Conjugates of Methylene Blue with Cycloalkaneindoles as New Multifunctional Agents for Potential Treatment of Neurodegenerative Disease
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Study of the Esterase Profile of Conjugates 4 and Their Ability to Displace Propidium from the Peripheral Anionic Site of Acetylcholinesterase
2.2.1. Inhibitory Activity of Conjugates 4 against Human Erythrocyte AChE, Equine Serum BChE, and Porcine Liver CES
2.2.2. Study of the Mechanism of AChE Inhibition by Conjugates 4
2.2.3. Molecular Modeling
2.2.4. Inhibition of EeAChE and Displacement of Propidium Iodide from the EeAChE Peripheral Anionic Site
2.3. Studies of the Antioxidant Activity of MB-Cycloalkaneindole Conjugates
2.3.1. Studies of the Primary Antioxidant Activity of Conjugates 4
Evaluation of the Antiradical Activity by the ABTS Radical Cation Scavenging Assay
Evaluation of the Oxygen Radical Absorbance Capacity by a Fluorescence Method (ORAC-FL)
Frontier Orbital Calculations
2.3.2. Inhibition of the Iron-Induced LP in Rat Brain Homogenate
2.4. Effect of MB-Cycloalkaneindoles Conjugates on Mitochondrial Functions
2.4.1. Evaluation of the Effect of Test Compounds on the Membrane Potential and Calcium-Induced Mitochondrial Permeability Transition
2.4.2. Evaluation of the Effect of the Lead Compound 4i on the Bioenergetic Potential of Rat Liver Mitochondria
2.5. Evaluation of the Effect of Test Compounds on Binding of Specific Ligands of the Intrachannel and Peripheral Sites of the NMDA Receptor
2.6. Evaluation of the Effect of Lead Compounds 4i and 4h on the Assembly of Microtubules
2.7. Neuroprotective Effect of Lead Compound 4i under Calcium Overload Conditions on Primary Cultures of Rat Cerebellar Granule Cells
3. Materials and Methods
3.1. In Vitro AChE, BChE, and CES Inhibition
3.2. Kinetic Analysis of AChE Inhibition. Determination of Steady-State Inhibition Constants
3.3. Propidium Iodide Displacement Studies
3.4. ABTS Radical Cation Scavenging Assay
3.5. Oxygen Radical Absorbance Capacity Assay
3.6. Lipid Peroxidation of Rat Brain Homogenate
3.7. Rat Liver Mitochondria Isolation
3.8. Mitochondrial Potential
3.9. Measurements of Oxygen Consumption in Rat Liver Mitochondria
3.10. Primary Screening of the Action of Compounds on Tubulin Polymerization
3.11. Effect of Compounds on Ionomycin-Induced Toxicity in Primary Culture of Rat Cerebellar Granule Cells and Rat Brain Cortical Neurons
3.12. Radioligand Study of Interaction of the Compounds with NMDA-Receptor Binding Sites
3.13. Molecular Modeling
3.13.1. Structure Preparation
3.13.2. Molecular Docking
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Albertini, C.; Salerno, A.; Sena Murteira Pinheiro, P.; Bolognesi, M.L. From combinations to multitarget-directed ligands: A continuum in Alzheimer’s disease polypharmacology. Med. Res. Rev. 2020, 41, 2606–2633. [Google Scholar] [CrossRef] [PubMed]
- Bachurin, S.O. Medicinal and chemical approaches to focused search of agents for treatment and therapy of Alzheimer disease. Vopr. Med. Khim. 2001, 47, 155–197. [Google Scholar] [PubMed]
- Oliveira Pedrosa, M.; Duarte da Cruz, R.; Oliveira Viana, J.; de Moura, R.; Ishiki, H.; Barbosa Filho, J.; Diniz, M.; Scotti, M.; Scotti, L.; Bezerra Mendonca, F. Hybrid Compounds as Direct Multitarget Ligands: A Review. Curr. Top. Med. Chem. 2017, 17, 1044–1079. [Google Scholar] [CrossRef] [PubMed]
- Bachurin, S.O.; Shevtsova, E.F.; Makhaeva, G.F.; Grigoriev, V.V.; Boltneva, N.P.; Kovaleva, N.V.; Lushchekina, S.V.; Shevtsov, P.N.; Neganova, M.E.; Redkozubova, O.M.; et al. Novel conjugates of aminoadamantanes with carbazole derivatives as potential multitarget agents for AD treatment. Sci. Rep. 2017, 7, 45627. [Google Scholar] [CrossRef] [Green Version]
- Angelova, P.R.; Vinogradova, D.; Neganova, M.E.; Serkova, T.P.; Sokolov, V.V.; Bachurin, S.O.; Shevtsova, E.F.; Abramov, A.Y. Pharmacological Sequestration of Mitochondrial Calcium Uptake Protects Neurons Against Glutamate Excitotoxicity. Mol. Neurobiol. 2019, 56, 2244–2255. [Google Scholar] [CrossRef] [Green Version]
