Topical Delivery of Hedgehog Inhibitors: Current Status and Perspectives
Abstract
:1. Introduction
2. Results
2.1. Preclinical Studies
2.1.1. Drug Concentration in Skin
2.1.2. Biological Response to Topical HHi Application
2.2. Clinical Trials
Biological and Clinical Response
3. Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nehal, K.S.; Bichakjian, C.K. Update on Keratinocyte Carcinomas. N. Engl. J. Med. 2018, 379, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Han, J.; Li, W.-Q.; Li, T.; Qureshi, A.A. Basal-Cell Carcinoma Incidence and Associated Risk Factors in US Women and Men. Am. J. Epidemiol. 2013, 178, 890–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epstein, E.H. Basal Cell Carcinomas: Attack of the Hedgehog. Nat. Rev. Cancer 2008, 8, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Gruber, W.; Hutzinger, M.; Elmer, D.P.; Parigger, T.; Sternberg, C.; Cegielkowski, L.; Zaja, M.; Leban, J.; Michel, S.; Hamm, S.; et al. DYRK1B as Therapeutic Target in Hedgehog/GLI-Dependent Cancer Cells with Smoothened Inhibitor Resistance. Oncotarget 2016, 7, 7134–7148. [Google Scholar] [CrossRef] [Green Version]
- Didiasova, M.; Schaefer, L.; Wygrecka, M. Targeting GLI Transcription Factors in Cancer. Molecules 2018, 23, 1003. [Google Scholar] [CrossRef] [Green Version]
- Reifenberger, J.; Wolter, M.; Knobbe, C.B.; Köhler, B.; Schönicke, A.; Scharwächter, C.; Kumar, K.; Blaschke, B.; Ruzicka, T.; Reifenberger, G. Somatic Mutations in the PTCH, SMOH, SUFUH and TP53 Genes in Sporadic Basal Cell Carcinomas. Br. J. Dermatol. 2005, 152, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Gambini, D.; Passoni, E.; Nazzaro, G.; Beltramini, G.; Tomasello, G.; Ghidini, M.; Kuhn, E.; Garrone, O. Basal Cell Carcinoma and Hedgehog Pathway Inhibitors: Focus on Immune Response. Front. Med. 2022, 9, 893063. [Google Scholar] [CrossRef] [PubMed]
- Grund-Gröschke, S.; Ortner, D.; Szenes-Nagy, A.B.; Zaborsky, N.; Weiss, R.; Neureiter, D.; Wipplinger, M.; Risch, A.; Hammerl, P.; Greil, R.; et al. Epidermal Activation of Hedgehog Signaling Establishes an Immunosuppressive Microenvironment in Basal Cell Carcinoma by Modulating Skin Immunity. Mol. Oncol. 2020, 14, 1930–1946. [Google Scholar] [CrossRef]
- Otsuka, A.; Dreier, J.; Cheng, P.F.; Nägeli, M.; Lehmann, H.; Felderer, L.; Frew, I.J.; Matsushita, S.; Levesque, M.P.; Dummer, R. Hedgehog Pathway Inhibitors Promote Adaptive Immune Responses in Basal Cell Carcinoma. Clin. Cancer Res. 2015, 21, 1289–1297. [Google Scholar] [CrossRef] [Green Version]
- Pietrobono, S.; Stecca, B. Targeting the Oncoprotein Smoothened by Small Molecules: Focus on Novel Acylguanidine Derivatives as Potent Smoothened Inhibitors. Cells 2018, 7, 272. [Google Scholar] [CrossRef]
- Peris, K.; Fargnoli, M.C.; Garbe, C.; Kaufmann, R.; Bastholt, L.; Seguin, N.B.; Bataille, V.; del Marmol, V.; Dummer, R.; Harwood, C.A.; et al. Diagnosis and Treatment of Basal Cell Carcinoma: European Consensus–Based Interdisciplinary Guidelines. Eur. J. Cancer 2019, 118, 10–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dummer, R.; Ascierto, P.A.; Basset-Seguin, N.; Dréno, B.; Garbe, C.; Gutzmer, R.; Hauschild, A.; Krattinger, R.; Lear, J.T.; Malvehy, J.; et al. Sonidegib and Vismodegib in the Treatment of Patients with Locally Advanced Basal Cell Carcinoma: A Joint Expert Opinion. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 1944–1956. [Google Scholar] [CrossRef]
- Frampton, J.E.; Basset-Séguin, N. Vismodegib: A Review in Advanced Basal Cell Carcinoma. Drugs 2018, 78, 1145–1156. [Google Scholar] [CrossRef] [PubMed]
