Exhausted but Not Senescent T Lymphocytes Predominate in Lupus Nephritis Patients
Abstract
:1. Introduction
2. Results
2.1. Characteristics of patients
2.2. Evaluation of the Immune Phenotype
2.2.1. Differences in T Lymphocyte Phenotype between LN Patients and HCs
2.2.2. Differences in CD4 and CD8 Lymphocyte Subpopulations between LN Patients and Healthy Controls, Based on the Presence of Senescent Markers
2.2.3. Differences in the Expression of PD1 Molecule on CD4 and CD8 Lymphocytes, between LN Patients and Healthy Controls
2.3. Correlation of Lymphocyte Phenotype with Clinical and Laboratory Findings
2.3.1. Correlation with Disease Activity
2.3.2. Correlation with Histological Findings
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Clinical Data and Renal Histology
4.3. Flow Cytometry
4.4. Statistics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lioulios, G.; Fylaktou, A.; Papagianni, A.; Stangou, M. T cell markers recount the course of immunosenescence in healthy individuals and chronic kidney disease. Clin. Immunol. 2021, 225, 108685. [Google Scholar] [CrossRef] [PubMed]
- Gruver, A.L.; Hudson, L.L.; Sempowski, G.D. Immunosenescence of ageing. J. Pathol. 2007, 211, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Goronzy, J.J.; Weyand, C.M. Mechanisms underlying T cell ageing. Nat. Rev. Immunol. 2019, 19, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Jubel, J.M.; Barbati, Z.R.; Burger, C.; Wirtz, D.C.; Schildberg, F.A. The Role of PD-1 in Acute and Chronic Infection. Front. Immunol. 2020, 11, 24. [Google Scholar] [CrossRef] [Green Version]
- Moro-García, M.A.; Mayo, J.C.; Sainz, R.M.; Alonso-Arias, R. Influence of inflammation in the process of T lymphocyte differentiation: Proliferative, metabolic, and oxidative changes. Front. Immunol. 2018, 9, 339. [Google Scholar] [CrossRef] [Green Version]
- Sattler, S. The role of the immune system beyond the fight against infection. In Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2017; Volume 1003, pp. 3–14. [Google Scholar] [CrossRef]
- Petrelli, A.; Mijnheer, G.; van Konijnenburg, D.P.H.; van der Wal, M.M.; Giovannone, B.; Mocholi, E.; Vazirpanah, N.; Broen, J.C.; Hijnen, D.; Oldenburg, B.; et al. PD-1+CD8+ T cells are clonally expanding effectors in human chronic inflammation. J. Clin. Investig. 2018, 128, 4669–4681. [Google Scholar] [CrossRef]
- Kaminski, H.; Lemoine, M.; Pradeu, T. Immunological exhaustion: How to make a disparate concept operational? PLoS Pathogens 2021, 17, e1009892. [Google Scholar] [CrossRef]
