soluble Endoglin Stimulates Inflammatory and Angiogenic Responses in Microglia That Are Associated with Endothelial Dysfunction. Int. J. Mol. Sci. 2022, 23, 1225. [Google Scholar] [CrossRef]
- Caughey, G.E.; Cleland, L.G.; Penglis, P.S.; Gamble, J.R.; James, M.J. Roles of Cyclooxygenase (COX)-1 and COX-2 in Prostanoid Production by Human Endothelial Cells: Selective Up-Regulation of Prostacyclin Synthesis by COX-2. J. Immunol. 2001, 167, 2831–2838. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Anshita, D.; Ravichandiran, V. MCP-1: Function, Regulation, and Involvement in Disease. Int. Immunopharmacol. 2021, 101, 107598. [Google Scholar] [CrossRef]
- Daiber, A.; Chlopicki, S. Revisiting Pharmacology of Oxidative Stress and Endothelial Dysfunction in Cardiovascular Disease: Evidence for Redox-Based Therapies. Free Radic Biol. Med. 2020, 157, 15–37. [Google Scholar] [CrossRef]
- Zeng, L.; Li, K.; Wei, H.; Hu, J.; Jiao, L.; Yu, S.; Xiong, Y. A Novel EphA2 Inhibitor Exerts Beneficial Effects in PI-IBS in Vivo and in Vitro Models via Nrf2 and NF-ΚB Signaling Pathways. Front. Pharmacol. 2018, 9, 272. [Google Scholar] [CrossRef]
- Magrini, E.; Mantovani, A.; Garlanda, C. The Dual Complexity of PTX3 in Health and Disease: A Balancing Act? Trends Mol. Med. 2016, 22, 497–510. [Google Scholar] [CrossRef] [Green Version]
- Doni, A.; Michela, M.; Bottazzi, B.; Peri, G.; Valentino, S.; Polentarutti, N.; Garlanda, C.; Mantovani, A. Regulation of PTX3, a Key Component of Humoral Innate Immunity in Human Dendritic Cells: Stimulation by IL-10 and Inhibition by IFN-γ. J. Leukoc. Biol. 2006, 79, 797–802. [Google Scholar] [CrossRef] [Green Version]
- Norata, G.D.; Marchesi, P.; Pirillo, A.; Uboldi, P.; Chiesa, G.; Maina, V.; Garlanda, C.; Mantovani, A.; Catapano, A.L. Long Pentraxin 3, a Key Component of Innate Immunity, Is Modulated by High-Density Lipoproteins in Endothelial Cells. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 925–931. [Google Scholar] [CrossRef] [Green Version]
- Norata, G.D.; Marchesi, P.; Pulakazhi Venu, V.K.; Pasqualini, F.; Anselmo, A.; Moalli, F.; Pizzitola, I.; Garlanda, C.; Mantovani, A.; Catapano, A.L. Deficiency of the Long Pentraxin PTX3 Promotes Vascular Inflammation and Atherosclerosis. Circulation 2009, 120, 699–708. [Google Scholar] [CrossRef] [Green Version]
- Bonacina, F.; Barbieri, S.S.; Cutuli, L.; Amadio, P.; Doni, A.; Sironi, M.; Tartari, S.; Mantovani, A.; Bottazzi, B.; Garlanda, C.; et al. Vascular Pentraxin 3 Controls Arterial Thrombosis by Targeting Collagen and Fibrinogen Induced Platelets Aggregation. Biochim. Et Biophys. Acta (BBA)—Mol. Basis Dis. 2016, 1862, 1182–1190. [Google Scholar] [CrossRef]
- Salio, M.; Chimenti, S.; De Angelis, N.; Molla, F.; Maina, V.; Nebuloni, M.; Pasqualini, F.; Latini, R.; Garlanda, C.; Mantovani, A. Cardioprotective Function of the Long Pentraxin PTX3 in Acute Myocardial Infarction. Circulation 2008, 117, 1055–1064. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, T.; Suzuki, S.; Sato, A.; Nakamura, Y.; Ikeda, K.; Saitoh, S.; Misaka, S.; Shishido, T.; Kubota, I.; Takeishi, Y. Cardio-Protective Effects of Pentraxin 3 Produced from Bone Marrow-Derived Cells against Ischemia/Reperfusion Injury. J. Mol. Cell. Cardiol. 2015, 89, 306–313. [Google Scholar] [CrossRef] [Green Version]