- Sekulic, A.; Migden, M.R.; Oro, A.E.; Dirix, L.; Lewis, K.D.; Hainsworth, J.D.; Solomon, J.A.; Yoo, S.; Arron, S.T.; Friedlander, P.A.; et al. Efficacy and Safety of Vismodegib in Advanced Basal-Cell Carcinoma. N. Engl. J. Med. 2012, 366, 2171–2179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacouture, M.E.; Dréno, B.; Ascierto, P.A.; Dummer, R.; Basset-Seguin, N.; Fife, K.; Ernst, S.; Licitra, L.; Neves, R.I.; Peris, K.; et al. Characterization and Management of Hedgehog Pathway Inhibitor-Related Adverse Events in Patients With Advanced Basal Cell Carcinoma. Oncologist 2016, 21, 1218–1229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verkouteren, B.J.A.; Wakkee, M.; Reyners, A.K.L.; Nelemans, P.; Aarts, M.J.B.; Rácz, E.; Terra, J.B.; Devriese, L.A.; Alers, R.-J.; Kapiteijn, E.; et al. Eight Years of Experience with Vismodegib for Advanced and Multiple Basal Cell Carcinoma Patients in The Netherlands: A Retrospective Cohort Study. Br. J. Cancer 2021, 124, 1199–1206. [Google Scholar] [CrossRef] [PubMed]
- Epstein, E.H.; Lear, J.; Saldanha, G.; Tang, J.Y.; Harwood, C. Hedgehog Pathway Inhibition by Topical Patidegib to Reduce BCC Burden in Patients with Basal Cell Nevus (Gorlin) Syndrome. JCO 2018, 36, e21626. [Google Scholar] [CrossRef]
- Skvara, H.; Kalthoff, F.; Meingassner, J.G.; Wolff-Winiski, B.; Aschauer, H.; Kelleher, J.F.; Wu, X.; Pan, S.; Mickel, L.; Schuster, C.; et al. Topical Treatment of Basal Cell Carcinomas in Nevoid Basal Cell Carcinoma Syndrome with a Smoothened Inhibitor. J. Investig. Dermatol. 2011, 131, 1735–1744. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Lewis, D.J. Topical Hedgehog Inhibitors for Basal Cell Carcinoma: How Far Away Are We? Expert Opin. Pharmacother. 2022, 23, 739–740. [Google Scholar] [CrossRef]
- Sharpe, H.J.; Wang, W.; Hannoush, R.N.; de Sauvage, F.J. Regulation of the Oncoprotein Smoothened by Small Molecules. Nat. Chem. Biol. 2015, 11, 246–255. [Google Scholar] [CrossRef]
- Wolff, F.; Loipetzberger, A.; Gruber, W.; Esterbauer, H.; Aberger, F.; Frischauf, A.M. Imiquimod Directly Inhibits Hedgehog Signalling by Stimulating Adenosine Receptor/Protein Kinase A-Mediated GLI Phosphorylation. Oncogene 2013, 32, 5574–5581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Smaele, E.; Cucchi, D.; Occhione, M.A.; Gulino, A. Hedgehog Signaling Pathway and Its Targets for Treatment in Basal Cell Carcinoma. JEP 2012, 4, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, M. Genomic Testing, Tumor Microenvironment and Targeted Therapy of Hedgehog-Related Human Cancers. Clin. Sci. 2019, 133, 953–970. [Google Scholar] [CrossRef] [PubMed]
- Niebel, D.; Sirokay, J.; Hoffmann, F.; Fröhlich, A.; Bieber, T.; Landsberg, J. Clinical Management of Locally Advanced Basal-Cell Carcinomas and Future Therapeutic Directions. Dermatol. Ther. 2020, 10, 835–846. [Google Scholar] [CrossRef]
- Chenna, V.; Hu, C.; Pramanik, D.; Aftab, B.T.; Karikari, C.; Campbell, N.R.; Hong, S.-M.; Zhao, M.; Rudek, M.A.; Khan, S.R.; et al. A Polymeric Nanoparticle Encapsulated Small-Molecule Inhibitor of Hedgehog Signaling (NanoHHI) Bypasses Secondary Mutational Resistance to Smoothened Antagonists. Mol. Cancer Ther. 2012, 11, 165–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.-S.E.; Kuo, M.-Y.; Tsai, P.-Y.; Liu, C.W.; Wei, W.Y. Abstract C046: A Smo Inhibitor DCBCO1303 with Potent Hedgehog Signaling Pathway Antagonist Activity Is Highly Active in Animal Tumor Model of Medulloblastoma and Cholangiocarcinoma. Mol. Cancer Ther. 2019, 18, C046. [Google Scholar] [CrossRef]
- Boogaerts, M.; Maertens, J. Clinical Experience with Itraconazole in Systemic Fungal Infections. Drugs 2001, 61, 39–47. [Google Scholar] [CrossRef]
- Makarova, A.; Wang, G.; Dolorito, J.A.; Kc, S.; Libove, E.; Epstein, E.H. Vitamin D3 Produced by Skin Exposure to UVR Inhibits Murine Basal Cell Carcinoma Carcinogenesis. J. Investig. Dermatol. 2017, 137, 2613–2619. [Google Scholar] [CrossRef] [Green Version]