- Sokolov, V.B.; Makhaeva, G.F.; Aksinenko, A.Y.; Grigoriev, V.V.; Shevtsova, E.F.; Bachurin, S.O. Targeted synthesis and biological activity of polypharmacophoric agents for the treatment of neurodegenerative diseases. Russ. Chem. Bull. 2017, 66, 1821–1831. [Google Scholar] [CrossRef]
- Padnya, P.L.; Khadieva, A.I.; Stoikov, I.I. Current Achievements and Perspectives in Synthesis and Applications of 3,7-Disubstituted Phenothiazines as Methylene Blue Analogues. Dyes Pigments 2022, 208, 110806. [Google Scholar] [CrossRef]
- Posso, M.C.; Domingues, F.C.; Ferreira, S.; Silvestre, S. Development of Phenothiazine Hybrids with Potential Medicinal Interest: A Review. Molecules 2022, 27, 276. [Google Scholar] [CrossRef]
- Atamna, H.; Nguyen, A.; Schultz, C.; Boyle, K.; Newberry, J.; Kato, H.; Ames, B.N. Methylene blue delays cellular senescence and enhances key mitochondrial biochemical pathways. FASEB J. 2008, 22, 703–712. [Google Scholar] [CrossRef] [Green Version]
- Gabrielli, D.; Belisle, E.; Severino, D.; Kowaltowski, A.J.; Baptista, M.S. Binding, aggregation and photochemical properties of methylene blue in mitochondrial suspensions. Photochem. Photobiol. 2007, 79, 227–232. [Google Scholar] [CrossRef]
- Kress, M.; Petersen, M.; Reeh, P.W. Methylene blue induces ongoing activity in rat cutaneous primary afferents and depolarization of DRG neurons via a photosensitive mechanism. Naunyn-Schmiedeb. Arch. Pharmacol. 1997, 356, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Saitow, F.; Nakaoka, Y. The Photodynamic Action of Methylene Blue on the Ion Channels of Paramecium Causes Cell Damage. Photochem. Photobiol. 1997, 65, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Pfaffendorf, M.; Bruning, T.A.; Batnik, H.D.; van Zwieten, P.A. The interaction between methylene blue and the cholinergic system. Br. J. Pharmacol. 1997, 122, 95–98. [Google Scholar] [CrossRef] [Green Version]
- Ramsay, R.R.; Dunford, C.; Gillman, P.K. Methylene blue and serotonin toxicity: Inhibition of monoamine oxidase A (MAO A) confirms a theoretical prediction. Br. J. Pharmacol. 2007, 152, 946–951. [Google Scholar] [CrossRef] [PubMed]
- Vutskits, L.; Briner, A.; Klauser, P.; Gascon, E.; Dayer, A.G.; Kiss, J.Z.; Muller, D.; Licker, M.J.; Morel, D.R. Adverse effects of methylene blue on the central nervous system. Anesthesiology 2008, 108, 684–692. [Google Scholar] [CrossRef] [Green Version]
- Auchter, A.M.; Shumake, J.; Gonzalez-Lima, F.; Monfils, M.H. Preventing the return of fear using reconsolidation updating and methylene blue is differentially dependent on extinction learning. Sci. Rep. 2017, 7, 46071. [Google Scholar] [CrossRef] [Green Version]
- Schirmer, R.H.; Adler, H.; Pickhardt, M.; Mandelkow, E. Lest we forget you—methylene blue…. Neurobiol. Aging 2011, 32, 2325.e7–2325.e16. [Google Scholar] [CrossRef]
- Stack, C.; Jainuddin, S.; Elipenahli, C.; Gerges, M.; Starkova, N.; Starkov, A.A.; Jove, M.; Portero-Otin, M.; Launay, N.; Pujol, A.; et al. Methylene blue upregulates Nrf2/ARE genes and prevents tau-related neurotoxicity. Hum. Mol. Genet. 2014, 23, 3716–3732. [Google Scholar] [CrossRef] [Green Version]
- Tucker, D.; Lu, Y.; Zhang, Q. From Mitochondrial Function to Neuroprotection-an Emerging Role for Methylene Blue. Mol. Neurobiol. 2018, 55, 5137–5153. [Google Scholar] [CrossRef]
- Wilcock, G.K.; Gauthier, S.; Frisoni, G.B.; Jia, J.; Hardlund, J.H.; Moebius, H.J.; Bentham, P.; Kook, K.A.; Schelter, B.O.; Wischik, D.J.; et al. Potential of Low Dose Leuco-Methylthioninium Bis(Hydromethanesulphonate) (LMTM) Monotherapy for Treatment of Mild Alzheimer’s Disease: Cohort Analysis as Modified Primary Outcome in a Phase III Clinical Trial. J. Alzheimers Dis. 2018, 61, 435–457. [Google Scholar] [CrossRef]
- Lee, B.I.; Suh, Y.S.; Chung, Y.J.; Yu, K.; Park, C.B. Shedding Light on Alzheimer’s beta-Amyloidosis: Photosensitized Methylene Blue Inhibits Self-Assembly of beta-Amyloid Peptides and Disintegrates Their Aggregates. Sci. Rep. 2017, 7, 7523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina, D.X.; Caccamo, A.; Oddo, S. Methylene blue reduces abeta levels and rescues early cognitive deficit by increasing proteasome activity. Brain Pathol. 2011, 21, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Necula, M.; Breydo, L.; Milton, S.; Kayed, R.; van der Veer, W.E.; Tone, P.; Glabe, C.G. Methylene blue inhibits amyloid Abeta oligomerization by promoting fibrillization. Biochemistry 2007, 46, 8850–8860. [Google Scholar] [CrossRef] [PubMed]
