Retinal Cyclic Nucleotide-Gated Channel Regulation by Calmodulin
Abstract
:1. Overview of Retinal CNG Channels
2. Retinal CNG Channels Are Essential for Visual Phototransduction
3. Calmodulin Mediates Ca2+-Dependent CNG Channel Desensitization
4. Structural Models of CNG Channel Regulation by Calmodulin
4.1. Two-Site Model for CaM Regulation of the Rod CNG Channel
4.2. CaM Binding to CaM2 May Be Sufficient for CNG Channel Desensitization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matulef, K.; Zagotta, W.N. Cyclic nucleotide-gated ion channels. Annu. Rev. Cell Dev. Biol. 2003, 19, 23–44. [Google Scholar] [CrossRef] [PubMed]
- Trudeau, M.C.; Zagotta, W.N. Calcium/Calmodulin Modulation of Olfactory and Rod Cyclic Nucleotide-gated Ion Channels. J. Biol. Chem. 2003, 278, 18705–18708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fesenko, E.E.; Kolesnikov, S.S.; Lyubarsky, A.L. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 1985, 313, 310–313. [Google Scholar] [CrossRef]
- Yau, K.W.; Baylor, D.A. Cyclic GMP-activated conductance of retinal photoreceptor cells. Annu. Rev. Neurosci. 1989, 12, 289–327. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.; Frings, S.; Yau, K.-W.; Reed, R. Nomenclature for Ion Channel Subunits. Science 2001, 294, 2095–2096. [Google Scholar] [CrossRef] [Green Version]
- Kaupp, U.B.; Niidome, T.; Tanabe, T.; Terada, S.; Bönigk, W.; Stühmer, W.; Cook, N.J.; Kangawa, K.; Matsuo, H.; Hirose, T.; et al. Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature 1989, 342, 762–766. [Google Scholar] [CrossRef] [Green Version]
- Trudeau, M.C.; Zagotta, W.N. Mechanism of calcium/calmodulin inhibition of rod cyclic nucleotide-gated channels. Proc. Natl. Acad. Sci. USA 2002, 99, 8424–8429. [Google Scholar] [CrossRef] [Green Version]
- Cook, N.J.; Hanke, W.; Kaupp, U.B. Identification, purification, and functional reconstitution of the cyclic GMP-dependent channel from rod photoreceptors. Proc. Natl. Acad. Sci. USA 1987, 84, 585–589. [Google Scholar] [CrossRef] [Green Version]
- Dryja, T.P.; Finn, J.T.; Peng, Y.W.; McGee, T.L.; Berson, E.L.; Yau, K.W. Mutations in the gene encoding the alpha subunit of the rod cGMP-gated channel in autosomal recessive retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 1995, 92, 10177–10181. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.-Y.; Peng, Y.-W.; Dhallan, R.S.; Ahamed, B.; Reed, R.R.; Yau, K.-W. A new subunit of the cyclic nucleotide-gated cation channel in retinal rods. Nature 1993, 362, 764–767. [Google Scholar] [CrossRef]
- Shuart, N.G.; Haitin, Y.; Camp, S.S.; Black, K.D.; Zagotta, W.N. Molecular mechanism for 3:1 subunit stoichiometry of rod cyclic nucleotide-gated ion channels. Nat. Commun. 2011, 2, 457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barret, D.C.A.; Schertler, G.F.; Benjamin Kaupp, U.; Marino, J. The structure of the native CNGA1/CNGB1 CNG channel from bovine retinal rods. Nat. Struct. Mol. Biol. 2022, 29, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Barret, D.C.A.; Schertler, G.F.; Kaupp, U.B.; Marino, J. Structural basis of the partially open central gate in the human CNGA1/CNGB1 channel explained by additional density for calmodulin in cryo-EM map. J. Struct. Biol. 2021, 214, 107828. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Han, Y.; Zeng, W.; Wang, Y.; Jiang, Y. Structural mechanisms of gating and selectivity of human rod CNGA1 channel. Neuron 2021, 109, 1302–1313.e4. [Google Scholar] [CrossRef] [PubMed]