- Duraiswamy, J.; Ibegbu, C.C.; Masopust, D.; Miller, J.D.; Araki, K.; Doho, G.H.; Tata, P.; Gupta, S.; Zilliox, M.J.; Nakaya, H.I.; et al. Phenotype, Function, and Gene Expression Profiles of Programmed Death-1 hi CD8 T Cells in Healthy Human Adults. J. Immunol. 2011, 186, 4200–4212. [Google Scholar] [CrossRef] [Green Version]
- Park, H.J.; Park, J.S.; Jeong, Y.H.; Son, J.; Ban, Y.H.; Lee, B.; Chen, L.; Chang, J.; Chung, D.H.; Choi, I.; et al. Correction: PD-1 Upregulated on Regulatory T Cells during Chronic Virus Infection Enhances the Suppression of CD8+ T Cell Immune Response via the Interaction with PD-L1 Expressed on CD8+ T Cells. J. Immunol. 2015, 195, 5841–5842. [Google Scholar] [CrossRef]
- Saeidi, A.; Zandi, K.; Cheok, Y.Y.; Saeidi, H.; Wong, W.F.; Lee, C.Y.Q.; Cheong, H.C.; Yong, Y.K.; Larsson, M.; Shankar, E.M. T-cell exhaustion in chronic infections: Reversing the state of exhaustion and reinvigorating optimal protective immune responses. Front. Immunol. 2018, 9, 2569. [Google Scholar] [CrossRef]
- Lioulios, G.; Fylaktou, A.; Xochelli, A.; Sampani, E.; Tsouchnikas, I.; Giamalis, P.; Daikidou, D.; Nikolaidou, V.; Papagianni, A.; Theodorou, I.; et al. Clustering of End Stage Renal Disease Patients by Dimensionality Reduction Algorithms According to Lymphocyte Senescence Markers. Front. Immunol. 2022, 13, 841031. [Google Scholar] [CrossRef] [PubMed]
- Sampani, E.; Vagiotas, L.; Daikidou, D.; Nikolaidou, V.; Xochelli, A.; Kasimatis, E.; Lioulios, G.; Dimitriadis, C.; Fylaktou, A.; Papagianni, A.; et al. End stage renal disease has an early and continuous detrimental effect on regulatory T cells. Nephrology 2022, 27, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Sampani, E.; Daikidou, D.-V.; Lioulios, G.; Xochelli, A.; Mitsoglou, Z.; Nikolaidou, V.; Dimitriadis, C.; Fylaktou, A.; Papagianni, A.; Stangou, M. CD28null and regulatory T cells are substantially disrupted in patients with end-stage renal disease due to diabetes mellitus. Int. J. Mol. Sci. 2021, 22, 2975. [Google Scholar] [CrossRef] [PubMed]
- Vagiotas, L.; Stangou, M.; Kasimatis, E.; Xochelli, A.; Myserlis, G.; Lioulios, G.; Nikolaidou, V.; Panteli, M.; Ouranos, K.; Antoniadis, N.; et al. The effect of Panel Reactive Antibodies on T cell immunity reinstatement following renal transplantation. World J. Transplant. 2022, 12, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Obrișcă, B.; Sorohan, B.; Tuță, L.; Ismail, G. Advances in lupus nephritis pathogenesis: From bench to bedside. Int. J. Mol. Sci. 2021, 22, 3766. [Google Scholar] [CrossRef]
- Caielli, S.; Veiga, D.T.; Balasubramanian, P.; Athale, S.; Domic, B.; Murat, E.; Banchereau, R.; Xu, Z.; Chandra, M.; Chung, C.; et al. A CD4+ T cell population expanded in lupus blood provides B cell help through interleukin-10 and succinate. Nat. Med. 2019, 25, 75–81. [Google Scholar] [CrossRef]
