Reproductive Outbreaks of Sogatella furcifera Mediated by Overexpression of the Nuclear Receptor USP under Pressure from Triflumezopyrim
Abstract
:1. Introduction
2. Results
2.1. Fecundity of Sus- and Tri-strains
2.2. Relative Expression Levels of Reproduction-Related Transcription Factors
2.3. Functional Verification of USP
2.3.1. Relative Expression Level of USP and Potential Downstream Target Genes in S. furcifera as Revealed by USP-RNAi
2.3.2. Effects of USP-RNAi on Ovary Development in S. furcifera
2.4. Association Prediction of Transcription Factors
2.5. Functional Verification of Kr-h1
2.5.1. Relative Expression Level of Kr-h1 after Kr-h1-RNAi
2.5.2. Effects of Kr-h1-RNAi on Ovary Development in S. furcifera
3. Discussion
4. Materials and Methods
4.1. Insects
4.2. Fecundity of the Sus- and Tri-strains of S. furcifera
4.3. Vg and VgR Protein Contents
4.4. Screening of Reproduction-Related Genes by qRT–PCR
4.5. Functional Verification of USP
4.6. Functional Verification of Kr-h1
4.7. Correlation Analysis between Kr-h1 and USP
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Müller, C. Impacts of sublethal insecticide exposure on insects—Facts and knowledge gaps. Basic Appl. Ecol. 2018, 30, 1–10. [Google Scholar] [CrossRef]
- Zhou, C.; Yang, H.; Yang, H.; Wang, Z.; Long, G.-Y.; Jin, D.-C. Effects of sublethal concentrations of deltamethrin on fitness of white-backed planthopper, Sogatella furcifera (Horváth). Int. J. Pest Manag. 2019, 65, 165–170. [Google Scholar] [CrossRef]
- Xu, G.-C.; Gu, Z.-Y.; Xu, D.-J.; Xu, X.-L. Effects of sublethal dose of chlorpyrifos on the virulence and productivity of the small brown planthopper, Laodelphax striatellus (Fallén) (Homoptera: Delphacidae). Acta Entomol. Sin. 2011, 54, 680–686. (In Chinese) [Google Scholar]
- Bao, H.-B.; Liu, S.-H.; Gu, J.-H.; Wang, X.-Z.; Liang, X.-L.; Liu, Z.-W. Sublethal effects of four insecticides on the reproduction and wing formation of brown planthopper, Nilaparvata lugens. Pest Manag. Sci. 2009, 65, 170–174. [Google Scholar] [CrossRef]
- Ding, L.; Chen, F.; Luo, R.; Pan, Q.; Wang, C.; Yu, S.; Cong, L.; Liu, H.; Ran, C. Gene cloning and difference analysis of vitellogenin in Neoseiulus barkeri (Hughes). Bull. Entomol. Res. 2018, 108, 141–149. [Google Scholar] [CrossRef]
- Liu, X.; Shen, G.-M.; Xu, H.-R.; He, L. The fenpropathrin resistant Tetranychus cinnabarinus showed increased fecundity with high content of vitellogenin and vitellogenin receptor. Pestic. Biochem. Physiol. 2016, 134, 31–38. [Google Scholar] [CrossRef]
- Lei, L.; Jiang, Y.-P.; Liu, Z.-Y.; You, L.-L.; Wu, Y.; Xu, B.; Ge, L.-Q.; Stanley, D.; Song, Q.-S.; Wu, J.-C. Jinggangmycin increases fecundity of the brown planthopper, Nilaparvata lugens (Stål) via fatty acid synthase gene expression. J. Proteom. 2016, 130, 140. [Google Scholar] [CrossRef]
- Sun, S.-Q.; Wang, N.-M.; Li, J.-J.; Jin, M.-H.; Xue, C.-B. Reduced fecundity and regulation of reproductive factors in flubendiamide-resistant strains of Plutella xylostella. Pestic. Biochem. Physiol. 2020, 169, 104668. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, W.; Zhang, S.; Wu, S.-F.; Ban, L.-F.; Su, J.-Y.; Gao, C.-F. Susceptibility of Sogatella furcifera and Laodelphax striatellus (Hemiptera: Delphacidae) to six insecticides in China. J. Econ. Entomol. 2014, 107, 1916–1922. [Google Scholar] [CrossRef]
- Zhou, C.; Yang, H.; Wang, Z.; Long, G.-Y.; Jin, D.-C. Comparative transcriptome analysis of Sogatella furcifera (Horváth) exposed to different insecticides. Sci. Rep. 2018, 8, 8773. [Google Scholar] [CrossRef]