- Barret, D.C.; Kaupp, U.B.; Marino, J. The structure of cyclic nucleotide-gated channels in rod and cone photoreceptors. Trends Neurosci. 2022, 45, 763–776. [Google Scholar] [CrossRef] [PubMed]
- Bonigk, W.; Altenhofen, W.; Müller, F.; Dose, A.; Illing, M.; Molday, R.S.; Kaupp, U.B. Rod and cone receptor cells express distinct genes for cGMP-gated channels. Neuron 1993, 10, 865–877. [Google Scholar] [CrossRef]
- Gerstner, A.; Zong, X.; Hofmann, F.; Biel, M. Molecular cloning and functional characterization of a new modulatory cyclic nucleotide-gated channel subunit from mouse retina. J. Neurosci. 2000, 20, 1324–1332. [Google Scholar] [CrossRef] [Green Version]
- Bright, S.R.; Brown, T.E.; Varnum, M.D. Disease-associated mutations in CNGB3 produce gain of function alterations in cone cyclic nucleotide-gated channels. Mol. Vis. 2005, 11, 1141–1150. [Google Scholar]
- Grunwald, M.E.; Yu, W.P.; Yu, H.H.; Yau, K.W. Identification of a domain on the beta-subunit of the rod cGMP-gated cation channel that mediates inhibition by calcium-calmodulin. J. Biol. Chem. 1998, 273, 9148–9157. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Hu, Z.; Li, H.; Yang, J. Structure of the human cone photoreceptor cyclic nucleotide-gated channel. Nat. Struct. Mol. Biol. 2020, 29, 40–46. [Google Scholar] [CrossRef]
- Kohl, S.; Baumann, B.; Broghammer, M.; Jägle, H.; Sieving, P.; Kellner, U.; Spegal, R.; Anastasi, M.; Zrenner, E.; Sharpe, L.T.; et al. Mutations in the CNGB3 gene encoding the beta-subunit of the cone photoreceptor cGMP-gated channel are responsible for achromatopsia (ACHM3) linked to chromosome 8q21. Hum. Mol. Genet. 2000, 9, 2107–2116. [Google Scholar] [CrossRef]
- Sundin, O.H.; Yang, J.-M.; Li, Y.; Zhu, D.; Hurd, J.N.; Mitchell, T.N.; Silva, E.; Maumenee, I.H. Genetic basis of total colourblindness among the Pingelapese islanders. Nat. Genet. 2000, 25, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Baylor, D. How photons start vision. Proc. Natl. Acad. Sci. USA 1996, 93, 560–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stryer, L. Visual excitation and recovery. J. Biol. Chem. 1991, 266, 10711–10714. [Google Scholar] [CrossRef]
- Yau, K.W. Phototransduction mechanism in retinal rods and cones. Investig. Ophthalmol. Vis. Sci. 1994, 35, 9–32. [Google Scholar]
- Cote, R.H. Photoreceptor phosphodiesterase (PDE6): Activation and inactivation mechanisms during visual transduction in rods and cones. Pflügers Arch.-Eur. J. Physiol. 2021, 473, 1377–1391. [Google Scholar] [CrossRef]
- Arshavsky, V.Y.; Burns, M.E. Current understanding of signal amplification in phototransduction. Cell. Logist. 2014, 4, e29390. [Google Scholar] [CrossRef] [Green Version]
- Koch, K.-W.; Dell’Orco, D. Protein and Signaling Networks in Vertebrate Photoreceptor Cells. Front. Mol. Neurosci. 2015, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Pugh, E.; Nikonov, S.; Lamb, T. Molecular mechanisms of vertebrate photoreceptor light adaptation. Curr. Opin. Neurobiol. 1999, 9, 410–418. [Google Scholar] [CrossRef]
- Gray-Keller, M.P.; Detwiler, P. The calcium feedback signal in the phototransduction cascade of vertebrate rods. Neuron 1994, 13, 849–861. [Google Scholar] [CrossRef]
- Schnetkamp, P.P. How does the retinal rod Na-Ca+K exchanger regulate cytosolic free Ca2+? J. Biol. Chem. 1995, 270, 13231–13239. [Google Scholar] [CrossRef] [PubMed]