- Nagata, S. Apoptosis and Clearance of Apoptotic Cells. Annu. Rev. Immunol. 2018, 36, 489–517. [Google Scholar] [CrossRef]
- Kourtzelis, I.; Hajishengallis, G.; Chavakis, T. Phagocytosis of Apoptotic Cells in Resolution of Inflammation. Front. Immunol. 2020, 11, 53. [Google Scholar] [CrossRef]
- Carrizzo, A.; Lenzi, P.; Procaccini, C.; Damato, A.; Biagioni, F.; Ambrosio, M.; Amodio, G.; Remondelli, P.; Del Giudice, C.; Izzo, R.; et al. Pentraxin 3 Induces Vascular Endothelial Dysfunction Through a P-Selectin/Matrix Metalloproteinase-1 Pathway. Circulation 2015, 131, 1495–1505. [Google Scholar] [CrossRef]
- Rolph, M.S.; Zimmer, S.; Bottazzi, B.; Garlanda, C.; Mantovani, A.; Hansson, G.K. Production of the Long Pentraxin PTX3 in Advanced Atherosclerotic Plaques. Arterioscler. Thromb. Vasc. Biol. 2002, 22, e10–e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Y.; He, R.; Man, C.; Gong, D. Utility of Elevated Pentraxin-3 Level as Inflammatory Marker for Predicting Adverse Outcomes in Patients With Acute Coronary Syndrome: A Meta-Analysis. Front. Cardiovasc. Med. 2022, 8, 736868. [Google Scholar] [CrossRef] [PubMed]
- Slenders, L.; Tessels, D.E.; van der Laan, S.W.; Pasterkamp, G.; Mokry, M. The Applications of Single-Cell RNA Sequencing in Atherosclerotic Disease. Front. Cardiovasc. Med. 2022, 9, 826103. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Zeng, Z.; Shang, C.; Li, Q.; Liu, J. Epigenetic Regulation in Pathology of Atherosclerosis: A Novel Perspective. Front. Genet. 2021, 12, 810689. [Google Scholar] [CrossRef]
- Fahey, E.; Doyle, S.L. IL-1 Family Cytokine Regulation of Vascular Permeability and Angiogenesis. Front. Immunol. 2019, 10, 1426. [Google Scholar] [CrossRef] [Green Version]
- Libby, P. Interleukin-1 Beta as a Target for Atherosclerosis Therapy: Biological Basis of CANTOS and Beyond. J. Am. Coll. Cardiol. 2017, 70, 2278–2289. [Google Scholar] [CrossRef]
- Lindkvist, M.; Zegeye, M.M.; Grenegård, M.; Ljungberg, L.U. Pleiotropic, Unique and Shared Responses Elicited by IL-6 Family Cytokines in Human Vascular Endothelial Cells. Int. J. Mol. Sci. 2022, 23, 1448. [Google Scholar] [CrossRef]
- Ma, J.; Sanchez-Duffhues, G.; Goumans, M.-J.; ten Dijke, P. TGF-β-Induced Endothelial to Mesenchymal Transition in Disease and Tissue Engineering. Front. Cell Dev. Biol. 2020, 8, 260. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Zhou, J.; Zhang, J.; Wang, Z.; Yu, Y.; Miao, M.; Yao, Q. Dual Roles of Glutathione S-Transferase Mu 1 in the Development and Metastasis of Hepatocellular Carcinoma. Biomed. Pharmacother. 2019, 120, 109532. [Google Scholar] [CrossRef]
- Gozzelino, R.; Jeney, V.; Soares, M.P. Mechanisms of Cell Protection by Heme Oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 2010, 50, 323–354. [Google Scholar] [CrossRef]
- Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide Dismutases: Dual Roles in Controlling ROS Damage and Regulating ROS Signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef] [Green Version]
- Marcu, R.; Choi, Y.J.; Xue, J.; Fortin, C.L.; Wang, Y.; Nagao, R.J.; Xu, J.; MacDonald, J.W.; Bammler, T.K.; Murry, C.E.; et al. Human Organ-Specific Endothelial Cell Heterogeneity. iScience 2018, 4, 20–35. [Google Scholar] [CrossRef] [Green Version]
- Medina-Leyte, D.J.; Domínguez-Pérez, M.; Mercado, I.; Villarreal-Molina, M.T.; Jacobo-Albavera, L. Use of Human Umbilical Vein Endothelial Cells (HUVEC) as a Model to Study Cardiovascular Disease: A Review. Appl. Sci. 2020, 10, 938. [Google Scholar] [CrossRef] [Green Version]
- Hartman, R.J.G.; Kapteijn, D.M.C.; Haitjema, S.; Bekker, M.N.; Mokry, M.; Pasterkamp, G.; Civelek, M.; den Ruijter, H.M. Intrinsic Transcriptomic Sex Differences in Human Endothelial Cells at Birth and in Adults Are Associated with Coronary Artery Disease Targets. Sci. Rep. 2020, 10, 12367. [Google Scholar] [CrossRef]
- Rajkovic, I.; Wong, R.; Lemarchand, E.; Rivers-Auty, J.; Rajkovic, O.; Garlanda, C.; Allan, S.M.; Pinteaux, E. Pentraxin 3 Promotes Long-Term Cerebral Blood Flow Recovery, Angiogenesis, and Neuronal Survival after Stroke. J. Mol. Med. 2018, 96, 1319–1332. [Google Scholar] [CrossRef] [Green Version]
- Oggioni, M.; Mercurio, D.; Minuta, D.; Fumagalli, S.; Popiolek-Barczyk, K.; Sironi, M.; Ciechanowska, A.; Ippati, S.; De Blasio, D.; Perego, C.; et al. Long Pentraxin PTX3 Is Upregulated Systemically and Centrally after Experimental Neurotrauma, but Its Depletion Leaves Unaltered Sensorimotor Deficits or Histopathology. Sci. Rep. 2021, 11, 9616. [Google Scholar] [CrossRef]
- Jaffe, E.A.; Nachman, R.L.; Becker, C.G.; Minick, C.R. Culture of Human Endothelial Cells Derived from Umbilical Veins. Identification by Morphologic and Immunologic Criteria. J. Clin. Investig. 1973, 52, 2745–2756. [Google Scholar] [CrossRef]
- Brioschi, M.; Eligini, S.; Crisci, M.; Fiorelli, S.; Tremoli, E.; Colli, S.; Banfi, C. A Mass Spectrometry-Based Workflow for the Proteomic Analysis of in Vitro Cultured Cell Subsets Isolated by Means of Laser Capture Microdissection. Anal. Bioanal. Chem. 2014, 406, 2817–2825. [Google Scholar] [CrossRef]
- Distler, U.; Kuharev, J.; Navarro, P.; Tenzer, S. Label-Free Quantification in Ion Mobility–Enhanced Data-Independent Acquisition Proteomics. Nat. Protoc. 2016, 11, 795–812. [Google Scholar] [CrossRef]
- Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Llinares, M.; Hewapathirana, S.; Kundu, D.J.; Inuganti, A.; Griss, J.; Mayer, G.; Eisenacher, M.; et al. The PRIDE Database and Related Tools and Resources in 2019: Improving Support for Quantification Data. Nucleic Acids Res. 2019, 47, D442–D450. [Google Scholar] [CrossRef]