- Wenande, E.; Anderson, R.R.; Haedersdal, M. Fundamentals of Fractional Laser-Assisted Drug Delivery: An in-Depth Guide to Experimental Methodology and Data Interpretation. Adv. Drug Deliv. Rev. 2020, 153, 169–184. [Google Scholar] [CrossRef]
- Gorzelanny, C.; Mess, C.; Schneider, S.W.; Huck, V.; Brandner, J.M. Skin Barriers in Dermal Drug Delivery: Which Barriers Have to Be Overcome and How Can We Measure Them? Pharmaceutics 2020, 12, 684. [Google Scholar] [CrossRef]
- Sohn, G.K.; Kwon, G.P.; Bailey-Healy, I.; Mirza, A.; Sarin, K.; Oro, A.; Tang, J.Y. Topical Itraconazole for the Treatment of Basal Cell Carcinoma in Patients With Basal Cell Nevus Syndrome or High-Frequency Basal Cell Carcinomas: A Phase 2, Open-Label, Placebo-Controlled Trial. JAMA Dermatol. 2019, 155, 1078. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Tang, J.Y.; Li, D.; Reich, M.; Callahan, C.A.; Fu, L.; Yauch, R.L.; Wang, F.; Kotkow, K.; Chang, K.S.; et al. Targeting Superficial or Nodular Basal Cell Carcinoma with Topically Formulated Small Molecule Inhibitor of Smoothened. Clin. Cancer Res. 2011, 17, 3378–3387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauressergues, E.; Heusler, P.; Lestienne, F.; Troulier, D.; Rauly-Lestienne, I.; Tourette, A.; Ailhaud, M.; Cathala, C.; Tardif, S.; Denais-Laliève, D.; et al. Pharmacological Evaluation of a Series of Smoothened Antagonists in Signaling Pathways and after Topical Application in a Depilated Mouse Model. Pharm. Res. Perspect. 2016, 4, e00214. [Google Scholar] [CrossRef] [PubMed]
- Calienni, M.N.; Maza Vega, D.; Temprana, C.F.; Izquierdo, M.C.; Ybarra, D.E.; Bernabeu, E.; Moretton, M.; Alvira, F.C.; Chiappetta, D.; Alonso, S. del V.; et al. The Topical Nanodelivery of Vismodegib Enhances Its Skin Penetration and Performance In Vitro While Reducing Its Toxicity In Vivo. Pharmaceutics 2021, 13, 186. [Google Scholar] [CrossRef]
- Calienni, M.N.; Febres-Molina, C.; Llovera, R.E.; Zevallos-Delgado, C.; Tuttolomondo, M.E.; Paolino, D.; Fresta, M.; Barazorda-Ccahuana, H.L.; Gómez, B.; Alonso, S.; et al. Nanoformulation for Potential Topical Delivery of Vismodegib in Skin Cancer Treatment. Int. J. Pharm. 2019, 565, 108–122. [Google Scholar] [CrossRef]
- Gamal F, A.; Sayed, O.M.; Abo El-Ela, F.I.; Kharshoum, R.M.; Salem, H.F. Treatment of Basal Cell Carcinoma Via Binary Ethosomes of Vismodegib: In Vitro and In Vivo Studies. AAPS PharmSciTech 2020, 21, 51. [Google Scholar] [CrossRef]
- Kandekar, S.G.; Singhal, M.; Sonaje, K.B.; Kalia, Y.N. Polymeric Micelle Nanocarriers for Targeted Epidermal Delivery of the Hedgehog Pathway Inhibitor Vismodegib: Formulation Development and Cutaneous Biodistribution in Human Skin. Expert Opin. Drug Deliv. 2019, 16, 667–674. [Google Scholar] [CrossRef]
- Nguyen, H.X.; Banga, A.K. Enhanced Skin Delivery of Vismodegib by Microneedle Treatment. Drug Deliv. Transl. Res. 2015, 5, 407–423. [Google Scholar] [CrossRef]
- Olesen, U.H.; Clergeaud, G.; Lerche, C.M.; Andresen, T.L.; Haedersdal, M. Topical Delivery of Vismodegib Using Ablative Fractional Laser and Micro-Emulsion Formulation in Vitro: TOPICAL VISMODEGIB AND LASER IN VITRO. Lasers Surg. Med. 2019, 51, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Olesen, U.H.; Clergeaud, G.; Hendel, K.K.; Yeung, K.; Lerche, C.M.; Andresen, T.L.; Haedersdal, M. Enhanced and Sustained Cutaneous Delivery of Vismodegib by Ablative Fractional Laser and Microemulsion Formulation. J. Investig. Dermatol. 2020, 140, 2051–2059. [Google Scholar] [CrossRef]
- Kumar, N.; Goindi, S. Statistically Designed Nonionic Surfactant Vesicles for Dermal Delivery of Itraconazole: Characterization and in Vivo Evaluation Using a Standardized Tinea Pedis Infection Model. Int. J. Pharm. 2014, 472, 224–240. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Y.; Jin, J.Y.; Degan, S.; Hall, R.P.; Boehm, R.D.; Jaipan, P.; Narayan, R.J. Use of Drawing Lithography-Fabricated Polyglycolic Acid Microneedles for Transdermal Delivery of Itraconazole to a Human Basal Cell Carcinoma Model Regenerated on Mice. JOM 2016, 68, 1128–1133. [Google Scholar] [CrossRef] [PubMed]