- Schwab, K.; Frahm, S.; Horsley, D.; Rickard, J.E.; Melis, V.; Goatman, E.A.; Magbagbeolu, M.; Douglas, M.; Leith, M.G.; Baddeley, T.C.; et al. A Protein Aggregation Inhibitor, Leuco-Methylthioninium Bis(Hydromethanesulfonate), Decreases alpha-Synuclein Inclusions in a Transgenic Mouse Model of Synucleinopathy. Front. Mol. Neurosci. 2017, 10, 447. [Google Scholar] [CrossRef] [PubMed]
- Sontag, E.M.; Lotz, G.P.; Agrawal, N.; Tran, A.; Aron, R.; Yang, G.; Necula, M.; Lau, A.; Finkbeiner, S.; Glabe, C.; et al. Methylene blue modulates huntingtin aggregation intermediates and is protective in Huntington’s disease models. J. Neurosci. 2012, 32, 11109–11119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachurin, S.O.; Makhaeva, G.F.; Shevtsova, E.F. Conjugates of methylene blue with γ-carboline derivatives as new multifunctional agents for neurodegenerative diseases treatment. Sci. Rep. 2019, 9, 4873. [Google Scholar] [CrossRef] [Green Version]
- Biberoglu, K.; Tek, M.Y.; Ghasemi, S.T.; Tacal, O. Toluidine blue O is a potent inhibitor of human cholinesterases. Arch. Biochem. Biophys. 2016, 604, 57–62. [Google Scholar] [CrossRef]
- Darvesh, S.; Pottie, I.R.; Darvesh, K.V.; McDonald, R.S.; Walsh, R.; Conrad, S.; Penwell, A.; Mataija, D.; Martin, E. Differential binding of phenothiazine urea derivatives to wild-type human cholinesterases and butyrylcholinesterase mutants. Bioorg. Med. Chem. 2010, 18, 2232–2244. [Google Scholar] [CrossRef]
- Kundaikar, H.; Agre, N.; Degani, M. Pharmacophore Based 3DQSAR of Phenothiazines as Specific Human Butyrylcholinesterase Inhibitors for Treatment of Alzheimer’s Disease. Curr. Comput.-Aided Drug Des. 2015, 10, 335–348. [Google Scholar] [CrossRef]
- Makhaeva, G.F.; Lushchekina, S.V.; Boltneva, N.P.; Sokolov, V.B.; Grigoriev, V.V.; Serebryakova, O.G.; Vikhareva, E.A.; Aksinenko, A.Y.; Barreto, G.E.; Aliev, G.; et al. Conjugates of gamma-Carbolines and Phenothiazine as new selective inhibitors of butyrylcholinesterase and blockers of NMDA receptors for Alzheimer Disease. Sci. Rep. 2015, 5, 13164. [Google Scholar] [CrossRef]
- Sezgin, Z.; Biberoglu, K.; Chupakhin, V.; Makhaeva, G.F.; Tacal, O. Determination of binding points of methylene blue and cationic phenoxazine dyes on human butyrylcholinesterase. Arch. Biochem. Biophys. 2013, 532, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.J.; Kong, S.Y.; Park, M.H.; Cho, Y.; Kim, S.E.; Shin, J.Y.; Jung, S.; Lee, J.; Farhanullah; Kim, H.J.; et al. Aminopropyl carbazole analogues as potent enhancers of neurogenesis. Bioorg. Med. Chem. 2013, 21, 7165–7174. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Chen, M.; Li, M.; Luo, B.; Zhao, Y.; Huang, P.; Xue, F.; Rapposelli, S.; Pi, R.; Wen, S. Discovery of novel N-substituted carbazoles as neuroprotective agents with potent anti-oxidative activity. Eur. J. Med. Chem. 2013, 68, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Kosaraju, J.; Zhou, W.; Tam, K.Y. SLOH, a carbazole-based fluorophore, mitigates neuropathology and behavioral impairment in the triple-transgenic mouse model of Alzheimer’s disease. Neuropharmacology 2018, 131, 351–363. [Google Scholar] [CrossRef] [PubMed]
- Bachurin, S.O.; Sokolov, V.B.; Aksinenko, A.Y.; Epishina, T.A.; Goreva, T.V.; Gabrel’yan, A.V.; Grigor´ev, V.V. Molecular construction of multitarget neuroprotectors 1. Synthesis and biological activity of conjugates of substituted indoles and bis(dimethylamino)phenothiazine. Russ. Chem. Bull. 2015, 64, 1354–1361. [Google Scholar] [CrossRef]
- Martinez, A.; Castro, A. Novel cholinesterase inhibitors as future effective drugs for the treatment of Alzheimer’s disease. Expert Opin. Investig. Drugs 2006, 15, 1–12. [Google Scholar] [CrossRef]