- Ko, H.; Kim, C.J.; Im, S.H. T Helper 2-Associated Immunity in the Pathogenesis of Systemic Lupus Erythematosus. Front. Immunol. 2022, 13, 866549. [Google Scholar] [CrossRef]
- Rodríguez-Almaraz, E.; Gutiérrez-Solís, E.; Rabadán, E.; Rodríguez, P.; Carmona, L.; Morales, E.; Galindo, M. Something new about prognostic factors for lupus nephritis? A systematic review. Lupus 2021, 30, 2256–2267. [Google Scholar] [CrossRef]
- Sallusto, F.; Geginat, J.; Lanzavecchia, A. Central memory and effector memory T cell subsets: Function, generation, and maintenance. Annu. Rev. Immunol. 2004, 22, 745–763. [Google Scholar] [CrossRef]
- Dong, Z.; Zhang, B.; Rong, J.; Yang, X.; Wang, Y.; Zhang, Q.; Su, Z. The aberrant expression of CD45 isoforms and levels of sex hormones in systemic lupus erythematosus. Clin. Rheumatol. 2022, 41, 1087–1093. [Google Scholar] [CrossRef]
- Dolff, S.; Abdulahad, W.H.; Arends, S.; van Dijk, M.C.R.F.; Limburg, P.C.; Kallenberg, C.G.M.; Bijl, M. Urinary CD8+ T-cell counts discriminate between active and inactive lupus nephritis. Arthritis Res. Ther. 2013, 15, R36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piantoni, S.; Regola, F.; Zanola, A.; Andreoli, L.; Dall’Ara, F.; Tincani, A.; Airo’, P. Effector T-cells are expanded in systemic lupus erythematosus patients with high disease activity and damage indexes. Lupus 2018, 27, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Gordon, C.; Matthews, N.; Schlesinger, B.C.; Akbar, A.N.; Bacon, P.A.; Emery, P.; Salmon, M. Active systemic lupus erythematosus is associated with the recruitment of naive/resting T cells. Br. J. Rheumatol. 1996, 35, 226–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, S.; Zeng, Y.; Li, J.; Wang, C.; Li, W.; He, Z.; Ye, J.; Li, F.; Chen, Y.; Lin, X.; et al. Phenotypical changes and clinical significance of CD4+/CD8+ T cells in SLE. Lupus Sci. Med. 2022, 9, e000660. [Google Scholar] [CrossRef]
- Sharpe, A.H.; Pauken, K.E. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 2018, 18, 153–167. [Google Scholar] [CrossRef]
- Dolff, S.; Quandt, D.; Feldkamp, T.; Jun, C.; Mitchell, A.; Hua, F.; Specker, C.; Kribben, A.; Witzke, O.; Wilde, B. Increased percentages of PD-1 on CD4+ T cells is associated with higher INF-γ production and altered IL-17 production in patients with systemic lupus erythematosus. Scand. J. Rheumatol. 2014, 43, 307–313. [Google Scholar] [CrossRef]
- Lin, J.; Yu, Y.; Ma, J.; Ren, C.; Chen, W. PD-1+CXCR5−CD4+T cells are correlated with the severity of systemic lupus erythematosus. Rheumatology 2019, 58, 2188–2192. [Google Scholar] [CrossRef]