- Matsumura, M.; Sanada–Morimura, S.; Otuka, A.; Ohtsu, R.; Sakumoto, S.; Takeuchi, H.; Satoh, M. Insecticide susceptibilities in populations of two rice planthoppers, Nilaparvata lugens and Sogatella furcifera, immigrating into Japan in the period 2005–2012. Pest Manag. Sci. 2014, 70, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.-C.; Zhang, W.; Wang, L.-X.; Zhang, S.; Zhang, K.; Gao, C.-F.; Wu, S.-F. Resistance monitoring and cross-resistance patterns of three rice planthoppers, Nilaparvata lugens, Sogatella furcifera and Laodelphax striatellus to dinotefuran in China. Pestic. Biochem. Physiol. 2016, 134, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-H.; Mao, K.-K.; Liu, C.-Y.; Gong, P.-P.; Xu, P.-F.; Wu, G.; Le, W.; Wan, H.; You, H.; Li, J.-H. Resistance monitoring and assessment of the control failure likelihood of insecticides in field populations of the white backed planthopper Sogatella furcifera (Horváth). Crop Prot. 2020, 127, 104973. [Google Scholar] [CrossRef]
- Li, Z.; Qin, Y.; Jin, R.-H.; Zhang, Y.-H.; Ren, Z.-J.; Cai, T.-W.; Yu, C.; Liu, Y.; Cai, Y.-F.; Zeng, Q.-H.; et al. Insecticide resistance monitoring in field populations of the white backed planthopper Sogatella furcifera (Horvath) in China, 2019–2020. Insects 2021, 12, 1078. [Google Scholar] [CrossRef]
- Ruan, Y.-W.; Wang, X.-G.; Xiang, X.; Xu, X.; Guo, Y.-Q.; Liu, Y.-H.; Yin, Y.; Wu, Y.-Q.; Cheng, Q.-H.; Gong, C.-W.; et al. Status of insecticide resistance and biochemical characterization of chlorpyrifos resistance in Sogatella furcifera (Hemiptera: Delphacidae) in Sichuan Province, China. Pestic. Biochem. Physiol. 2021, 171, 104723. [Google Scholar] [CrossRef]
- Ihara, M.; Sattelle, D.B.; Matsuda, K. Probing new components (loop G and the α-α interface) of neonicotinoid binding sites on nicotinic acetylcholine receptors. Pestic. Biochem. Physiol. 2015, 121, 47–52. [Google Scholar] [CrossRef]
- Holyoke, C.W.; Cordova, D.; Zhang, W.-M.; Barry, J.D.; Leighty, R.M.; Dietrich, R.F.; Rauh, J.J.; Lahm, P.G.; Benner, A.E.; Andreassi, L.J.; et al. Mesoionic insecticides: A novel class of insecticides that modulate nicotinic acetylcholine receptors. Pest Manag. Sci. 2017, 73, 796–806. [Google Scholar] [CrossRef]
- Liao, X.; Xu, P.-F.; Gong, P.-P.; Wan, H.; Li, J.-H. Current susceptibilities of brown planthopper Nilaparvata lugens to triflumezopyrim and other frequently used insecticides in China. Insect Sci. 2021, 28, 115–126. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Zhang, Y.; Yang, R.; Zhang, S.; Xu, X.; Zhu, M.; Gong, C.; Hasnain, A.; Shen, L.; et al. The population growth, development and metabolic enzymes of the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae) under the sublethal dose of triflumezopyrim. Chemosphere 2020, 247, 125865. [Google Scholar] [CrossRef]
- Azzam, S.; Wang, F.; Wu, J.-C.; Shen, J.; Wang, L.-P.; Yang, G.-Q.; Guo, Y.-R. Comparisons of stimulatory effects of a series of concentrations of four insecticides on reproduction in the rice brown planthopper Nilaparvata lugens Stål (Homoptera: Delphacidae). Int. J. Pest Manag. 2009, 55, 347–358. [Google Scholar] [CrossRef]
- Suri, K.S.; Singh, G. Insecticide-induced resurgence of the whitebacked planthopper Sogatella furcifera (Horvath)(Hemiptera: Delphacidae) on rice varieties with different levels of resistance. Crop Prot. 2011, 30, 118–124. [Google Scholar] [CrossRef]
- Hu, J.-H.; Wu, J.-C.; Yin, J.-L.; Gu, H.-N. Physiology of insecticide-induced stimulation of reproduction in the rice brown planthopper (Nilaparvata lugens (Stål)): Dynamics of protein in fat body and ovary. Int. J. Pest Manag. 2010, 56, 23–30. [Google Scholar] [CrossRef]
- Sun, X.; Song, Q.; Barrett, B. Effect of ecdysone agonists on vitellogenesis and the expression of EcR and USP in codling moth (Cydia pomonella). Arch. Insect Biochem. 2003, 52, 115–129. [Google Scholar] [CrossRef]