- Furukawa-Hibi, Y.; Alkam, T.; Nitta, A.; Matsuyama, A.; Mizoguchi, H.; Suzuki, K.; Moussaoui, S.; Yu, Q.S.; Greig, N.H.; Nagai, T.; et al. Butyrylcholinesterase inhibitors ameliorate cognitive dysfunction induced by amyloid-beta peptide in mice. Behav. Brain Res. 2011, 225, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Kamal, M.A.; Klein, P.; Luo, W.; Li, Y.; Holloway, H.W.; Tweedie, D.; Greig, N.H. Kinetics of human serum butyrylcholinesterase inhibition by a novel experimental Alzheimer therapeutic, dihydrobenzodioxepine cymserine. Neurochem. Res. 2008, 33, 745–753. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Esteban, G.; Ojima, M.; Bautista-Aguilera, O.M.; Inokuchi, T.; Moraleda, I.; Iriepa, I.; Samadi, A.; Youdim, M.B.; Romero, A.; et al. Donepezil + propargylamine + 8-hydroxyquinoline hybrids as new multifunctional metal-chelators, ChE and MAO inhibitors for the potential treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2014, 80, 543–561. [Google Scholar] [CrossRef] [Green Version]
- Greig, N.H.; Utsuki, T.; Ingram, D.K.; Wang, Y.; Pepeu, G.; Scali, C.; Yu, Q.S.; Mamczarz, J.; Holloway, H.W.; Giordano, T.; et al. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proc. Natl. Acad. Sci. USA 2005, 102, 17213–17218. [Google Scholar] [CrossRef]
- Lane, R.M.; Potkin, S.G.; Enz, A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychopharmacol. 2006, 9, 101–124. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, M.J.; Potter, P.M. Carboxylesterase inhibitors. Expert Opin. Ther. Pat. 2011, 21, 1159–1171. [Google Scholar] [CrossRef]
- Makhaeva, G.F.; Radchenko, E.V.; Palyulin, V.A.; Rudakova, E.V.; Aksinenko, A.Y.; Sokolov, V.B.; Zefirov, N.S.; Richardson, R.J. Organophosphorus compound esterase profiles as predictors of therapeutic and toxic effects. Chem. Biol. Interact. 2013, 203, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Tsurkan, L.G.; Hatfield, M.J.; Edwards, C.C.; Hyatt, J.L.; Potter, P.M. Inhibition of human carboxylesterases hCE1 and hiCE by cholinesterase inhibitors. Chem. Biol. Interact. 2013, 203, 226–230. [Google Scholar] [CrossRef] [Green Version]
- Makhaeva, G.F.; Boltneva, N.P.; Lushchekina, S.V.; Serebryakova, O.G.; Stupina, T.S.; Terentiev, A.A.; Serkov, I.V.; Proshin, A.N.; Bachurin, S.O.; Richardson, R.J. Synthesis, molecular docking and biological evaluation of N,N-disubstituted 2-aminothiazolines as a new class of butyrylcholinesterase and carboxylesterase inhibitors. Bioorg. Med. Chem. 2016, 24, 1050–1062. [Google Scholar] [CrossRef] [PubMed]
- Makhaeva, G.F.; Grigoriev, V.V.; Proshin, A.N.; Kovaleva, N.V.; Rudakova, E.V.; Boltneva, N.P.; Serkov, I.V.; Bachurin, S.O. Novel conjugates of tacrine with 1,2,4,-thiadiazole as highly effective cholinesterase inhibitors, blockers of NMDA receptors, and antioxidants. Dokl. Biochem. Biophys. 2017, 477, 405–409. [Google Scholar] [CrossRef]
- Makhaeva, G.F.; Radchenko, E.V.; Baskin, I.I.; Palyulin, V.A.; Richardson, R.J.; Zefirov, N.S. Combined QSAR studies of inhibitor properties of O-phosphorylated oximes toward serine esterases involved in neurotoxicity, drug metabolism and Alzheimer’s disease. SAR QSAR Environ. Res. 2012, 23, 627–647. [Google Scholar] [CrossRef]
- Makhaeva, G.F.; Rudakova, E.V.; Serebryakova, O.G.; Aksinenko, A.Y.; Lushchekina, S.V.; Bachurin, S.O.; Richardson, R.J. Esterase profiles of organophosphorus compounds in vitro predict their behavior in vivo. Chem. Biol. Interact. 2016, 259 Pt B, 332–342. [Google Scholar] [CrossRef]
- Makhaeva, G.F.; Shevtsova, E.F.; Boltneva, N.P.; Lushchekina, S.V.; Kovaleva, N.V.; Rudakova, E.V.; Bachurin, S.O.; Richardson, R.J. Overview of novel multifunctional agents based on conjugates of γ-carbolines, carbazoles, tetrahydrocarbazoles, phenothiazines, and aminoadamantanes for treatment of Alzheimer’s disease. Chem. Biol. Interact. 2019, 308, 224–234. [Google Scholar] [CrossRef]
- Makhaeva, G.F.; Sokolov, V.B.; Shevtsova, E.F.; Kovaleva, N.V.; Lushchekina, S.V.; Boltneva, N.P.; Rudakova, E.V.; Aksinenko, A.Y.; Shevtsov, P.N.; Neganova, M.E.; et al. Focused design of polypharmacophoric neuroprotective compounds: Conjugates of γ-carbolines with carbazole derivatives and tetrahydrocarbazole. Pure Appl. Chem. 2017, 89, 1167–1184. [Google Scholar] [CrossRef]