- Youssry, S.; Hussein, A.; Moaaz, M. The immunoregulatory axis (programmed death-1/programmed death ligand-1) on CD4+ T cells in lupus nephritis: Association with vitamin D and chemokine C-X-C motif ligand 12. Microbiol. Immunol. 2021, 65, 392–399. [Google Scholar] [CrossRef]
- Wherry, E.J.; Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 2015, 15, 486–499. [Google Scholar] [CrossRef]
- Chen, P.M.; Tsokos, G.C. The role of CD8+ T-cell systemic lupus erythematosus pathogenesis: An update. Curr. Opin. Rheumatol. 2021, 33, 586–591. [Google Scholar] [CrossRef]
- Kasagi, S.; Kawano, S.; Okazaki, T.; Honjo, T.; Morinobu, A.; Hatachi, S.; Shimatani, K.; Tanaka, Y.; Minato, N.; Kumagai, S. Anti-Programmed Cell Death 1 Antibody Reduces CD4+PD-1+ T Cells and Relieves the Lupus-Like Nephritis of NZB/W F1 Mice. J. Immunol. 2010, 184, 2337–2347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, W.; Zheng, H.; Wu, S.; Zhang, Y.; Wang, W.; Zhang, Z.; Zhou, C.; Wu, H.; Min, J. The Systemic Activation of Programmed Death 1-PD-L1 Axis Protects Systemic Lupus Erythematosus Model from Nephritis. Am. J. Nephrol. 2017, 46, 371–379. [Google Scholar] [CrossRef]
- Wang, J.; Okazaki, I.; Yoshida, T.; Chikuma, S.; Kato, Y.; Nakaki, F.; Hiai, H.; Honjo, T.; Okazaki, T. PD-1 deficiency results in the development of fatal myocarditis in MRL mice. Int. Immunol. 2010, 22, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Cassaniti, I.; Cavagna, L.; Calarota, S.A.; Adzasehoun, K.M.G.; Comolli, G.; Montecucco, C.; Baldanti, F. Evaluation of EBV- and HCMV-Specific T Cell Responses in Systemic Lupus Erythematosus (SLE) Patients Using a Normalized Enzyme-Linked Immunospot (ELISPOT) Assay. J. Immunol. Res. 2019, 2019, 4236503. [Google Scholar] [CrossRef] [PubMed]
- Klaus, G.; Mostert, K.; Reckzeh, B.; Mueller, T.F. Phenotypic changes in lymphocyte subpopulations in pediatric renal-transplant patients after T-cell depletion. Transplantation 2003, 76, 1719–1724. [Google Scholar] [CrossRef]
- Shang, Q.; Yip, G.W.K.; Tam, L.S.; Zhang, Q.; Sanderson, J.E.; Lam, Y.Y.; Li, C.M.; Wang, T.; Li, E.K.M.; Yu, C.M. SLICC/ACR damage index independently associated with left ventricular diastolic dysfunction in patients with systemic lupus erythematosus. Lupus 2012, 21, 1057–1062. [Google Scholar] [CrossRef]
- Systemic Lupus Erythematosus Disease Activity Index 2000—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/11838846/ (accessed on 12 October 2022).