- El-Sheridy, N.A.; Ramadan, A.A.; Eid, A.A.; El-Khordagui, L.K. Itraconazole Lipid Nanocapsules Gel for Dermatological Applications: In Vitro Characteristics and Treatment of Induced Cutaneous Candidiasis. Colloids Surf. B Biointerfaces 2019, 181, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Botros, S.R.; Hussein, A.K.; Mansour, H.F. A Novel Nanoemulsion Intermediate Gel as a Promising Approach for Delivery of Itraconazole: Design, In Vitro and Ex Vivo Appraisal. AAPS PharmSciTech 2020, 21, 272. [Google Scholar] [CrossRef]
- Permana, A.D.; Paredes, A.J.; Volpe-Zanutto, F.; Anjani, Q.K.; Utomo, E.; Donnelly, R.F. Dissolving Microneedle-Mediated Dermal Delivery of Itraconazole Nanocrystals for Improved Treatment of Cutaneous Candidiasis. Eur. J. Pharm. Biopharm. 2020, 154, 50–61. [Google Scholar] [CrossRef]
- Tang, J.Y.; Xiao, T.Z.; Oda, Y.; Chang, K.S.; Shpall, E.; Wu, A.; So, P.-L.; Hebert, J.; Bikle, D.; Epstein, E.H. Vitamin D3 Inhibits Hedgehog Signaling and Proliferation in Murine Basal Cell Carcinomas. Cancer Prev. Res. 2011, 4, 744–751. [Google Scholar] [CrossRef] [Green Version]
- Graham, R.A.; Lum, B.L.; Cheeti, S.; Jin, J.Y.; Jorga, K.; Von Hoff, D.D.; Rudin, C.M.; Reddy, J.C.; Low, J.A.; LoRusso, P.M. Pharmacokinetics of Hedgehog Pathway Inhibitor Vismodegib (GDC-0449) in Patients with Locally Advanced or Metastatic Solid Tumors: The Role of Alpha-1-Acid Glycoprotein Binding. Clin. Cancer Res. 2011, 17, 2512–2520. [Google Scholar] [CrossRef] [Green Version]
- Brinkhuizen, T.; Frencken, K.J.A.; Nelemans, P.J.; Hoff, M.L.S.; Kelleners-Smeets, N.W.J.; zur Hausen, A.; van der Horst, M.P.J.; Rennspiess, D.; Winnepenninckx, V.J.L.; van Steensel, M.A.M.; et al. The Effect of Topical Diclofenac 3% and Calcitriol 3 Μg/g on Superficial Basal Cell Carcinoma (SBCC) and Nodular Basal Cell Carcinoma (NBCC): A Phase II, Randomized Controlled Trial. J. Am. Acad. Dermatol. 2016, 75, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Fredman, G.; Wenande, E.; Hendel, K.; Togsverd-Bo, K.; Haedersdal, M. Efficacy and Safety of Laser-assisted Combination Chemotherapy: A Follow-up Study of Treatment with 5-fluorouracil and Cisplatin for Basal Cell Carcinoma. Lasers Surg. Med. 2021, 54, 113–120. [Google Scholar] [CrossRef]
- Huang, C.M.; Kirchhof, M.G. Topical Imiquimod as a Treatment Option for Nodular Basal Cell Carcinoma: A Systematic Review. J. Cutan. Med. Surg. 2020, 24, 495–503. [Google Scholar] [CrossRef]
- Roozeboom, M.H.; Arits, A.H.H.M.; Nelemans, P.J.; Kelleners-Smeets, N.W.J. Overall Treatment Success after Treatment of Primary Superficial Basal Cell Carcinoma: A Systematic Review and Meta-Analysis of Randomized and Nonrandomized Trials: Overall Treatment Success in Primary Superficial Basal Cell Carcinoma. Br. J. Dermatol. 2012, 167, 733–756. [Google Scholar] [CrossRef] [PubMed]
- Rippey, J.J. Why Classify Basal Cell Carcinomas? Histopathology 1998, 32, 393–398. [Google Scholar] [CrossRef]
- Pyne, J.; Mint, E.; Barr, E.; Clark, S.; Hou, R. Basal Cell Carcinoma: Variation in Invasion Depth by Subtype, Sex, and Anatomic Site in 4565 Cases. Dermatol. Pract. Concept. 2018, 8, 314–319. [Google Scholar] [CrossRef]
- Di Nardo, L.; Pellegrini, C.; Di Stefani, A.; Ricci, F.; Fossati, B.; Del Regno, L.; Carbone, C.; Piro, G.; Corbo, V.; Delfino, P.; et al. Molecular Alterations in Basal Cell Carcinoma Subtypes. Sci. Rep. 2021, 11, 13206. [Google Scholar] [CrossRef] [PubMed]