- Semenov, V.E.; Zueva, I.V.; Mukhamedyarov, M.A.; Lushchekina, S.V.; Kharlamova, A.D.; Petukhova, E.O.; Mikhailov, A.S.; Podyachev, S.N.; Saifina, L.F.; Petrov, K.A.; et al. 6-Methyluracil Derivatives as Bifunctional Acetylcholinesterase Inhibitors for the Treatment of Alzheimer’s Disease. Chemmedchem 2015, 10, 1863–1874. [Google Scholar] [CrossRef] [PubMed]
- Cheung, J.; Rudolph, M.J.; Burshteyn, F.; Cassidy, M.S.; Gary, E.N.; Love, J.; Franklin, M.C.; Height, J.J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem. 2012, 55, 10282–10286. [Google Scholar] [CrossRef] [PubMed]
- Kharlamova, A.D.; Lushchekina, S.V.; Petrov, K.A.; Kots, E.D.; Nachon, F.; Villard-Wandhammer, M.; Zueva, I.V.; Krejci, E.; Reznik, V.S.; Zobov, V.V.; et al. Slow-binding inhibition of acetylcholinesterase by an alkylammonium derivative of 6-methyluracil: Mechanism and possible advantages for myasthenia gravis treatment. Biochem. J. 2016, 473, 1225–1236. [Google Scholar] [CrossRef]
- Dym, O.; Song, W.; Felder, C.; Roth, E.; Shnyrov, V.; Ashani, Y.; Xu, Y.; Joosten, R.P.; Weiner, L.; Sussman, J.L.; et al. The Impact of Crystallization Conditions on Structure-Based Drug Design: A Case Study on the Methylene Blue/Acetylcholinesterase Complex. Protein Sci. 2016, 25, 1096–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheiner, S. Origins and properties of the tetrel bond. Phys. Chem. Chem. Phys. 2021, 23, 5702–5717. [Google Scholar] [CrossRef] [PubMed]
- Esterhuysen, C.; Heßelmann, A.; Clark, T. Trifluoromethyl: An Amphiphilic Noncovalent Bonding Partner. Chemphyschem 2017, 18, 772–784. [Google Scholar] [CrossRef] [PubMed]
- García-Llinás, X.; Bauzá, A.; Seth, S.K.; Frontera, A. Importance of R–CF3···O Tetrel Bonding Interactions in Biological Systems. J. Phys. Chem. A 2017, 121, 5371–5376. [Google Scholar] [CrossRef]
- Gibbs, C.A.; Weber, D.S.; Warren, J.J. Clustering of Aromatic Amino Acid Residues around Methionine in Proteins. Biomolecules 2021, 12, 6. [Google Scholar] [CrossRef]
- Weber, D.S.; Warren, J.J. The interaction between methionine and two aromatic amino acids is an abundant and multifunctional motif in proteins. Arch. Biochem. Biophys. 2019, 672, 108053. [Google Scholar] [CrossRef]
- Bartolini, M.; Bertucci, C.; Cavrini, V.; Andrisano, V. beta-Amyloid aggregation induced by human acetylcholinesterase: Inhibition studies. Biochem. Pharmacol. 2003, 65, 407–416. [Google Scholar] [CrossRef]
- De Ferrari, G.V.; Canales, M.A.; Shin, I.; Weiner, L.M.; Silman, I.; Inestrosa, N.C. A Structural Motif of Acetylcholinesterase That Promotes Amyloid β-Peptide Fibril Formation. Biochemistry 2001, 40, 10447–10457. [Google Scholar] [CrossRef] [PubMed]
- Inestrosa, N.C.; Alvarez, A.; Pérez, C.A.; Moreno, R.D.; Vicente, M.; Linker, C.; Casanueva, O.I.; Soto, C.; Garrido, J. Acetylcholinesterase Accelerates Assembly of Amyloid-β-Peptides into Alzheimer’s Fibrils: Possible Role of the Peripheral Site of the Enzyme. Neuron 1996, 16, 881–891. [Google Scholar] [CrossRef] [Green Version]
- Lushchekina, S.V.; Kots, E.D.; Novichkova, D.A.; Petrov, K.A.; Masson, P. Role of Acetylcholinesterase in β-Amyloid Aggregation Studied by Accelerated Molecular Dynamics. Bionanoscience 2016, 7, 396–402. [Google Scholar] [CrossRef]
- Makhaeva, G.F.; Kovaleva, N.V.; Rudakova, E.V.; Boltneva, N.P.; Lushchekina, S.V.; Faingold, I.I.; Poletaeva, D.A.; Soldatova, Y.V.; Kotelnikova, R.A.; Serkov, I.V.; et al. New Multifunctional Agents Based on Conjugates of 4-Amino-2,3-polymethylenequinoline and Butylated Hydroxytoluene for Alzheimer’s Disease Treatment. Molecules 2020, 25, 5891. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Makhaeva, G.F.; Lushchekina, S.V.; Boltneva, N.P.; Serebryakova, O.G.; Rudakova, E.V.; Ustyugov, A.A.; Bachurin, S.O.; Shchepochkin, A.V.; Chupakhin, O.N.; Charushin, V.N.; et al. 9-Substituted acridine derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors possessing antioxidant activity for Alzheimer’s disease treatment. Bioorg. Med. Chem. 2017, 25, 5981–5994. [Google Scholar] [CrossRef] [PubMed]