- Haas, M.; Rastaldi, M.P.; Fervenza, F.C. Histologic classification of glomerular diseases: Clinicopathologic correlations, limitations exposed by validation studies, and suggestions for modification. Kidney Int. 2014, 85, 779–793. [Google Scholar] [CrossRef]
At Diagnosis | At Evaluation | |
---|---|---|
n | 30 | 30 |
M/W | 4/26 | |
Mean age at diagnosis (years) | 31 ± 15 | 43 ± 16 |
SLE manifestations and Systems involved | ||
| 19/30 (63.3%) | 13/30 (43.3%) |
| 22/30 (73.3%) | 7/30 (23.3%) |
| 3/30 (10%) | 0/30 (0%) |
| 4/30 (13.3%) | 1/30 (3.3%) |
| 13/30 (43.3%) | 3/30 (10%) |
| 30/30 (100%) | 22/30 (73.3%) |
| 3/30 (10%) | 3/30 (10%) |
| 30/30 (100%) | 16/30 (53.3%) |
Mean SLEDAI-2K score | 11 | |
Renal Pathology Classification according to ISN/RPS 2003 | ||
Stage II | 3/30 (10%) | |
Stage III | 3/30 (10%) | |
Stage IV | 14/30 (46.7%) | |
Stage V | 7/30 (23.3%) | |
Stage III + V | 3/30 (10%) |
LN Patients | Healthy Controls | p | |
---|---|---|---|
n | 30 | 20 | |
Naïve CD4 lymphocytes | |||
CD4+CD31+ (%) (RTEs) | 33.8 (12–49) | 28.4 (6–60) | NS |
CD4+CD31+ | 212 0–468) | 279 (59–959) | NS |
CD4+CD45RA+CCR7+ (%) (naïve) | 38.3 (11–62) | 46.7 (25–85) | NS |
CD4+CD45RA+CCR7+ | 233.6 (0–572) | 453 (231–1357) | 0.02 |
CD4+CD28+CD57− (%) | 94 (12–98) | 96 (86–99) | NS |
CD4+CD28+CD57− | 550 (0–1228) | 989 (664–1568) | <0.001 |
Memory CD4 lymphocytes | |||
CD4+CD45RA−CCR7+ (%) (CM) | 55.8 (26–76) | 48.3 (2.5–73) | NS |
CD4+CD45RA−CCR7+ | 294 (0–972) | 570 (39–1001) | 0.009 |
CD4+CD45RA−CD57− (%) | 53 (7–74) | 52 (13–76) | NS |
CD4+CD45RA−CD57- | 236 (0–884) | 605 (208–990) | <0.0001 |
CD4+CD45RA-CCR7− (%) (EM) | 0.4 (0–23) | 1 (0.1–4.5) | 0.001 |
CD4+CD45RA−CCR7− | 1.7 (0–73) | 11 (1.5–43) | <0.001 |
CD4+CD28+CD57+ (%) | 0.8 (0–86) | 0.7 (0.3–1.7) | NS |
CD4+CD28+CD57+ | 4.7 (0–806) | 6.8 (3.8–23) | NS |
CD4+CD45RA−CD57+ (%) | 2 (0.3–43) | 1.4 (0–5.5) | NS |
CD4+CD45RA−CD57+ | 9.7 (0–408) | 16.5 (0–73) | NS |
Advanced Differentiated CD4 cells | |||
CD4+CD45RA+CCR7− (%) (EMRA) | 1.7 (0–38) | 2.5 (0.6–10) | NS |
CD4+CD45RA+CCR7− | 9.3 (0–123) | 30 (5.9–167) | 0.009 |
CD4+CD45RA+CCR7−CD28− (%) (EMRA-CD28−) | 19.7 (0–100) | 14 (1.9–28) | NS |
CD4+CD45RA+CCR7−CD28− (EMRA-CD28−) | 1.9 (0–18) | 2.9 (0.3–18) | NS |
CD4+CD28−CD57− (%) | 2.2 (0–18) | 1.1 (0.4–9) | NS |
CD4+CD28−CD57− | 7.2 (0–50) | 12 (4–69) | NS |
CD4+CD28−CD57+ (%) | 1.7 (0.1–23) | 2.2 (0.1–7.5) | NS |
CD4+CD28−CD57+ | 9.9 (0–66) | 25 (0.9–99) | NS |
CD4+CD45RA+CD57+ (%) | 1.3 (0–39) | 1.6 (0.2–6.4) | NS |
CD4+CD45RA+CD57+ | 6.7 (0–364) | 14 (1.9–61) | NS |
LN Patients | Healthy Controls | p | |
---|---|---|---|
n | 30 | 20 | |
Naïve CD8 lymphocytes | |||
CD8+CD31+ (%) (RTEs) | 33 (7.6–73) | 40 (19–63) | NS |
CD8+CD31+ | 84 (0–353) | 207 (73–344) | 0.01 |