- Parthasarathy, R.; Sun, Z.; Bai, H.; Palli, S.R. Juvenile hormone regulation of vitellogenin synthesis in the red flour beetle, Tribolium castaneum. Insect Biochem. Mol. Biol. 2010, 40, 405–414. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Wu, Z.; Wang, Z.; Deng, S.; Zhou, S. Kruppel-homolog 1 mediates juvenile hormone action to promote vitellogenesis and oocyte maturation in the migratory locust. Insect Biochem. Mol. Biol. 2014, 52, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Gujar, H.; Palli, S.R. Juvenile hormone regulation of female reproduction in the common bed bug, Cimex lectularius. Sci. Rep. 2016, 6, 35546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, S.; Tian, Z.; Wu, Q.-W.; King-Jones, K.; Liu, W.; Zhu, F.; Wang, X.-P. Steroid hormone ecdysone deficiency stimulates preparation for photoperiodic reproductive diapause. PLoS Genet. 2021, 17, e1009352. [Google Scholar] [CrossRef]
- Baker, K.D.; Shewchuk, L.M.; Kozlova, T.; Makishima, M.; Hassell, A.; Wisely, B.; Caravella, J.A.; Lambert, M.H.; Reinking, J.L.; Krause, H.; et al. The Drosophila orphan nuclear receptor DHR38 mediates an atypical ecdysteroid signaling pathway. Cell 2003, 113, 731–742. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Cherbas, L.; Cherbas, P. Transcription activation by the ecdysone receptor (EcR/USP): Identification of activation functions. Mol. Endocrinol. 2003, 17, 716–731. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Tan, A.; Palli, S.R. The function of nuclear receptors in regulation of female reproduction and embryogenesis in the red flour beetle, Tribolium castaneum. J. Insect physiol. 2010, 56, 1471–1480. [Google Scholar] [CrossRef] [Green Version]
- Lenaerts, C.; Van Wielendaele, P.; Peeters, P.; Vanden Broeck, J.; Marchal, E. Ecdysteroid signalling components in metamorphosis and development of the desert locust, Schistocerca gregaria. Insect Biochem. Mol. Biol. 2016, 75, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhao, C.-Q.; Xu, D.-J.; Xu, G.-C.; Xu, X.-L.; Han, Z.-J.; Zhang, Y.-N.; Gu, Z.-Y. RNAi suppression of nuclear receptor genes results in increased susceptibility to sulfoxaflor in brown planthopper, Nilaparvata lugens. J. Asia-Pac. Entomol. 2017, 20, 645–653. [Google Scholar] [CrossRef]
- Lee, G.; Sehgal, R.; Wang, Z.; Park, J.H. Ultraspiracle-independent anti-apoptotic function of ecdysone receptors is required for the survival of larval peptidergic neurons via suppression of grim expression in Drosophila melanogaster. Apoptosis 2019, 24, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.-Y.; Deng, P.; Li, A.; Zhang, Q.; Mu, L.-L.; Fu, K.-Y.; Guo, W.-C.; Li, G.-Q. Functional characterization of ultraspiracle in Leptinotarsa decemlineata using RNA interference assay. Insect Biochem. Mol. Biol. 2019, 28, 676–688. [Google Scholar] [CrossRef]
- Jin, M.-N.; Xue, J.; Yao, Y.; Lin, X.-D. Molecular characterization and functional analysis of Krüppel-homolog 1 (Kr-h1) in the brown planthopper, Nilaparvata lugens (Stål). J. Integr. Agr. 2014, 13, 1972–1981. [Google Scholar] [CrossRef]
- Shi, L.; Lin, S.; Grinberg, Y.; Beck, Y.; Grozinger, C.M.; Robinson, G.E.; Lee, T. Roles of Drosophila Kruppel-homolog 1 in neuronal morphogenesis. Dev. Neurobiol. 2007, 67, 1614–1626. [Google Scholar] [CrossRef]
- Zhang, W.-N.; Ma, L.; Liu, C.; Chen, L.; Xiao, H.-J.; Liang, G.-M. Dissecting the role of Krüppel homolog 1 in the metamorphosis and female reproduction of the cotton bollworm, Helicoverpa armigera. Insect Biochem. Mol. Biol. 2018, 27, 492–504. [Google Scholar] [CrossRef]