- Davalos, A.; Gomez-Cordoves, C.; Bartolome, B. Extending applicability of the oxygen radical absorbance capacity (ORAC-fluorescein) assay. J. Agric. Food Chem. 2004, 52, 48–54. [Google Scholar] [CrossRef]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef]
- Xiong, Z.M.; O’Donovan, M.; Sun, L.; Choi, J.Y.; Ren, M.; Cao, K. Anti-Aging Potentials of Methylene Blue for Human Skin Longevity. Sci. Rep. 2017, 7, 2475. [Google Scholar] [CrossRef] [Green Version]
- Sváb, G.; Kokas, M.; Sipos, I.; Ambrus, A.; Tretter, L. Methylene Blue Bridges the Inhibition and Produces Unusual Respiratory Changes in Complex III-Inhibited Mitochondria. Studies on Rats, Mice and Guinea Pigs. Antioxidants 2021, 10, 305. [Google Scholar] [CrossRef]
- Gureev, A.P.; Sadovnikova, I.S.; Popov, V.N. Molecular Mechanisms of the Neuroprotective Effect of Methylene Blue. Biochemistry (Moscow) 2022, 87, 940–956. [Google Scholar] [CrossRef] [PubMed]
- Duicu, O.M.; Privistirescu, A.; Wolf, A.; Petrus, A.; Danila, M.D.; Ratiu, C.D.; Muntean, D.M.; Sturza, A. Methylene blue improves mitochondrial respiration and decreases oxidative stress in a substrate-dependent manner in diabetic rat hearts. Can. J. Physiol. Pharmacol. 2017, 95, 1376–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, A.L.; Poteet, E.; Du, F.; Gourav, R.C.; Liu, R.; Wen, Y.; Bresnen, A.; Huang, S.; Fox, P.T.; Yang, S.H.; et al. Methylene blue as a cerebral metabolic and hemodynamic enhancer. PLoS ONE 2012, 7, e46585. [Google Scholar] [CrossRef] [PubMed]
- Brunden, K.R.; Lee, V.M.Y.; Smith, A.B.; Trojanowski, J.Q.; Ballatore, C. Altered microtubule dynamics in neurodegenerative disease: Therapeutic potential of microtubule-stabilizing drugs. Neurobiol. Dis. 2017, 105, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Crowe, A.; James, M.J.; Lee, V.M.; Smith, A.B., 3rd; Trojanowski, J.Q.; Ballatore, C.; Brunden, K.R. Aminothienopyridazines and methylene blue affect Tau fibrillization via cysteine oxidation. J. Biol. Chem. 2013, 288, 11024–11037. [Google Scholar] [CrossRef] [Green Version]
- Britto, P.J.; Knipling, L.; McPhie, P.; Wolff, J. Thiol–disulphide interchange in tubulin: Kinetics and the effect on polymerization. Biochem. J. 2005, 389, 549–558. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Sterri, S.H.; Johnsen, B.A.; Fonnum, F. A radiochemical assay method for carboxylesterase, and comparison of enzyme activity towards the substrates methyl [1-14C] butyrate and 4-nitrophenyl butyrate. Biochem. Pharmacol. 1985, 34, 2779–2785. [Google Scholar] [CrossRef]
- Taylor, P.; Lappi, S. Interaction of fluorescence probes with acetylcholinesterase. The site and specificity of propidium binding. Biochemistry 1975, 14, 1989–1997. [Google Scholar] [CrossRef]
- Taylor, P.W.; Lwebuga-Mukusa, J.; Lappi, S.; Rademacher, J. Propidium—a Fluorescence Probe for a Peripheral Anionic Site on Acetylcholinesterase. Mol. Pharmacol. 1974, 10, 703–708. [Google Scholar]
- Gornall, A.G.; Bardawill, C.J.; David, M.M. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 1949, 177, 751–766. [Google Scholar] [CrossRef]
- Callaway, J.K.; Beart, P.M.; Jarrott, B. A reliable procedure for comparison of antioxidants in rat brain homogenates. J. Pharmacol. Toxicol. Methods 1998, 39, 155–162. [Google Scholar] [CrossRef]
- Iglesias-Gonzalez, J.; Sanchez-Iglesias, S.; Beiras-Iglesias, A.; Soto-Otero, R.; Mendez-Alvarez, E. A simple method for isolating rat brain mitochondria with high metabolic activity: Effects of EDTA and EGTA. J. Neurosci. Methods 2013, 213, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Shevtsova, E.; Vinogradova, D.; Kireeva, E.; Reddy, V.; Aliev, G.; Bachurin, S. Dimebon Attenuates the Aβ-Induced Mitochondrial Permeabilization. Curr. Alzheimer Res. 2014, 11, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Åkerman, K.E.O.; Wikström, M.K.F. Safranine as a probe of the mitochondrial membrane potential. FEBS Lett. 1976, 68, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Rogers, G.W.; Brand, M.D.; Petrosyan, S.; Ashok, D.; Elorza, A.A.; Ferrick, D.A.; Murphy, A.N. High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. PLoS ONE 2011, 6, e21746. [Google Scholar] [CrossRef] [Green Version]
