Crosstalk between Thyroid Hormone and Corticosteroid Signaling Targets Cell Proliferation in Xenopus tropicalis Tadpole Liver
Abstract
:1. Introduction
2. Results
2.1. Liver Differentially Expressed Genes following Thyroid Hormone and Corticosterone Treatment
2.2. Characterization of Expression Profiles to Reveal Crosstalk between T3 and CORT
2.3. Network Analysis of the Crosstalk between T3 and CORT
3. Discussion
3.1. TH and GC Cotreatment versus Single-Hormone Treatments
3.2. Role of TH and GC Crosstalk in the Control of Cell Division
4. Material and Methods
4.1. Animal Care and Hormonal Treatment of Tadpoles
4.2. RNA Isolation and Gene Expression Assessment
4.3. RNA-Seq Data Processing
4.4. Clustering
4.5. GO Analysis
4.6. Network Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McAninc, E.A.; Bianco, A.C. Thyroid hormone signaling in energy homeostasis and energy metabolism. Ann. N. Y. Acad. Sci. 2014, 1311, 77–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garabedian, M.J.; Harris, C.A.; Jeanneteau, F. Glucocorticoid receptor action in metabolic and neuronal function. F1000Res. 2017, 6, 1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonett, R.M.; Ledbetter, N.M.; Hess, A.J.; Herrboldt, M.A.; Denoël, M. Repeated ecological and life cycle transitions make salamanders an ideal model for evolution and development. Dev. Dyn. 2021, 6, 957–972. [Google Scholar] [CrossRef] [PubMed]
- Lazar, M.A. Maturing of the nuclear receptor family. J. Clin. Investig. 2017, 127, 1123–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vella, K.R.; Hollenberg, A.N. The actions of thyroid hormone signaling in the nucleus. Mol. Cell Endocrinol. 2017, 458, 127–135. [Google Scholar] [CrossRef]
- Weikum, E.R.; Knuesel, M.T.; Ortlund, E.A.; Yamamoto, K.R. Glucocorticoid receptor control of transcription: Precision and plasticity via allostery. Nat. Rev. Mol. Cell Biol. 2017, 18, 159–174. [Google Scholar] [CrossRef]
- Gereben, B.; Zavacki, A.M.; Ribich, S.; Kim, B.W.; Huang, S.A.; Simonides, W.S.; Zeöld, A.; Bianco, A.C. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr. Rev. 2008, 29, 898–938. [Google Scholar] [CrossRef] [Green Version]
- Kadmiel, M.; Cidlowski, J.A. Glucocorticoid receptor signaling in health and disease. Trends Pharmacol. Sci. 2013, 34, 518–530. [Google Scholar] [CrossRef] [Green Version]
- Galton, V.A. Deiodination of thyroxine and related compounds. Thyroid 1990, 1, 43–48. [Google Scholar] [CrossRef]
- Forhead, A.J.; Curtis, K.; Kaptein, E.; Visser, T.J.; Fowden, A.L. Developmental control of iodothyronine deiodinases by cortisol in the ovine fetus and placenta near term. Endocrinology 2006, 147, 5988–5994. [Google Scholar] [CrossRef]
- Bagamasbad, P.D.; Bonett, R.M.; Sachs, L.; Buisine, N.; Raj, S.; Knoedler, J.R.; Kyono, Y.; Ruan, Y.; Ruan, X.; Denver, R.J. Deciphering the regulatory logic of an ancient, ultraconserved nuclear receptor enhancer module. Mol. Endocrinol. 2015, 29, 856–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimaldi, A.; Buisine, N.; Miller, T.; Shi, Y.B.; Sachs, L.M. Mechanisms of thyroid hormone receptor action during development: Lessons from amphibian studies. Biochim. Biophys. Acta 2013, 1830, 3882–3892. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.B. Life Without Thyroid Hormone Receptor. Endocrinology 2021, 162, bqab028. [Google Scholar] [CrossRef] [PubMed]
- Sachs, L.M.; Buchholz, D.R. Insufficiency of Thyroid Hormone in Frog Metamorphosis and the Role of Glucocorticoids. Front. Endocrinol. 2019, 10, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rousseau, J.P.; Tenorio-Lopes, L.; Ghio, S.C.; Desjardins, P.; Fournier, S.; Kinkead, R. Thyroid hormones during the perinatal period are necessary to respiratory network development of newborn rats. Exp. Neurol. 2021, 345, 113813. [Google Scholar] [CrossRef]
- Barker, D.J. The origins of the developmental origins theory. J. Intern. Med. 2007, 261, 412–417. [Google Scholar] [CrossRef]