- Fain, G.L.; Matthews, H.R.; Cornwall, M.C.; Koutalos, Y. Adaptation in Vertebrate Photoreceptors. Physiol. Rev. 2001, 81, 117–151. [Google Scholar] [CrossRef] [Green Version]
- Hsu, Y.T.; Molday, R.S. Modulation of the cGMP-gated channel of rod photoreceptor cells by calmodulin. Nature 1993, 361, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Dizhoor, A. The human photoreceptor membrane guanylyl cyclase, RetGC, is present in outer segments and is regulated by calcium and a soluble activator. Neuron 1994, 12, 1345–1352. [Google Scholar] [CrossRef]
- Koch, K.-W.; Stryer, L. Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. Nature 1988, 334, 64–66. [Google Scholar] [CrossRef] [PubMed]
- Palczewski, K.; Subbaraya, I.; Gorczyca, W.A.; Helekar, B.S.; Ruiz, C.C.; Ohguro, H.; Huang, J.; Zhao, X.; Crabb, J.W.; Johnson, R.S.; et al. Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein. Neuron 1994, 13, 395–404. [Google Scholar] [CrossRef]
- Bradley, J.; Reisert, J.; Frings, S. Regulation of cyclic nucleotide-gated channels. Curr. Opin. Neurobiol. 2005, 15, 343–349. [Google Scholar] [CrossRef]
- Koutalos, Y.; Yau, K.W. Regulation of sensitivity in vertebrate rod photoreceptors by calcium. Trends Neurosci. 1996, 19, 73–81. [Google Scholar] [CrossRef]
- Chen, T.Y.; Illing, M.; Molday, L.L.; Hsu, Y.T.; Yau, K.W.; Molday, R.S. Subunit 2 (or beta) of retinal rod cGMP-gated cation channel is a component of the 240-kDa channel-associated protein and mediates Ca(2+)-calmodulin modulation. Proc. Natl. Acad. Sci. USA 1994, 91, 11757–11761. [Google Scholar] [CrossRef] [Green Version]
- Weitz, D.; Zoche, M.; Müller, F.; Beyermann, M.; Körschen, H.G.; Kaupp, U.B.; Koch, K.W. Calmodulin controls the rod photoreceptor CNG channel through an unconventional binding site in the N-terminus of the β-subunit. EMBO J. 1998, 17, 2273–2284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, C.; Rich, E.D.; Thor, C.A.; Varnum, M.D. Functionally Important Calmodulin-binding Sites in Both NH2- and COOH-terminal Regions of the Cone Photoreceptor Cyclic Nucleotide-gated Channel CNGB3 Subunit. J. Biol. Chem. 2003, 278, 24617–24623. [Google Scholar] [CrossRef] [PubMed]
- Rebrik, T.I.; Botchkina, I.; Arshavsky, V.Y.; Craft, C.M.; Korenbrot, J.I. CNG-modulin: A novel Ca-dependent modulator of ligand sensitivity in cone photoreceptor cGMP-gated ion channels. J. Neurosci. 2012, 32, 3142–3153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebrik, T.I.; Korenbrot, J.I. In intact mammalian photoreceptors, Ca2+-dependent modulation of cGMP-gated ion channels is detectable in cones but not in rods. J. Gen. Physiol. 2004, 123, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Bonigk, W.; Müller, F.; Middendorff, R.; Weyand, I.; Kaupp, U.B. Two alternatively spliced forms of the cGMP-gated channel alpha-subunit from cone photoreceptor are expressed in the chick pineal organ. J. Neurosci. 1996, 16, 7458–7468. [Google Scholar] [CrossRef] [Green Version]
- Moncrief, N.; Kretsinger, R.H.; Goodman, M. Evolution of EF-hand calcium-modulated proteins. I. Relationships based on amino acid sequences. J. Mol. Evol. 1990, 30, 522–562. [Google Scholar] [CrossRef]
- Babu, Y.; Bugg, C.E.; Cook, W.J. Structure of calmodulin refined at 2.2 Å resolution. J. Mol. Biol. 1988, 204, 191–204. [Google Scholar] [CrossRef]
- Gilli, R.; Lafitte, D.; Lopez, C.; Kilhoffer, M.-C.; Makarov, A.; Briand, A.C.; Haiech, J. Thermodynamic Analysis of Calcium and Magnesium Binding to Calmodulin. Biochemistry 1998, 37, 5450–5456. [Google Scholar] [CrossRef]