- Do Carmo, N.G.; Sakamoto, L.H.T.; Pogue, R.; Do Couto Mascarenhas, C.; Passos, S.K.; Soares Felipe, M.S.; De Andrade, R.V. Altered Expression of PRKX, WNT3 and WNT16 in Human Nodular Basal Cell Carcinoma. AR 2016, 36, 4545–4552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, R.A.; Lum, B.L.; Morrison, G.; Chang, I.; Jorga, K.; Dean, B.; Shin, Y.G.; Yue, Q.; Mulder, T.; Malhi, V.; et al. A Single Dose Mass Balance Study of the Hedgehog Pathway Inhibitor Vismodegib (GDC-0449) in Humans Using Accelerator Mass Spectrometry. Drug. Metab. Dispos. 2011, 39, 1460–1467. [Google Scholar] [CrossRef] [PubMed]
- Zollinger, M.; Lozac’h, F.; Hurh, E.; Emotte, C.; Bauly, H.; Swart, P. Absorption, Distribution, Metabolism, and Excretion (ADME) of 14C-Sonidegib (LDE225) in Healthy Volunteers. Cancer Chemother. Pharm. 2014, 74, 63–75. [Google Scholar] [CrossRef]
- Shay, T.; Jojic, V.; Zuk, O.; Rothamel, K.; Puyraimond-Zemmour, D.; Feng, T.; Wakamatsu, E.; Benoist, C.; Koller, D.; Regev, A.; et al. Conservation and Divergence in the Transcriptional Programs of the Human and Mouse Immune Systems. Proc. Natl. Acad. Sci. USA 2013, 110, 2946–2951. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Li, L.; Starr, T.K.; Subramanian, S. Tumor Location Impacts Immune Response in Mouse Models of Colon Cancer. Oncotarget 2017, 8, 54775–54787. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, B.; Reddy, L.H.; Kulkarni, R.V.; Khanam, J. Comparison of Skin Permeability of Drugs in Mice and Human Cadaver Skin. Indian J. Exp. Biol. 2000, 38, 42–45. [Google Scholar]
- Zomer, H.D.; Trentin, A.G. Skin Wound Healing in Humans and Mice: Challenges in Translational Research. J. Dermatol. Sci. 2018, 90, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.-K.; Strauss, R.; Richter, M.; Yun, C.-O.; Lieber, A. Strategies to Increase Drug Penetration in Solid Tumors. Front. Oncol. 2013, 3, 193. [Google Scholar] [CrossRef] [Green Version]
- Viallard, C.; Larrivée, B. Tumor Angiogenesis and Vascular Normalization: Alternative Therapeutic Targets. Angiogenesis 2017, 20, 409–426. [Google Scholar] [CrossRef] [PubMed]
- Clerc, C.; Pibouin, M.; Ruelland, A.; Legras, B.; Chevrant-Breton, J.; Cloarec, L. Cutaneous Interstitial Fluid Protein Concentrations in the Inflammatory Syndrome: Pharmacological Consequences. Clin. Chim. Acta 1990, 189, 181–189. [Google Scholar] [CrossRef]
- Carter, K.C.; Post, D.J.; Papaconstantinou, J. Differential Expression of the Mouse A1-Acid Glycoprotein Genes (AGP-1 and AGP-2) during Inflammation and Aging. Biochim. Biophys. Acta (BBA) Gene Struct. Expr. 1991, 1089, 197–205. [Google Scholar] [CrossRef]
- Papaioannou, E.; Yánez, D.C.; Ross, S.; Lau, C.-I.; Solanki, A.; Chawda, M.M.; Virasami, A.; Ranz, I.; Ono, M.; O’Shaughnessy, R.F.L.; et al. Sonic Hedgehog Signaling Limits Atopic Dermatitis via Gli2-Driven Immune Regulation. J. Clin. Investig. 2019, 129, 3153–3170. [Google Scholar] [CrossRef]
- Omland, S.; Nielsen, P.; Gjerdrum, L.; Gniadecki, R. Immunosuppressive Environment in Basal Cell Carcinoma: The Role of Regulatory T Cells. Acta Derm. Venerol. 2016, 96, 917–921. [Google Scholar] [CrossRef]
Target | Drug | Drug Aliases | Tested on BCC in Clinical Trial? | Direct Effect on HH Pathway? | Included in the Review? | Reference |
---|---|---|---|---|---|---|
SMO | Vismodegib | GDC-0449 | Yes | Yes | Yes | [5,22,23] |
SMO | Sonidegib | Erismodegib, LDE225 | Yes | Yes | Yes | [5,22,23] |
SMO | Itraconazole | Yes | Yes | Yes | [22,23] | |
SMO | Patidegib | Saridegib, IPI-926 | Yes | Yes | Yes | [5,22,23] |
SMO | Vitamin D₃ | Cholecalciferol, Calcitriol | Yes | Yes | Yes | [22] |
SMO | CUR-61414 | Yes | Yes | Yes | [5,23] | |
SMO | BMS-833923 | XL-139 | Yes | Yes | Yes | [5,23] |
SMO | LEQ506 | Yes | Yes | Yes | [22,23] | |
SMO | TAK-441 | Yes | Yes | Yes | [5,22,23] | |
SMO | Taladegib | LY2940680 | Yes | Yes | Yes | [5,23] |