- Denver, R.J. Stress hormones mediate developmental plasticity in vertebrates with complex life cycles. Neurobiol. Stress. 2021, 14, 100301. [Google Scholar] [CrossRef]
- Ritter, M.J.; Amano, I.; Hollenberg, A.N. Thyroid Hormone Signaling and the Liver. Hepatology 2020, 72, 742–752. [Google Scholar] [CrossRef]
- Præstholm, S.M.; Correia, C.M.; Grøntved, L. Multifaceted Control of GR Signaling and Its Impact on Hepatic Transcriptional Networks and Metabolism. Front. Endocrinol. 2020, 11, 572981. [Google Scholar]
- Shi, Y.B. Amphibian Metamorphosis: From Morphology to Molecular Biology; John Wiley & Sons, Inc.: New York, NY, USA, 1999. [Google Scholar]
- Kerdivel, G.; Blugeon, C.; Fund, C.; Rigolet, M.; Sachs, L.M.; Buisine, N. Opposite T3 Response of ACTG1-FOS Subnetwork Differentiate Tailfin Fate in Xenopus Tadpole and Post-hatching Axolotl. Front. Endocrinol. 2019, 10, 194. [Google Scholar] [CrossRef] [Green Version]
- Helbing, C.; Gergely, G.; Atkinson, B.G. Sequential up-regulation of thyroid hormone beta receptor, ornithine transcarbamylase, and carbamyl phosphate synthetase mRNAs in the liver of Rana catesbeiana tadpoles during spontaneous and thyroid hormone-induced metamorphosis. Dev. Genet. 1992, 13, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Chang, L.; Zhao, T.; Wang, B.; Jiang, J. Remarkable metabolic reorganization and altered metabolic requirements in frog metamorphic climax. Front. Zool. 2020, 17, 30. [Google Scholar] [CrossRef] [PubMed]
- Pascual, A.; Aranda, A. Thyroid hormone receptors, cell growth and differentiation. Biochim. Biophys. Acta 2013, 1830, 3908–3916. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.M.; Cheng, W.-L.; Lin, C.D.; Lin, K.-H. Thyroid hormone actions in liver cancer. Cell Mol. Life Sci. 2013, 70, 1915–1936. [Google Scholar] [CrossRef] [PubMed]
- King, K.L.; Cidlowski, J.A. Cell cycle regulation and apoptosis. Annu. Rev. Physiol. 1998, 60, 601–617. [Google Scholar] [CrossRef]
- Vintermyr, O.K.; Døskeland, S.O. Characterization of the inhibitory effect of glucocorticoids on the DNA replication of adult rat hepatocytes growing at various cell densities. J. Cell Physiol. 1989, 138, 29–37. [Google Scholar] [CrossRef]
- Mattern, J.; Büchler, M.W.; Herr, I. Cell cycle arrest by glucocorticoids may protect normal tissue and solid tumors from cancer therapy. Cancer Biol. Ther. 2007, 6, 1345–1354. [Google Scholar] [CrossRef] [Green Version]
- Sunberg, T.B.; Ney, G.M.; Subramanian, C.; Opipari Jr, A.W.; Glick, G.D. The immunomodulatory benzodiazepine Bz-423 inhibits B-cell proliferation by targeting c-myc protein for rapid and specific degradation. Cancer Res. 2006, 66, 1775–1782. [Google Scholar] [CrossRef] [Green Version]
- Skouteris, G.G.; Schröder, C.H. C-myc is required for the G0/G1-S transition of primary hepatocytes stimulated with a deleted form of hepatocyte growth factor. Biochem. J. 1996, 316, 879–886. [Google Scholar] [CrossRef] [Green Version]
- Fragkos, M.; Ganier, O.; Coulombe, P.; Méchali, M. DNA replication origin activation in space and time. Nat. Rev. Mol. Cell Biol. 2015, 16, 360–374. [Google Scholar] [CrossRef]
- Labib, K. How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells? Genes Dev. 2010, 24, 1208–1219. [Google Scholar] [CrossRef]
- Wang, C.; Vegna, S.; Jin, H.; Benedict, B.; Lieftink, C.; Ramirez, C.; de Oliveira, R.L.; Morris, B.; Gadiot, J.; Wang, W.; et al. Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature 2019, 574, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Bilesimo, P.; Jolivet, P.; Alfama, G.; Buisine, N.; Le Mevel, S.; Havis, E.; Demeneix, B.A.; Sachs, L. Specific histone lysine 4 methylation patterns define TR-binding capacity and differentiate direct T3 responses. Mol. Endocrinol. 2011, 25, 225–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieuwkoop, P.; Faber, J. Normal Table of Xenopus laevis; Elsevier: Amsterdam, The Netherlands, 1956. [Google Scholar]