- Ikura, M. Calcium binding and conformational response in EF-hand proteins. Trends Biochem. Sci. 1996, 21, 14–17. [Google Scholar] [CrossRef]
- Trudeau, M.C.; Zagotta, W.N. Dynamics of Ca2+-Calmodulin–dependent Inhibition of Rod Cyclic Nucleotide-gated Channels Measured by Patch-clamp Fluorometry. J. Gen. Physiol. 2004, 124, 211–223. [Google Scholar] [CrossRef] [Green Version]
- Korenbrot, J.I.; Mehta, M.; Tserentsoodol, N.; Postlethwait, J.H.; Rebrik, T.I. EML1 (CNG-modulin) controls light sensitivity in darkness and under continuous illumination in zebrafish retinal cone photoreceptors. J. Neurosci. 2013, 33, 17763–17776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poria, D.; Sun, C.; Santeford, A.; Kielar, M.; Apte, R.S.; Kisselev, O.G.; Chen, S.; Kefalov, V.J. EML1 is essential for retinal photoreceptor migration and survival. Sci. Rep. 2022, 12, 2897. [Google Scholar] [CrossRef] [PubMed]
- Bej, A.; Ames, J.B. NMR Structures of Calmodulin Bound to Two Separate Regulatory Sites in the Retinal Cyclic Nucleotide-Gated Channel. Biochemistry 2022, 61, 1955–1965. [Google Scholar] [CrossRef]
- Grunwald, M.E.; Yau, K.W. Modulation of rod cGMP-gated cation channel by calmodulin. Met. Enzymol. 2000, 315, 817–828. [Google Scholar]
- Sprenger, J.; Trifan, A.; Patel, N.; Vanderbeck, A.; Bredfelt, J.; Tajkhorshid, E.; Rowlett, R.; Leggio, L.L.; Åkerfeldt, K.S.; Linse, S. Calmodulin complexes with brain and muscle creatine kinase peptides. Curr. Res. Struct. Biol. 2021, 3, 121–132. [Google Scholar] [CrossRef]
- Ames, J.B. Structural Insights into Retinal Guanylate Cyclase Activator Proteins (GCAPs). Int. J. Mol. Sci. 2021, 22, 8731. [Google Scholar] [CrossRef] [PubMed]
- Bartels, P.; Salveson, I.C.; Coleman, A.M.; Anderson, D.; Jeng, G.; Estrada-Tobar, Z.M.; Mimi Man, K.N.; Yu, Q.; Kuzmenkina, E.; Nieves-Cintron, M.; et al. Half-calcified Calmodulin Promotes Basal Activity and Inactivation of the L-type Calcium Channel CaV1.2. bioRxiv 2022. [Google Scholar] [CrossRef]
- Spratt, D.; Taiakina, V.; Guillemette, J.G. Calcium-deficient calmodulin binding and activation of neuronal and inducible nitric oxide synthases. Biochim. Biophys. Acta 2007, 1774, 1351–1358. [Google Scholar] [CrossRef]
- Zheng, X.; Fu, Z.; Su, D.; Zhang, Y.; Li, M.; Pan, Y.; Li, H.; Li, S.; Grassucci, R.A.; Ren, Z.; et al. Mechanism of ligand activation of a eukaryotic cyclic nucleotide−gated channel. Nat. Struct. Mol. Biol. 2020, 27, 625–634. [Google Scholar] [CrossRef]
- Wu, X.; Bers, D.M. Free and bound intracellular calmodulin measurements in cardiac myocytes. Cell Calcium 2007, 41, 353–364. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bej, A.; Ames, J.B. Retinal Cyclic Nucleotide-Gated Channel Regulation by Calmodulin. Int. J. Mol. Sci. 2022, 23, 14143. https://doi.org/10.3390/ijms232214143
Bej A, Ames JB. Retinal Cyclic Nucleotide-Gated Channel Regulation by Calmodulin. International Journal of Molecular Sciences. 2022; 23(22):14143. https://doi.org/10.3390/ijms232214143
Chicago/Turabian StyleBej, Aritra, and James B. Ames. 2022. "Retinal Cyclic Nucleotide-Gated Channel Regulation by Calmodulin" International Journal of Molecular Sciences 23, no. 22: 14143. https://doi.org/10.3390/ijms232214143
APA StyleBej, A., & Ames, J. B. (2022). Retinal Cyclic Nucleotide-Gated Channel Regulation by Calmodulin. International Journal of Molecular Sciences, 23(22), 14143. https://doi.org/10.3390/ijms232214143