- Franceschini, A.; Szklarczyk, D.; Frankild, S.; Kuhn, M.; Simonovic, M.; Roth, A.; Lin, J.; Minguez, P.; Bork, P.; von Mering, C.; et al. STRING v9.1: Protein-Protein Interaction Networks, with Increased Coverage and Integration. Nucleic Acids Res. 2012, 41, D808–D815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pontremoli, M.; Brioschi, M.; Baetta, R.; Ghilardi, S.; Banfi, C. Identification of DKK-1 as a Novel Mediator of Statin Effects in Human Endothelial Cells. Sci. Rep. 2018, 8, 16671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappellini, E.; Vanetti, C.; Vicentini, L.M.; Cattaneo, M.G. Silencing of Eps8 Inhibits in Vitro Angiogenesis. Life Sci. 2015, 131, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, M.G.; Vanetti, C.; Decimo, I.; Di Chio, M.; Martano, G.; Garrone, G.; Bifari, F.; Vicentini, L.M. Sex-Specific ENOS Activity and Function in Human Endothelial Cells. Sci. Rep. 2017, 7, 9612. [Google Scholar] [CrossRef]
- Banfi, C.; Brioschi, M.; Barcella, S.; Pignieri, A.; Parolari, A.; Biglioli, P.; Tremoli, E.; Mussoni, L. Tissue Factor Induction by Protease-Activated Receptor 1 Requires Intact Caveolin-Enriched Membrane Microdomains in Human Endothelial Cells. J. Thromb. Haemost. 2007, 5, 2437–2444. [Google Scholar] [CrossRef]
- Heiss, M.; Hellström, M.; Kalén, M.; May, T.; Weber, H.; Hecker, M.; Augustin, H.G.; Korff, T. Endothelial Cell Spheroids as a Versatile Tool to Study Angiogenesis in Vitro. FASEB J. 2015, 29, 3076–3084. [Google Scholar] [CrossRef]
- Vanetti, C.; Bifari, F.; Vicentini, L.M.; Cattaneo, M.G. Fatty Acids Rather than Hormones Restore in Vitro Angiogenesis in Human Male and Female Endothelial Cells Cultured in Charcoal-Stripped Serum. PLoS ONE 2017, 12, e0189528. [Google Scholar] [CrossRef]
- Cattaneo, M.G.; Lucci, G.; Vicentini, L.M. Oxytocin Stimulates in Vitro Angiogenesis via a Pyk-2/Src-Dependent Mechanism. Exp. Cell Res. 2009, 315, 3210–3219. [Google Scholar] [CrossRef]
Accession | Description | Peptide Count/Unique Peptides | Score | p Value | Fold Change |
---|---|---|---|---|---|
P09211 | Glutathione S-transferase P, GSTP1 | 10/9 | 106 | 0.0022 | 1.21 |
P60660 | Myosin light polypeptide 6, MYL6 | 8/8 | 77 | 0.0021 | 1.22 |
P08708 | 40S ribosomal protein S17, RPS17 | 2/2 | 22 | 0.0023 | 1.23 |
Q86VZ2 | WD repeat-containing protein, WDR5B | 2/2 | 13 | 0.0003 | 1.25 |
P12821 | Angiotensin-converting enzyme, ACE | 2/2 | 11 | 0.0063 | 1.27 |
Q9BUJ2 | Heterogeneous nuclear ribonucleoprotein U-like protein 1, HNRNPUL1 | 6/5 | 39 | 0.0002 | 1.28 |
Q7Z406 | Myosin-14, MYH14 | 16/4 | 134 | 0.0001 | 1.30 |
P30626 | Sorcin, SRI | 4/4 | 33 | 2.49 × 10−5 | 1.31 |
P25787 | Proteasome subunit alpha type 2, PSMA2 | 3/3 | 20 | 0.0002 | 1.31 |
Q9NUV9 | GTPase IMAP family member 4, GIMAP4 | 3/3 | 18 | 0.0005 | 1.33 |
Q96AY3 | Peptidyl-prolyl cis-trans isomerase, FKBP10 | 3/3 | 17 | 0.0006 | 1.34 |
P49748 | Very long-chain specific acyl-CoA dehydrogenase_ mitochondrial, ACADVL | 2/2 | 10 | 0.0036 | 1.34 |
P67936 | Tropomyosin alpha-4 chain, TPM4 | 11/3 | 107 | 2.10 × 10−5 | 1.35 |
P60903 | Protein S100-A10, S100A10 | 2/2 | 21 | 1.24 × 10−6 | 1.41 |
P20290 | Transcription factor BTF3, BTF3 | 2/2 | 11 | 0.0005 | 1.48 |
Q99439 | Calponin-2, CNN2 | 2/2 | 13 | 5.03 × 10−5 | 1.51 |
P52943 | Cysteine-rich protein 2, CRIP2 | 2/2 | 14 | 0.0001 | 1.52 |