CD8+CD45RA+CCR7+ (%) (naïve) | 24 (0.8–72) | 39 (21–95) | 0.01 |
CD8+CD45RA+CCR7+ | 68 (0–347) | 200 (82–804) | <0.001 |
CD8+CD45RA+CD57− (%) | 27 (2.3–67) | 37 (12–77) | NS |
CD8+CD45RA+CD57− | 58 (0–324) | 176 (68–402) | 0.003 |
CD8+CD28+CD57− (%) | 55.8 (3.3–85) | 63 (25–82) | NS |
CD8+CD28+CD57− | 168 (0–373) | 318 (153–540) | 0.002 |
Memory CD8 lymphocytes | |||
CD8+CD45RA−CCR7+ (%) (CM) | 39 (1.8–88) | 15 (0.1–55) | 0.001 |
CD8+CD45RA−CCR7+ | 100 (0–472) | 60 (0.6–220) | NS |
CD8+CD45RA−CD57− (%) | 38 (1.1–84) | 39 (5.5–65) | NS |
CD8+CD45RA−CD57− | 117 (0–401) | 134 (28–386) | NS |
CD8+CD45RA−CCR7− (%) (EM) | 4.9 (0.4–55) | 1.2 (0–27) | NS |
CD8+CD45RA+CCR7− | 13.9 (0–97) | 2.4 (0–255) | 0.03 |
CD8+CD28+CD57+ (%) | 1.9 (0.5–79) | 1.8 (0.5–4.7) | NS |
CD8+CD28+CD57+ | 7.4 (0–132) | 10 (1.4–37) | NS |
CD8+CD45RA−CD57+ (%) | 12.8 (1.2–52) | 9.1 (0.6–24) | NS |
CD8+CD45RA−CD57+ | 25.5 (0–277) | 55.8 (2–118) | NS |
Advanced Differentiated CD8 cells | |||
CD8+CD45RA+CCR7− (%) (EMRA) | 8.9 (0–58) | 28.3 (2.9–67) | NS |
CD8+CD45RA+CCR7− | 19 (0–279) | 143 (6.2–463) | 0.008 |
CD8+CD45RA+CCR7−CD28− (%) (EMRA-CD28−) | 33 (5.6–99) | 40 (10–71) | NS |
CD8+CD45RA+CCR7−CD28− (EMRA-CD28−) | 5.7 (0–192) | 35.8 (2.5–221) | 0.004 |
CD8+CD28−CD57− (%) | 13 (0.2–36) | 10.8 (4–19) | NS |
CD8+CD28−CD57− | 43 (0–194) | 49 (27–126) | NS |
CD8+CD28−CD57+ (%) | 19 (2.2–59) | 26 (4.2–66) | NS |
CD8+CD28−CD57+ | 53 (0–344) | 97 (19–432) | NS |
CD8+CD45RA+CD57+ (%) | 5.7 (0.3–49) | 12.3 (2–50) | NS |
CD8+CD45RA+CD57+ | 15.8 (0–178) | 47 (8.7–327) | 0.01 |
LN Patients | Healthy Controls | p | |
---|---|---|---|
n | 30 | 20 | |
CD4+PD1+ (%) | 11.6 (3.4–97.9) | 8.2 (1.6–16.2) | 0.03 |
CD4+PD1+ | 65.6 (0–606.9) | 78.5 (15.3–189.4) | NS |
CD4+CD45RA+PD1+ (%) | 2.3 (0.5–49) | 0.6 (0–1.7) | <0.0001 |
CD4+CD45RA+PD1+ | 11.7 (0–291) | 6.7 (0–21) | 0.03 |
CD4+CD45RA−PD1+ (%) | 10 (2.8–67) | 7.7 (1.5–15) | NS |
CD4+CD45RA−PD1+ | 57 (0–358) | 73 (14–180) | NS |
CD8+PD1+ (%) | 28.8 (9.7–96.9) | 12.5 (4–33.4) | 0.001 |
CD8+PD1+ | 81.5 (0–425) | 46.4 (18–142.3) | NS |
CD8+CD45RA+PD1+ (%) | 11 (0.4–63) | 3.6 (1.2–10) | 0.01 |
CD8+CD45RA+PD1+ | 24 (0–305) | 18 (5.4–54) | NS |
CD8+CD45RA−PD1+ (%) | 18.6 (7–88) | 9 (0.7–27) | 0.008 |
CD8+CD45RA−PD1+ | 65.8 (0–274) | 31.5 (3–125) | NS |
Stage II | Stage III | Stage IV | Stage V | p | p (II/V vs. III/IV) | |
---|---|---|---|---|---|---|
CD4 Lymphocytes and Subtypes | n = 2 | n = 4 | n = 9 | n = 5 | ||
CD4 (%) | 44.9 (9.1) | 59.9 (20.7) | 45.4 (19.7) | 58.1 (15.5) | 0.04 | NS |
CD4 (cells/μL) | 539.4 (109) | 621.5 (652.5) | 378.1 (590.4) | 941.9 (414.3) | NS | NS |