- Marty, M.S.; Atchison, W.D. Pathways mediating Ca2+ entry in rat cerebellar granule cells following in vitro exposure to methyl mercury. Toxicol. Appl. Pharmacol. 1997, 147, 319–330. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Su, S.J.; et al. General Atomic and Molecular Electronic-Structure System. J. Comput. Chem. 1993, 14, 1347–1363. [Google Scholar] [CrossRef]
- Mulliken, R.S. Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. J. Chem. Phys. 1955, 23, 1833–1840. [Google Scholar] [CrossRef] [Green Version]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Voevodin, V.; Antonov, A.; Nikitenko, D.; Shvets, P.; Sobolev, S.; Sidorov, I.; Stefanov, K.; Voevodin, V.; Zhumatiy, S. Supercomputer Lomonosov-2: Large scale, deep monitoring and fine analytics for the user community. Supercomput. Front. Innov. 2019, 6, 4–11. [Google Scholar] [CrossRef]
(CH2)n in Structure 4 | Compound | IC50 (µM) 1 or Inhibition at 20 µM (%) 2 | ||||
---|---|---|---|---|---|---|
No | R | R1 | AChE | BChE | CES | |
Cyclopentaneindoles | ||||||
n = 1 | 4a | H | H | 11.08 ± 0.69 | 42.13 ± 0.41 | 19.4 ± 1.8% |
Cyclohexaneindoles (Tetrahydrocarbazoles) | ||||||
n = 2 | 4b | H | H | 12.35 ± 1.51 | 48.72 ± 2.09 | 22.6 ± 2.1% |
4c | CH3 | H | 4.39 ± 0.26 | 41.38 ± 1.71 | 14.9 ± 1.3% | |
4d | CH3O | H | 10.45 ± 0.89 | 52.12 ± 2.70 | 17.3 ± 1.5% | |
4e | CH3O | CH3 | 9.81 ± 0.18 | 22.9 ± 2.0% | 15.0 ± 1.3% | |
4f | F | H | 6.57 ± 0.57 | 18.44 ± 1.52 | 6.6 ± 0.7% | |
4g | CF3 | CH3 | 3.56 ± 0.09 | 20.34 ± 0.21 | 1.4 ± 0.2% | |
4h | CF3O | H | 6.89 ± 0.09 | 47.62 ± 4.59 | 3.1 ± 0.5% | |
4i | CF3O | CH3 | 1.94 ± 0.09 | 6.07 ± 0.58 | 3.5 ± 0.4% | |
Cycloheptaneindoles | ||||||
n = 3 | 4j | H | H | 10.73 ± 0.67 | 9.98 ± 0.86 | 11.3 ± 1.2% |
4k | CH3 | H | 12.86 ± 0.53 | 22.21 ± 0.92 | 5.3 ± 0.6% | |
4l | CF3O | H | 15.04 ± 1.12 | 42.24 ± 2.93 | 7.6 ± 0.8% | |
Cyclooctaneindoles | ||||||
n = 4 | 4m | H | H | 2.98 ± 0.10 | 21.72 ± 0.51 | 13.0 ± 1.1% |
4n | CH3 | H | 6.26 ± 0.01 | 15.61 ± 1.13 | 33.1 ± 3.1% | |
MB | 1.21 ± 0.09 | 11.14 ± 0.12 | 12.3 ± 1.5% | |||
MBH2 (Leuco/reduced form) | 1.76 ± 0.09 | 10.08 ± 0.16 | 17.2 ± 1.8% | |||
carbazole | 1.8 ± 0.2% | 16.1 ± 1.5% | 9.4 ± 1.0% |
(CH2)n in Structure 4 | Compound | EeAChE Inhibition, IC50, µM | PI Displacement, % | |||
---|---|---|---|---|---|---|
No | R | R1 | 3 µM | 20 µM | ||
Cyclopentaneindoles | ||||||
n = 1 | 4a | H | H | 2.35 ± 0.23 | 12.0 ± 0.5 | 20.9 ± 0.8 |
Cyclohexaneindoles (Tetrahydrocarbazoles) | ||||||
n = 2 | 4b | H | H | 2.42 ± 0.18 | 12.6 ± 0.7 | 27.9 ± 1.1 |
4c | CH3 | H | 1.22 ± 0.01 | 14.9 ± 1.1 | 31.8 ± 0.9 | |
4d | CH3O | H | 2.25 ± 0.07 | 13.4 ± 0.9 | 28.0 ± 1.5 | |
4e | CH3O | CH3 | 1.92 ± 0.14 | 14.8 ± 0.7 | 23.0 ± 1.3 | |
4f | F | H | 1.11 ± 0.12 | 14.4 ± 0.8 | 31.9 ± 1.4 | |
4g | CF3 | CH3 | 0.80 ± 0.05 | 20.9 ± 1.3 | 32.8 ± 0.7 | |
4h | CF3O | H | 0.89 ± 0.09 | 19.1 ± 1.1 | 33.8 ± 0.4 | |
4i | CF3O | CH3 | 0.41 ± 0.03 | 20.4 ± 1.8 | 32.5 ± 0.5 | |
Cycloheptaneindoles | ||||||
n = 3 | 4j | H | H | 2.70 ± 0.09 | 10.3 ± 0.9 | 23.8 ± 1.1 |
4k | CH3 | H | 4.12 ± 0.37 | 12.1 ± 0.8 | 15.8 ± 0.7 | |
4l | CF3O | H | 3.40 ± 0.21 | 14.9 ± 0.1 | 17.0 ± 1.2 | |
Cyclooctaneindoles | ||||||
n = 4 | 4m | H | H | 0.57 ± 0.02 | 17.3 ± 1.2 | 37.4 ± 0.8 |
4n | CH3 | H | 0.95 ± 0.07 | 16.7 ± 1.2 | 28.3 ± 1.2 | |
Donepezil | 0.072 ± 0.007 | 9.4 ± 0.9 | 10.1 ± 0.6 | |||
Decamethonium | 51.4 ± 2.2 | 3.5 ± 0.3 | 7.8 ± 0.6 | |||
MB | 0.21 ± 0.02 | 20.9 ± 1.9 | 40.8 ± 3.7 | |||
MBH2 | 0.28 ± 0.02 | 17.7 ± 1.8 | 36.9 ± 3.3 |
(CH2)n in Structure 4 | Compound | ABTS Scavenging Activity | ORAC, TE 2 Value | |||
---|---|---|---|---|---|---|
No | R | R1 | TEAC 1 Value | IC50, μM | ||
Cyclopentaneindoles | ||||||
n = 1 | 4a | H | H | 0.99 ± 0.08 | 21.0 ± 1.4 | 6.8±0.4 |
Cyclohexaneindoles (Tetrahydrocarbazoles) | ||||||
n = 2 | 4b | H | H | 0.90 ± 0.04 | 24.3 ± 1.5 | 8.6 ± 0.1 |