SMO | ZSP1602 | Yes | Yes | Yes | [24] | |
GLI | Arsenic Trioxide | Yes | Yes | Yes | [5,23] | |
GLI | Imiquimod | Yes | No | [5] | ||
SMO | Tazarotene | Yes | No | [22] | ||
SMO | Acitretin | Yes | No | [22] | ||
GLI | 4SC-202 | Domatinostat | No | [23] | ||
GLI | GANT58 | No | [5] | |||
GLI | GANT61 | No | [5,23] | |||
GLI | Glabrescione B | No | [5,23] | |||
GLI | NanoHHI (HPI-1) | No | [25] | |||
GLI | Nanoquinacrine | No | [5] | |||
GLI | Pirfenidone | No | [5,23] | |||
GLI | Pyrvinium | No | [5] | |||
GLI | HPI 1–4 | No | [5] | |||
HH ligand | 3H8 | MEDI-5304 | No | [23] | ||
HH ligand | 5E1 antibody | No | [5] | |||
HH ligand | Robotnikinin | No | [5] | |||
HHAT | RU-SKI 41 | No | [23] | |||
HHAT | RU-SKI 43 | No | [23] | |||
SMO | ALLO-1 | No | [23] | |||
SMO | AZD8542 | No | [23] | |||
SMO | Cyclopamine | No | [5,23] | |||
SMO | DCBCO1303 | No | [26] | |||
SMO | DHCEO | No | [23] | |||
SMO | DY131 | No | [23] | |||
SMO | Glasdegib | PF-04449913 | No | [5,23] | ||
SMO | Jervine | No | [5] | |||
SMO | MK-4101 | No | [23] | |||
SMO | MRT-83 | No | [23] | |||
SMO | PF403 | CAT3 | No | [23] | ||
SMO | PF-5274857 | No | [23] | |||
SMO | Posaconazole | Noxafil, SCH56592 | No | [23] | ||
SMO | SANT-1 | No | [23] | |||
SMO | SEN450 | No | [23] | |||
SMO | Tretinoin | No | [22] |
HHi | MW [g/mol] | cLogP | Drug Development Stage | Molecular Structure | Reference |
---|---|---|---|---|---|
Vismodegib | 421.3 | 3.8 | FDA approval, oral treatment Indication: laBCC, mBCC No topical clinical trials | [11] | |
Sonidegib | 485.5 | 5.8 | FDA approval, oral treatment Indication: laBCC Phase II clinical trial, topical treatment of BCC | [11] and NLM, NCT00961896 | |
Patidegib | 504.8 | 4.6 | Phase III clinical trial, topical treatment of BCC | NLM, NCT03703310 | |
Itraconazole | 705.6 | 5.7 | Phase II clinical trial, topical treatment of BCC | [31] and NLM, NCT02735356 | |
Vitamin D₃ | 384.6 | 7.9 | Phase II clinical trial, topical treatment of BCC | NLM, NCT01358045 | |
CUR-61414 | 550.7 | 3.3 | Phase I clinical trial, topical treatment of BCC | [32] | |
BMS-833923 | 473.6 | 5.7 | Phase I clinical trial, oral treatment of BCC | NLM, NCT00670189 | |
LEQ506 | 432.6 | 2.9 | Phase I clinical trial, oral treatment of BCC | NLM, NCT01106508 | |
TAK-441 | 576.6 | 2.6 | Phase I clinical trial, oral treatment of BCC | NLM, NCT01204073 | |
Taladegib | 512.5 | 4.3 | Phase I clinical trial, oral treatment of BCC | NLM, NCT01226485 | |
ZSP1602 | -- | -- | Phase I clinical trial, oral treatment of BCC | -- | NLM, NCT03734913 |
Arsenic trioxide | 197.8 | -- | Phase II clinical trial, IV injection treatment of mBCC | -- | NLM, NCT01791894 |
HHi | Formulation & Pre-Tx | Study Design | Delivery Method | Measurement Time | Effects | Reference |
---|---|---|---|---|---|---|
Vismodegib | Nanoformulation No pre-treatment | Ex vivo: Human skin | SPM | 1 h, 4 h, 8 h | Human viable epidermis + dermis, 8 h: [8.4 µg/mL] | [34,35] |
In vitro: Human cell culture In vivo: Zebrafish larvae | Added to medium | 4 h, 24 h, 48 h, 72 h | Tumor cell viability ↓ Larvae toxicity ↓ | |||
Binary ethosomes No pre-treatment | Ex vivo: Rat skin | Frz.C. | Running measure, 0 h to 24 h | Rat skin, 24 h: 40% of initial vismodegib permeated. Permeation flux: [3.22 ± 0.02 μg/cm2/h] | [36] | |
In vivo: Mouse tumor skin | Topical app. 3 tx/week | Maybe 16 w | Tumor viability ↓ | |||
Polymeric micelle nanocarriers No pre-treatment | Ex vivo: Porcine skin, human skin | Frz.C. | 6 h, 12 h, 24 h | Human skin, 120–200 µm depth, 12 h: [6.4 ± 3.3 µg/mL] | [37] | |
Propylene glycol Microneedles (500, 1200, 1500 µm) | Ex vivo: Porcine skin | Frz.C. | Running measure, 0 h to 24 h | Increased needle length and needle app. time leads to enhanced penetration of vismodegib | [38] | |