Q6DD88 | Atlastin-3, ATL3 | 5/5 | 27 | 7.54 × 10−5 | 1.53 |
P62841 | 40S ribosomal protein S15, RPS15 | 2/2 | 19 | 0.0002 | 1.73 |
Accession | Description | Peptide Count/Unique Peptides | Score | p Value | Fold Change |
---|---|---|---|---|---|
P04062 | Lysosomal acid glucosylceramidase, GBA | 2/2 | 11 | 0.0083 | 1.21 |
Q96A33 | Coiled-coil domain-containing protein 47, CCDC47 | 2/2 | 10 | 0.0024 | 1.22 |
P08648 | Integrin alpha 5, ITGA5 | 12/11 | 78 | 0.0001 | 1.22 |
P00352 | Retinal dehydrogenase 1, ALDH1A1 | 18/16 | 154 | 2.25 × 10−5 | 1.22 |
P09234 | U1 small nuclear ribonucleoprotein C, SNRPC | 2/2 | 13 | 0.0049 | 1.23 |
Q8TCJ2 | Dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit, STT3B | 2/2 | 10 | 0.0007 | 1.24 |
P04083 | Annexin A1, ANXA1 | 16/16 | 178 | 1.63 × 10−6 | 1.25 |
P26368 | Splicing factor U2AF 65 kDa subunit, U2AF2 | 4/4 | 26 | 1.48 × 10−6 | 1.25 |
P14678 | Small nuclear ribonucleoprotein-associated proteins B and B’, SNRPB | 4/4 | 26 | 2.36 × 10−5 | 1.26 |
Q96EP5 | DAZ-associated protein 1, DAZAP1 | 2/2 | 13 | 0.0084 | 1.26 |
Q86V81 | THO complex subunit 4, ALYREF | 4/4 | 44 | 0.0001 | 1.26 |
Q13242 | Serine/arginine-rich splicing factor 9, SRSF9 | 2/2 | 13 | 0.0012 | 1.27 |
P29317 | Ephrin type-A receptor 2, EPHA2 | 2/2 | 12 | 0.0041 | 1.28 |
P21589 | 5′-nucleotidase, NT5E | 4/3 | 27 | 2.22 × 10−5 | 1.30 |
P84090 | Enhancer of rudimentary homolog, ERH | 3/3 | 31 | 0.0016 | 1.31 |
Q8WXF1 | Paraspeckle component 1, PSPC1 | 2/2 | 11 | 0.0107 | 1.32 |
P17813 | Endoglin, ENG | 7/5 | 57 | 3.53 × 10−5 | 1.33 |
P28799 | Progranulin, GRN | 2/2 | 14 | 0.0053 | 1.33 |
Q16891 | MICOS complex subunit MIC60, IMMT | 7/7 | 48 | 0.0001 | 1.34 |
Q9P2E9 | Ribosome-binding protein 1, RRBP1 | 26/26 | 199 | 8.82 × 10−5 | 1.37 |
Q16698 | 2_4-dienoyl-CoA reductase_ mitochondrial, DECR1 | 4/4 | 28 | 6.23 × 10−6 | 1.38 |
Q92598 | Heat shock protein 105 kDa, HSPH1 | 4/3 | 21 | 7.10 × 10−5 | 1.51 |
P23634 | Plasma membrane calcium-transporting ATPase 4, ATP2B4 | 2/2 | 10 | 0.0001 | 1.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banfi, C.; Brioschi, M.; Vicentini, L.M.; Cattaneo, M.G. The Effects of Silencing PTX3 on the Proteome of Human Endothelial Cells. Int. J. Mol. Sci. 2022, 23, 13487. https://doi.org/10.3390/ijms232113487
Banfi C, Brioschi M, Vicentini LM, Cattaneo MG. The Effects of Silencing PTX3 on the Proteome of Human Endothelial Cells. International Journal of Molecular Sciences. 2022; 23(21):13487. https://doi.org/10.3390/ijms232113487
Chicago/Turabian StyleBanfi, Cristina, Maura Brioschi, Lucia M. Vicentini, and Maria Grazia Cattaneo. 2022. "The Effects of Silencing PTX3 on the Proteome of Human Endothelial Cells" International Journal of Molecular Sciences 23, no. 21: 13487. https://doi.org/10.3390/ijms232113487
APA StyleBanfi, C., Brioschi, M., Vicentini, L. M., & Cattaneo, M. G. (2022). The Effects of Silencing PTX3 on the Proteome of Human Endothelial Cells. International Journal of Molecular Sciences, 23(21), 13487. https://doi.org/10.3390/ijms232113487