- Bonett, R.M.; Hoopfer, E.D.; Denver, R.J. Molecular mechanisms of corticosteroid synergy with thyroid hormone during tadpole metamorphosis. Gen. Comp. Endocrinol. 2010, 168, 209–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [Green Version]
- Hellsten, U.; Harland, R.M.; Gilchrist, M.J.; Hendrix, D.; Jurka, J.; Kapitonov, V.; Ovcharenko, I.; Putnam, N.H.; Shu, S.; Taher, L.; et al. The genome of the Western clawed frog Xenopus tropicalis. Science 2010, 328, 633–636. [Google Scholar] [CrossRef] [Green Version]
- Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10, R25. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, F.; Allen, J.E.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Austine-Orimoloye, O.; Azov, A.G.; Barnes, I.; Bennett, R.; et al. Ensembl. Nucleic Acids Res. 2022, 7, D988–D995. [Google Scholar] [CrossRef]
- Fortriede, J.D.; Pells, T.J.; Chu, S.; Chaturvedi, P.; Wang, D.; Fisher, M.E.; James-Zorn, C.; Wang, Y.; Nenni, M.J.; Burns, K.A.; et al. Xenbase: Deep integration of GEO & SRA RNA-seq and ChIP-seq data in a model organism database. Nucleic Acids Res. 2020, 48, D776–D782. [Google Scholar]
- Patmann, M.D.; Shewade, L.H.; Schneider, K.A.; Buchholz, D.R. Xenopus Tadpole Tissue Harvest. Cold Spring Harb. Protoc. 2017. [Google Scholar] [CrossRef] [Green Version]
- Buisine, N.; Grimaldi, A.; Jonchere, V.; Rigolet, M.; Blugeon, C.; Hamroune, J.; Sachs, L.M. Transcriptome and Methylome Analysis Reveal Complex Cross-Talks between Thyroid Hormone and Glucocorticoid Signaling at Xenopus Metamorphosis. Cells 2021, 10, 2375. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
Category | Gene Number | % of DE Genes | Transcriptional Patterns—Clusters | Type of Gene Regulation |
---|---|---|---|---|
A | 2180 | 70.5 | dndN (3), unuN (4) | T3 only |
B | 27 | 0.87 | nddN (1), nun (2) | CORT only |
C | 416 | 13.4 | dddN (5), uuuN (6) | T3 and CORT independently of each other, no cross-talk |
D | 324 | 10.5 | dnna (9), dnda (11), dnnA (12), unnA (15), unna (16), unua (17), dnuA (25) | Cross-talk: genes regulated by T3, not by CORT but influenced by CORT |
E | 20 | 0.64 | nuna (8), nddS (21), nuuS (22) | Cross-talk: genes regulated by CORT, not by T3 but influenced by T3 |
F | 35 | 1.2 | ddna (10), dunA (13), udnA (14), dddP (19), uuuP (20) | Cross-talk: genes regulated by T3 and CORT with effects on the other hormone |
G | 85 | 2.75 | nndS (23), nnuS (24), nnds (26) | Cross-talk: genes regulated only when the two hormones are present together |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rigolet, M.; Buisine, N.; Scharwatt, M.; Duvernois-Berthet, E.; Buchholz, D.R.; Sachs, L.M. Crosstalk between Thyroid Hormone and Corticosteroid Signaling Targets Cell Proliferation in Xenopus tropicalis Tadpole Liver. Int. J. Mol. Sci. 2022, 23, 13715. https://doi.org/10.3390/ijms232213715
Rigolet M, Buisine N, Scharwatt M, Duvernois-Berthet E, Buchholz DR, Sachs LM. Crosstalk between Thyroid Hormone and Corticosteroid Signaling Targets Cell Proliferation in Xenopus tropicalis Tadpole Liver. International Journal of Molecular Sciences. 2022; 23(22):13715. https://doi.org/10.3390/ijms232213715
Chicago/Turabian StyleRigolet, Muriel, Nicolas Buisine, Marylou Scharwatt, Evelyne Duvernois-Berthet, Daniel R. Buchholz, and Laurent M. Sachs. 2022. "Crosstalk between Thyroid Hormone and Corticosteroid Signaling Targets Cell Proliferation in Xenopus tropicalis Tadpole Liver" International Journal of Molecular Sciences 23, no. 22: 13715. https://doi.org/10.3390/ijms232213715
APA StyleRigolet, M., Buisine, N., Scharwatt, M., Duvernois-Berthet, E., Buchholz, D. R., & Sachs, L. M. (2022). Crosstalk between Thyroid Hormone and Corticosteroid Signaling Targets Cell Proliferation in Xenopus tropicalis Tadpole Liver. International Journal of Molecular Sciences, 23(22), 13715. https://doi.org/10.3390/ijms232213715