- Zhen, C.-A.; Miao, L.; Gao, X.-W. Sublethal effects of sulfoxaflor on biological characteristics and vitellogenin gene (AlVg ) expression in the mirid bug, Apolygus lucorum (Meyer-Dür). Pestic. Biochem. Physiol. 2018, 44, 57–63. [Google Scholar] [CrossRef]
- Gong, C.-W.; Ruan, Y.-W.; Zhang, Y.-M.; Wang, Q.-L.; Wu, Y.-T.; Zhan, X.-X.; He, Y.-F.; Liu, X.-X.; Pu, J.; Wang, X.-G.; et al. Resistance of Sogatella furcifera to triflumezopyrim mediated with the overexpression of CYPSF01 which was regulated by nuclear receptor USP. Ecotoxicol. Environ. Saf. 2022, 238, 113575. [Google Scholar] [CrossRef]
- An, X.-K.; Hou, M.-L.; Liu, Y.-D. Reference gene selection and evaluation for gene expression studies using qRT-PCR in the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae). J. Econ. Entomol. 2016, 109, 879–886. [Google Scholar] [CrossRef]
- Wan, P.-J.; Jia, S.; Li, N.; Fan, J.-M.; Li, G.-Q. RNA interference depletion of the Halloween gene disembodied implies its potential application for management of planthopper Sogatella furcifera and Laodelphax striatellus. PLoS ONE 2014, 9, e86675. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-X.; Niu, C.-D.; Zhang, Y.; Jia, Y.-L.; Zhang, Y.-J.; Zhang, Y.; Zhang, Y.-Q.; Gao, C.-F.; Wu, S.-F. The NompC channel regulates Nilaparvata lugens proprioception and gentle-touch response. Insect Biochem. Mol. Biol. 2019, 106, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Li, K.; Cai, W.; Zhao, J.; Zou, Y.; Hua, H. Knockdown of TOR causing ovarian diapause in a genetically stable brachypterous strain of Nilaparvata lugens. Arch. Insect Biochem. 2017, 95, e21400. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Tian, P.; Yang, L.; Tang, Y.; Qiu, L.; He, H.; Ding, W.; Li, Y. Molecular characterization of the Krüppel-homolog 1 and its role in ovarian development in Sogatella furcifera (Hemiptera: Delphacidae). Mol. Biol. Rep. 2020, 47, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Chi, H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 1988, 17, 26–34. [Google Scholar] [CrossRef]
Parameters | Treatment | ||
---|---|---|---|
Sus-Strain | G19 | G20 | |
Adult longevity (d) | 17.63 ± 0.55 b | 19.53 ± 0.73 a | 18.94 ± 0.73 a |
Adult preoviposition period (APOP) (d) | 3.00 ± 0.09 a | 3.19 ± 0.16 a | 2.94 ± 0.11 a |
Average spawning capacity/female | 131.75 ± 7.00 b | 174.81 ± 8.51 a | 192.88 ± 13.78 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Ruan, Y.; Gong, C.; Zhang, S.; Zhang, J.; He, Y.; Wang, Q.; Liu, D.; Pu, J.; Liu, X.; et al. Reproductive Outbreaks of Sogatella furcifera Mediated by Overexpression of the Nuclear Receptor USP under Pressure from Triflumezopyrim. Int. J. Mol. Sci. 2022, 23, 13769. https://doi.org/10.3390/ijms232213769
Zhang Y, Ruan Y, Gong C, Zhang S, Zhang J, He Y, Wang Q, Liu D, Pu J, Liu X, et al. Reproductive Outbreaks of Sogatella furcifera Mediated by Overexpression of the Nuclear Receptor USP under Pressure from Triflumezopyrim. International Journal of Molecular Sciences. 2022; 23(22):13769. https://doi.org/10.3390/ijms232213769
Chicago/Turabian StyleZhang, Yuming, Yanwei Ruan, Changwei Gong, Shuirong Zhang, Jingyue Zhang, Yunfeng He, Qiulin Wang, Dan Liu, Jian Pu, Xuemei Liu, and et al. 2022. "Reproductive Outbreaks of Sogatella furcifera Mediated by Overexpression of the Nuclear Receptor USP under Pressure from Triflumezopyrim" International Journal of Molecular Sciences 23, no. 22: 13769. https://doi.org/10.3390/ijms232213769
APA StyleZhang, Y., Ruan, Y., Gong, C., Zhang, S., Zhang, J., He, Y., Wang, Q., Liu, D., Pu, J., Liu, X., Jiang, C., & Wang, X. (2022). Reproductive Outbreaks of Sogatella furcifera Mediated by Overexpression of the Nuclear Receptor USP under Pressure from Triflumezopyrim. International Journal of Molecular Sciences, 23(22), 13769. https://doi.org/10.3390/ijms232213769