CD4+CD31+ (RTEs) (%) | 40 (0.4) | 33 (8.7) | 21.5 (14.8) | 38 (10.4) | 0.02 | 0.002 |
CD4+CD45RA+CCR7+ (naïve) (%) | 55.2 (14.1) | 38.3 (21.2) | 30.4 (15.6) | 45.7 (7.3) | NS | 0.01 |
CD4+CD45RA−CCR7+ (CM) (%) | 39.6 (4.1) | 59.4 (22.6) | 66.8 (24.2) | 51.1 (10.8) | NS | 0.03 |
CD4+CD45RA−CCR7− (EM) (%) | 0.9 (1.9) | 0.3 (0.7) | 0.5 (0.6) | 0.4 (0.7) | NS | NS |
CD4+CD45RA+CCR7− (EMRA) (%) | 4.4 (8.8) | 1.7 (1.2) | 1.7 (3.2) | 2.9 (3.2) | NS | NS |
CD4+CD45RA+CCR7-CD28− (CD28-EMRA) (%) | 13.6 (27.2) | 15.3 (36.3) | 23.7 (20) | 8.5 (5.1) | NS | <0.001 |
CD4+CD28+CD57+ (%) | 0.9 (0.2) | 1 (2.8) | 0.7 (0.6) | 1 (64.4) | NS | NS |
CD4+CD28+CD57− (%) | 96.1 (5.6) | 92.4 (11.5) | 93.2 (12.1) | 97 (65.2) | NS | NS |
CD4+CD28−CD57− (%) | 1.1 (1.9) | 0.9 (2.6) | 3.6 (5.1) | 0.6 (2.2) | 0.04 | 0.02 |
CD4+CD28−CD57+ (%) | 1.8 (3.5) | 3.2 (11.3) | 2.3 (6.9) | 0.2 (0.8) | NS | NS |
CD4+CD45+CD57− (%) | 58,3 (11.8) | 38,8 (17,7) | 32 (31,6) | 48,9 (40,9) | NS | NS |
CD4+CD45−CD57− (%) | 38.9 (7.3) | 57 (22.4) | 58.2 (26.1) | 41.5 (37.2) | NS | 0.01 |
CD4+CD45−CD57+ (%) | 1 (1.3) | 2.6 (3.5) | 3.3 (11.3) | 0.7 (32.6) | NS | NS |
CD4+CD45+CD57+ (%) | 1.7 (3.2) | 3.6 (7.4) | 1.6 (4.9) | 0.5 (28.9) | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lioulios, G.; Mitsoglou, Z.; Fylaktou, A.; Xochelli, A.; Christodoulou, M.; Stai, S.; Moysidou, E.; Konstantouli, A.; Nikolaidou, V.; Papagianni, A.; et al. Exhausted but Not Senescent T Lymphocytes Predominate in Lupus Nephritis Patients. Int. J. Mol. Sci. 2022, 23, 13928. https://doi.org/10.3390/ijms232213928
Lioulios G, Mitsoglou Z, Fylaktou A, Xochelli A, Christodoulou M, Stai S, Moysidou E, Konstantouli A, Nikolaidou V, Papagianni A, et al. Exhausted but Not Senescent T Lymphocytes Predominate in Lupus Nephritis Patients. International Journal of Molecular Sciences. 2022; 23(22):13928. https://doi.org/10.3390/ijms232213928
Chicago/Turabian StyleLioulios, Georgios, Zoi Mitsoglou, Asimina Fylaktou, Aliki Xochelli, Michalis Christodoulou, Stamatia Stai, Eleni Moysidou, Afroditi Konstantouli, Vasiliki Nikolaidou, Aikaterini Papagianni, and et al. 2022. "Exhausted but Not Senescent T Lymphocytes Predominate in Lupus Nephritis Patients" International Journal of Molecular Sciences 23, no. 22: 13928. https://doi.org/10.3390/ijms232213928
APA StyleLioulios, G., Mitsoglou, Z., Fylaktou, A., Xochelli, A., Christodoulou, M., Stai, S., Moysidou, E., Konstantouli, A., Nikolaidou, V., Papagianni, A., & Stangou, M. (2022). Exhausted but Not Senescent T Lymphocytes Predominate in Lupus Nephritis Patients. International Journal of Molecular Sciences, 23(22), 13928. https://doi.org/10.3390/ijms232213928