Oil/water microemulsion Ablative fractional laser | Ex vivo: Porcine skin | Frz.C. | 0.5 h, 4 h, 24 h | Pig skin +AFL, 0–300 µm, 4 h: [85 µg/mL] Pig skin +AFL, 600–900 µm, 4 h: [35 µg/mL] Pig skin -−AFL, 0–300 µm, 4 h: [66 µg/mL] Pig skin -−AFL, 600–900 µm, 4 h: [37 µg/mL] | [39] | |
Oil/water microemulsion Ablative fractional laser | In vivo: Porcine skin | Topical app. 1 tx | 4 h, 2 d, 5 d, 9 d | Pig skin +AFL, 0–300 µm, 4 h: [131 µg/mL] Pig skin +AFL, 600–900 µm, 4 h: [30 µg/mL] Pig skin -−AFL, 0–300 µm, 4 h: [16 µg/mL] Pig skin -−AFL, 600–900 µm, 4 h: [6 µg/mL] | [40] | |
Sonidegib | Propylene glycol + ethanol No pre-treatment | Ex vivo: Murine basaloids | Added to medium | 8 d | 4 x fewer basaloid lesions | [18] |
In vivo: Porcine skin | Topical app. 1 tx | 1 h to 8 h | Pig skin sonidegib concentration between 1 h and 8 h: [1–1.5 µg/g tissue] | |||
In vivo: Murine hair regrowth | 1 tx/d | 15 d | Hair growth inhibited for 15 days | |||
In vivo: Depilated murine skin | 1 tx/d | 8 d | Skin Gli1 mRNA level ≈ −95% Skin Gli2 mRNA level ≈ −87% | |||
Itraconazole | Nonionic surfactant vesicles No pre-treatment | Ex vivo: Rat skin | Frz.C. | 1 h, 2 h, 3 h, 4 h, 6 h | Rat skin, flux: [1.88 ± 0.24 mg/cm2/h] | [41] |
In vivo: Tinea Pedis rat model | Topical app. 1 tx/d | 14 d | Tinea Pedis infection is cured by both formulation and control itraconazole cream | |||
DMSO + PEG Polyglycolic acid microneedles | In vivo: Human BCC regenerated in mice | Topical app. 1 tx/d | 14 d | BCC formation seen in control group not present in treated mice | [42] | |
Lipid nanocapsules No pre-treatment | Ex vivo: Human skin | Frz.C. | 6 h | Itraconazole skin retention at 6 h: 66.3 ± 2.5% | [43] | |
In vivo: Cutaneous candidiasis, rat skin | Topical app. 2 tx/d | 14 d | Both novel and control treatments cure candidiasis infection | |||
Nanoemulsion No pre-treatment | Ex vivo: Mouse skin | Frz.C. | 6 h | 27.6 ± 4.4% of itraconazole permeated after 6 h. 72.9% was present in skin or permeated at this time point | [44] | |
Nanocrystals Microneedles | Ex vivo: Porcine skin | Frz.C. | 0.5 h, 1 h, 2 h, 3 h, 4 h, 5 h, 6 h, 8 h, 12 h, 24 h, 48 h, 72 h | Highest concentrations reached in dermis after 3 h [1.97 ± 0.32 mg/cm3]. Drug diffuses deeper than needle length. | [45] | |
Ex vivo: Candidiasis infection, porcine skin | Skin sustained in a Frz.C. | 12 h, 24 h, 48 h, 72 h | Microneedle treatment cure candidiasis infection after 48 h, control cream only shows limited effect | |||
Vitamin D₃ | Acetone No pre-treatment | In vivo: Murine BCCs | Topical app. 1 tx/d | 30 d | Lower proliferation of treated BCCs but no cell death. | [46] |
In vivo: Murine BCC Gli1 mRNA | 4 d | BCC Gli1 mRNA level ≈ −66% | ||||
CUR-61414 | Topical formulation No pre-treatment | In vivo: Depilated murine skin Gli1 mRNA | Topical app. 1–2 tx/d | 3 d | 2 tx/d, skin Gli1 mRNA level ≈ −85% 1 tx/d, skin Gli1 mRNA level ≈ −62% | [32] |
In vivo: Murine BCC Gli1 mRNA | 10 tx/w | 21 d | BCC Gli1 mRNA level ≈ −60–65% | |||
Multiple | Propylene glycol + DMSO or Propylene glycol + DMSO + ethanol No pre-treatment | In vivo: Depilated murine skin | Topical app. 1 tx | 8 h | Highest topical inhibition by LY-2940680, Gli1 mRNA: −85% Vismodegib, Gli1 mRNA: −40% Sonidegib, Gli1 mRNA: −60% | [33] |
HHi | Formulation & Pre-Tx | Study Design | Delivery Method | Measurement Time | Effect(s) | Reference |
---|---|---|---|---|---|---|
Sonidegib | Topical formulation No pre-treatment | Clinical trial: Phase II Superficial or nodular BCCs. n = 24 BCCs | Topical app. 2 tx/d | 6 w | 0.75%, complete regression: 3/16 0.75%, partial regression: 9/16 0.75%, no reaction: 4/16 | NCT01033019 |
