Nanosecond PEF Induces Oxidative Stress and Apoptosis via Proteasomal Activity Inhibition in Gastric Adenocarcinoma Cells with Drug Resistance
Abstract
:1. Introduction
2. Results
2.1. NsPEFs Viability Effects on Gastric Cell Viability
2.2. Cell Membrane Permeabilization
2.3. F-actin, Fluo-4 and Lipid Droplets Imaging by CLSM Study
2.4. Antioxidative and Oxidative Stimulation Effects of nsPEF
2.5. Proteasomal Activity Changes after nsPEF with Calcium Ions
2.6. Apoptosis Induction post nsPEF with Calcium Ions
3. Discussion
4. Materials and Methods
4.1. Cell Lines
4.2. Nanosecond Pulses Exposure Protocol with Calcium Chloride
4.3. Cell Viability by MTT Assay
4.4. The Analysis of Cell Membrane Permeabilization by YoPro-1 Uptake and Cell Membrane Staining
4.5. F-actin, Fluo-4, and Lipid Droplets Imaging by CLSM Study
4.6. ROS Release Measurements
4.7. The Level of Reduced and Oxidized Glutathione (GSH/GSSG)
4.8. Proteasomal Activity
4.9. Cell Death Evaluation by Neutral Comet Assay
4.10. Immunocytochemical Analysis of Apoptosis Inducing Factor (AIF)
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sersa, G.; Miklavcic, D.; Cemazar, M.; Rudolf, Z.; Pucihar, G.; Snoj, M. Electrochemotherapy in treatment of tumours. Eur. J. Surg. Oncol. 2008, 34, 232–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miklavčič, D.; Mali, B.; Kos, B.; Heller, R.; Serša, G. Electrochemotherapy: From the drawing board into medical practice. Biomed. Eng. Online 2014, 13, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haberkorn, I.; Buchmann, L.; Häusermann, I.; Mathys, A. Nanosecond pulsed electric field processing of microalgae based biorefineries governs growth promotion or selective inactivation based on underlying microbial ecosystems. Bioresour. Technol. 2021, 319, 124173. [Google Scholar] [CrossRef]
- Buchmann, L.; Mathys, A. Perspective on Pulsed Electric Field Treatment in the Bio-based Industry. Front. Bioeng. Biotechnol. 2019, 7, 265. [Google Scholar] [CrossRef] [PubMed]
- Nuccitelli, R.; Wood, R.; Kreis, M.; Athos, B.; Huynh, J.; Lui, K.; Nuccitelli, P.; Epstein, E.H. First-in-human trial of nanoelectroablation therapy for basal cell carcinoma: Proof of method. Exp. Dermatol. 2014, 23, 135–137. [Google Scholar] [CrossRef] [PubMed]
- Tunikowska, J.; Antończyk, A.; Rembiałkowska, N.; Jóźwiak, Ł.; Novickij, V.; Kulbacka, J. The first application of nanoelectrochemotherapy in feline oral malignant melanoma treatment—Case study. Animals 2020, 10, 556. [Google Scholar] [CrossRef] [Green Version]
- Vižintin, A.; Marković, S.; Ščančar, J.; Miklavčič, D. Electroporation with nanosecond pulses and bleomycin or cisplatin results in efficient cell kill and low metal release from electrodes. Bioelectrochemistry 2021, 140, 107798. [Google Scholar] [CrossRef]
- Muratori, C.; Pakhomov, A.G.; Heller, L.; Casciola, M.; Gianulis, E.; Grigoryev, S.; Xiao, S.; Pakhomova, O.N. Electrosensitization Increases Antitumor Effectiveness of Nanosecond Pulsed Electric Fields In Vivo. Technol. Cancer Res. Treat. 2017, 16, 987–996. [Google Scholar] [CrossRef] [Green Version]