4c | CH3 | H | 1.13 ± 0.09 | 17.6 ± 1.8 | 5.5 ± 0.4 | |
4d | CH3O | H | 0.75 ± 0.05 | 39.3 ± 1.5 | 4.8 ± 0.3 | |
4e | CH3O | CH3 | 1.46 ± 0.11 | 13.7 ± 0.9 | 13.3 ± 1.3 | |
4f | F | H | 0.85 ± 0.04 | 27.2 ± 1.6 | 5.6 ± 0.4 | |
4g | CF3 | CH3 | 0.70 ± 0.04 | 30.8 ± 2.9 | 6.5 ± 0.1 | |
4h | CF3O | H | 1.10 ± 0.10 | 17.8 ± 1.4 | 5.8 ± 0.5 | |
4i | CF3O | CH3 | 1.14 ± 0.11 | 17.2 ± 1.2 | 5.1 ± 0.4 | |
Cycloheptaneindoles | ||||||
n = 3 | 4j | H | H | 1.15 ± 0.09 | 16.3 ± 1.4 | 12.4 ± 0.2 |
4k | CH3 | H | 1.20 ± 0.13 | 15.4 ± 1.3 | 13.4 ± 1.3 | |
4l | CF3O | H | 0.98 ± 0.09 | 20.7 ± 1.7 | 8.4 ± 0.8 | |
Cyclooctaneindoles | ||||||
n = 4 | 4m | H | H | 1.11 ± 0.07 | 16.7 ± 1.6 | 15.7 ± 1.5 |
4n | CH3 | H | 1.20 ± 0.14 | 14.9 ± 1.2 | 10.9 ± 0.6 | |
Trolox | 1.00 | 20.4 ± 1.7 | 1.00 | |||
Catechol | 1.20 ± 0.11 | 16.7 ± 1.2 | 6.6 ± 0.2 |
(CH2)n in Structure 4 | Compounds | ΔΨm 2, % 1 | Inhibition of LP 5 IC50, μM | |||
---|---|---|---|---|---|---|
No | R | R1 | CI (g/m) 3 | CII (s/r) 4 | ||
Cyclopentaneindoles | ||||||
n = 1 | 4a | H | H | 8 ± 1 | 58 ± 1 | 1.24 ± 0.72 |
Cyclohexaneindoles (Tetrahydrocarbazoles) | ||||||
n = 2 | 4b | H | H | 20 ± 1 | 42 ± 2 | 1.12 ± 0.63 |
4c | CH3 | H | 29 ± 1 | 50 ± 3 | 0.78 ± 0.35 | |
4d | CH3O | H | 30 ± 4 | 53 ± 1 | 1.12 ± 0.62 | |
4e | CH3O | CH3 | 33 ± 1 | 50 ± 1 | 0.50 ± 0.36 | |
4f | F | H | 27 ± 1 | 47 ± 1 | 0.60 ± 0.32 | |
4h | CF3O | H | 15 ± 2 | 25 ± 1 | 0.46 ± 0.32 | |
4i | CF3O | CH3 | 6 ± 3 | 18 ± 2 | 0.58 ± 0.26 | |
Cycloheptaneindoles | ||||||
n = 3 | 4j | H | H | 21 ± 9 | 66 ± 1 | 0.62 ± 0.37 |
4k | CH3 | H | 6 ± 3 | 62 ± 1 | 0.82 ± 0.68 | |
Cyclooctaneindoles | ||||||
n = 4 | 4m | H | H | 23 ± 9 | 57 ± 6 | 1.52 ± 0.79 |
4n | CH3 | H | 23 ± 6 | 65 ± 1 | 0.93 ± 0.68 | |
MB | 14 ± 7 | 40 ± 9 | 1.90 ± 0.50 | |||
MBH2 | 0 | 18.2 ± 1.1 | 0.53 ± 0.23 |
Compounds | IC50 (µM) | |||
---|---|---|---|---|
R | R1 | [3H]MK-801 | [3H]ifenprodil | |
4h | CF3O | H | 116.4 ± 10.1 | 61.3 ± 6.5 |
4i | CF3O | CH3 | 101.3 ± 9.2 | 10.4 ± 1.2 |
MB | 145.6 ± 12.1 | 9.6 ± 3.9 |
Compound | (dA355/dt), % Control | ||
---|---|---|---|
R | R1 | ||
4h | CF3O | H | 179 ± 27 |
4i | CF3O | CH3 | 207 ± 5 |
MB | 168 ± 17 | ||
MBH2 | 178 ± 11 | ||
Data are means ± SEM (n = 6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bachurin, S.O.; Shevtsova, E.F.; Makhaeva, G.F.; Aksinenko, A.Y.; Grigoriev, V.V.; Goreva, T.V.; Epishina, T.A.; Kovaleva, N.V.; Boltneva, N.P.; Lushchekina, S.V.; et al. Conjugates of Methylene Blue with Cycloalkaneindoles as New Multifunctional Agents for Potential Treatment of Neurodegenerative Disease. Int. J. Mol. Sci. 2022, 23, 13925. https://doi.org/10.3390/ijms232213925
Bachurin SO, Shevtsova EF, Makhaeva GF, Aksinenko AY, Grigoriev VV, Goreva TV, Epishina TA, Kovaleva NV, Boltneva NP, Lushchekina SV, et al. Conjugates of Methylene Blue with Cycloalkaneindoles as New Multifunctional Agents for Potential Treatment of Neurodegenerative Disease. International Journal of Molecular Sciences. 2022; 23(22):13925. https://doi.org/10.3390/ijms232213925
Chicago/Turabian StyleBachurin, Sergey O., Elena F. Shevtsova, Galina F. Makhaeva, Alexey Yu. Aksinenko, Vladimir V. Grigoriev, Tatiana V. Goreva, Tatiana A. Epishina, Nadezhda V. Kovaleva, Natalia P. Boltneva, Sofya V. Lushchekina, and et al. 2022. "Conjugates of Methylene Blue with Cycloalkaneindoles as New Multifunctional Agents for Potential Treatment of Neurodegenerative Disease" International Journal of Molecular Sciences 23, no. 22: 13925. https://doi.org/10.3390/ijms232213925
APA StyleBachurin, S. O., Shevtsova, E. F., Makhaeva, G. F., Aksinenko, A. Y., Grigoriev, V. V., Goreva, T. V., Epishina, T. A., Kovaleva, N. V., Boltneva, N. P., Lushchekina, S. V., Rudakova, E. V., Vinogradova, D. V., Shevtsov, P. N., Pushkareva, E. A., Dubova, L. G., Serkova, T. P., Veselov, I. M., Fisenko, V. P., & Richardson, R. J. (2022). Conjugates of Methylene Blue with Cycloalkaneindoles as New Multifunctional Agents for Potential Treatment of Neurodegenerative Disease. International Journal of Molecular Sciences, 23(22), 13925. https://doi.org/10.3390/ijms232213925