Topical formulation No pre-treatment | Clinical trial: Phase II BCNS patients, n = 61 BCCs | Topical app. 2 tx/d | 4 w, 6 w, 9 w | Tumor volume ± SD: 4 w, 0.75%: −53,4 ± 30.85% 6 w, 0.25%: −35.2 ± 37.99% 9 w, 0.75%: −61.3 ± 31.18% | NCT00961896, [18] | |
Itraconazole | Topical formulation No pre-treatment | Clinical trial: Early phase I BCNS patients and high frequency BCCs. n = 79 BCCs | Topical app. 2 tx/d | 4 w, 12 w | No effect on BCC (GLI1 mRNA levels and tumor size) Intra-tumoral drug concentration: 4 w: [133 μg/g]; 12 w: [96 μg/g] | NCT02735356, [31] |
Patidegib | Topical formulation No pre-treatment | Clinical trial: Phase II BCNS patients. n = 85 BCCs. 5–6 patients per group with multiple treated tumors | Topical app. 2 tx/d | 26 w | GLI1 mRNA levels ± SD: Patidegib 2%: [−54 ± 27%]; 4%: [−21 ± 35%] Tumor size ± SD: Patidegib 2%: [−51 ± 42%]; 4%: [−27 ± 41%] | NCT02762084 |
Topical formulation No pre-treatment | Clinical trial: Phase II Nodular BCCs. n = 38 BCCs. 6 patients per treated group, multiple tumors per patient | Topical app. 1–2 tx/d | 12 w | GLI1 mRNA levels ± SD: 1 tx/d, 2%: [−56 ± 99%]; 4%: [−3 ± 69%] 2 tx/d, 2%: [−43 ± 56%]; 4%: [−29 ± 46%] Tumor size (±SD): 1 tx/d, 2%: [+56 ± 48%]; 4%: [+9 ± 47%] 2 tx/d, 2%: [+17 ± 37%]; 4%: [+18 ± 61%] | NCT02828111 | |
Vitamin D₃ & diclofenac | Topical formulation No pre-treatment | Clinical trial: Phase II Superficial or nodular BCCs. n = 64 | Topical app. 2 tx/d | 8 w | No effect on BCC (clinical response) | NCT01358045, [48] |
CUR-61414 | Topical formulation No pre-treatment | Clinical trial: Phase I Superficial or nodular BCCs. n = 42 | Topical app. 2 tx/d | 4 d | No effect on BCC (GLI1 mRNA levels) | [32] |
PUBMED | ||
---|---|---|
Search | Query | Hits |
1 | (BMS-833923 OR XL-139) OR (“CUR 61414”) OR (Itraconazole) OR (LEQ506) OR (Patidegib OR Saridegib OR IPI-926) OR (Sonidegib OR Erismodegib OR LDE225) OR TAK-441 OR (Vismodegib OR GDC-0449 OR HhAntag691) OR (“Vitamin D3” OR Cholecalciferol OR Calcitriol) | 52,838 |
2 | #1 AND (“basal cell carcinoma” OR BCC OR (“Skin/abnormalities” [Mesh] OR “Skin/adverse effects” [Mesh] OR “Skin/cytology” [Mesh] OR “Skin/drug effects” [Mesh] OR “Skin/organization and administration” [Mesh] OR “Skin/pharmacology” [Mesh] OR “Skin/surgery” [Mesh] OR “Skin/therapeutic use” [Mesh] OR “Skin/therapy” [Mesh])) | 1115 |
3 | #2 AND (topical OR “Administration, Topical” [Mesh] OR cutane* OR “transdermal”) | 287 |
CLINICALTRIALS.GOV | ||
Search | Query | Hits |
1 | Condition or disease: BCC OR basal cell carcinoma Other terms: (BMS-833923 OR XL-139) OR (“CUR 61414”) OR (Itraconazole) OR (LEQ506) OR (Patidegib OR Saridegib OR IPI-926) OR (Sonidegib OR Erismodegib OR LDE225) OR TAK-441 OR (Vismodegib OR GDC-0449) OR (“Vitamin D3” OR Cholecalciferol OR Calcitriol) | 57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedersen, K.K.; Høyer-Hansen, M.H.; Litman, T.; Hædersdal, M.; Olesen, U.H. Topical Delivery of Hedgehog Inhibitors: Current Status and Perspectives. Int. J. Mol. Sci. 2022, 23, 14191. https://doi.org/10.3390/ijms232214191
Pedersen KK, Høyer-Hansen MH, Litman T, Hædersdal M, Olesen UH. Topical Delivery of Hedgehog Inhibitors: Current Status and Perspectives. International Journal of Molecular Sciences. 2022; 23(22):14191. https://doi.org/10.3390/ijms232214191
Chicago/Turabian StylePedersen, Kristian Kåber, Maria Helena Høyer-Hansen, Thomas Litman, Merete Hædersdal, and Uffe Høgh Olesen. 2022. "Topical Delivery of Hedgehog Inhibitors: Current Status and Perspectives" International Journal of Molecular Sciences 23, no. 22: 14191. https://doi.org/10.3390/ijms232214191
APA StylePedersen, K. K., Høyer-Hansen, M. H., Litman, T., Hædersdal, M., & Olesen, U. H. (2022). Topical Delivery of Hedgehog Inhibitors: Current Status and Perspectives. International Journal of Molecular Sciences, 23(22), 14191. https://doi.org/10.3390/ijms232214191