- Pakhomov, A.G.; Semenov, I.; Xiao, S.; Pakhomova, O.N.; Gregory, B.; Schoenbach, K.H.; Ullery, J.C.; Beier, H.T.; Rajulapati, S.R.; Ibey, B.L. Cancellation of cellular responses to nanoelectroporation by reversing the stimulus polarity. Cell. Mol. Life Sci. 2014, 71, 4431–4441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulbacka, J. Nanosecond pulsed electric fields (nsPEFs) impact and enhanced Photofrin II® delivery in photodynamic reaction in cancer and normal cells. Photodiagnosis Photodyn. Ther. 2015, 12, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Breton, M.; Mir, L.M. Microsecond and nanosecond electric pulses in cancer treatments. Bioelectromagnetics 2012, 33, 106–123. [Google Scholar] [CrossRef]
- Nuccitelli, R. Application of Pulsed Electric Fields to Cancer Therapy. Bioelectricity 2019, 1, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Pakhomova, O.N.; Gregory, B.; Semenov, I.; Pakhomov, A.G. Calcium-mediated pore expansion and cell death following nanoelectroporation. Biochim. Biophys. Acta Biomembr. 2014, 1838, 2547–2554. [Google Scholar] [CrossRef] [Green Version]
- Hanna, H.; Denzi, A.; Liberti, M.; André, F.M.; Mir, L.M. Electropermeabilization of Inner and Outer Cell Membranes with Microsecond Pulsed Electric Fields: Quantitative Study with Calcium Ions. Sci. Rep. 2017, 7, 13079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Fernández, A.R.; Campos, L.; Gutierrez-Maldonado, S.E.; Núñez, G.; Villanelo, F.; Perez-Acle, T. Nanosecond Pulsed Electric Field (nsPEF): Opening the Biotechnological Pandora’s Box. Int. J. Mol. Sci. 2022, 23, 6158. [Google Scholar] [CrossRef]
- Kulbacka, J.; Saczko, J.; Choromańska, A.; Rembiałkowska, N.; Dubinska-Magiera, M.; Surowiak, P.; Kotulska, M. Transmembrane transport and anticancer activity of strontium ranelate delivered with nanosecond pulsed electric fields (nsPEFs) into human cells in vitro. In Proceedings of the 6th European Conference of the International Federation for Medical and Biological Engineering, IFMBE Proceedings, Dubrovnik, Croatia, 7–11 September 2014; Volume 45, pp. 581–585. [Google Scholar]
- Rembiałkowska, N.; Novickij, V.; Baczyńska, D.; Dubińska-Magiera, M.; Saczko, J.; Rudno-Rudzińska, J.; Maciejewska, M.; Kulbacka, J. Micro- and Nanosecond Pulses Used in Doxorubicin Electrochemotherapy in Human Breast and Colon Cancer Cells with Drug Resistance. Molecules 2022, 27, 2052. [Google Scholar] [CrossRef] [PubMed]
- Novickij, V.; Rembiałkowska, N.; Kasperkiewicz-Wasilewska, P.; Baczyńska, D.; Rzechonek, A.; Błasiak, P.; Kulbacka, J. Pulsed electric fields with calcium ions stimulate oxidative alternations and lipid peroxidation in human non-small cell lung cancer. Biochim. Biophys. Acta Biomembr. 2022, 12, 184055. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Guo, J.; Su, B.; Zhang, J.; Fang, J. Nanosecond pulsed electric fields adjuvant chemotherapy for breast cancer: An in vitro study. In Proceedings of the 2013 19th IEEE Pulsed Power Conference (PPC), San Francisco, CA, USA, 16–21 June 2013. [Google Scholar]
- Enomoto, S.; Konishi, D.; Uto, Y.; Shimomura, N. Effects of nanosecond pulsed electric fields application on cancer cell and combination of anticancer drug. Electr. Eng. Jpn. 2022, 215, e23376. [Google Scholar] [CrossRef]
- Electrochemotherapy for Non-Curable Gastric Cancer—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04139070 (accessed on 29 July 2022).
- Klein, N.; Zapf, S.; Gunther, E.; Stehling, M. Treatment of lymph node metastases from gastric cancer with a combination of Irreversible Electroporation and Electrochemotherapy: A case report. Clin. Case Rep. 2017, 5, 1389–1394. [Google Scholar] [CrossRef] [PubMed]
- Campana, L.G.; Bertino, G.; Rossi, C.R.; Occhini, A.; Rossi, M.; Valpione, S.; Benazzo, M. The value of electrochemotherapy in the treatment of peristomal tumors. Eur. J. Surg. Oncol. 2014, 40, 260–262. [Google Scholar] [CrossRef]
- Kambe, M.; Arita, D.; Kikuchi, H.; Funato, T.; Tezuka, F.; Gamo, M.; Murakawa, Y.; Kanamaru, R. Enhancement of the efficacy of anticancer drugs with electroporation: Successful electrochemotherapy against gastric cancer cell lines in vivo and in vitro. Int. J. Clin. Oncol. 1997, 2, 111–117. [Google Scholar] [CrossRef]
- Dong, Z.; Saikumar, P.; Weinberg, J.M.; Venkatachalam, M.A. Calcium in cell injury and death. Annu. Rev. Pathol. Mech. Dis. 2006, 1, 405–434. [Google Scholar] [CrossRef] [PubMed]
- Owen, J.B.; Allan Butterfiel, D. Measurement of oxidized/reduced glutathione ratio. Methods Mol. Biol. 2010, 648, 269–277. [Google Scholar]
- Bano, D.; Prehn, J.H.M. Apoptosis-Inducing Factor (AIF) in Physiology and Disease: The Tale of a Repented Natural Born Killer. EBioMedicine 2018, 30, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoenbach, K.H.; Joshi, R.P.; Kolb, J.F.; Chen, N.; Stacey, M.; Buescher, E.S.; Beebe, S.J.; Blackmore, P. Ultrashort electrical pulses open a new gateway into biological cells. Proc. IEEE 2004, 92, 1122–1137. [Google Scholar] [CrossRef]
- Cemažar, M. Effects of electroporation of mammalian cells on cytoskeleton and intercellular connections. Handb. Electroporation 2017, 1, 307–321. [Google Scholar]
- Stacey, M.; Fox, P.; Buescher, S.; Kolb, J. Nanosecond pulsed electric field induced cytoskeleton, nuclear membrane and telomere damage adversely impact cell survival. Bioelectrochemistry 2011, 82, 131–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittal, L.; Aryal, U.K.; Camarillo, I.G.; Ferreira, R.M.; Sundararajan, R. Quantitative proteomic analysis of enhanced cellular effects of electrochemotherapy with Cisplatin in triple-negative breast cancer cells. Sci. Rep. 2019, 9, 13916. [Google Scholar] [CrossRef] [Green Version]
- Kisselev, A.F.; Garcia-Calvo, M.; Overkleeft, H.S.; Peterson, E.; Pennington, M.W.; Ploegh, H.L.; Thornberry, N.A.; Goldberg, A.L. The caspase-like sites of proteasomes, their substrate specificity, new inhibitors and substrates, and allosteric interactions with the trypsin-like sites. J. Biol. Chem. 2003, 278, 35869–35877. [Google Scholar] [CrossRef] [Green Version]
- Manasanch, E.E.; Orlowski, R.Z. Proteasome inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 2017, 14, 417–433. [Google Scholar] [CrossRef]
- Kulbacka, J.; Rembiałkowska, N.; Szewczyk, A.; Moreira, H.; Szyjka, A.; Girkontaitė, I.; Grela, K.P.; Novickij, V. The Impact of Extracellular Ca2+ and Nanosecond Electric Pulses on Sensitive and Drug-Resistant Human Breast and Colon Cancer Cells. Cancers 2021, 13, 3216. [Google Scholar] [CrossRef]
- Novickij, V.; Zinkevičienė, A.; Perminaitė, E.; Čėsna, R.; Lastauskienė, E.; Paškevičius, A.; Švedienė, J.; Markovskaja, S.; Novickij, J.; Girkontaitė, I. Non-invasive nanosecond electroporation for biocontrol of surface infections: An in vivo study. Sci. Rep. 2018, 8, 14516. [Google Scholar] [CrossRef] [PubMed]
- Poudel, A.; Oludiran, A.; Sözer, E.B.; Casciola, M.; Purcell, E.B.; Muratori, C. Growth in a biofilm sensitizes Cutibacterium acnes to nanosecond pulsed electric fields. Bioelectrochemistry 2021, 140, 107797. [Google Scholar] [CrossRef]
- Heim, S.; Lage, H. Transcriptome analysis of different multidrug-resistant gastric carcinoma cells. In Vivo 2005, 19, 583–590. [Google Scholar] [PubMed]
- Liu, H.; Yao, C.; Zhao, Y.; Chen, X.; Dong, S.; Wang, L.; Davalos, R.V. In Vitro Experimental and Numerical Studies on the Preferential Ablation of Chemo-Resistant Tumor Cells Induced by High-Voltage Nanosecond Pulsed Electric Fields. IEEE Trans. Biomed. Eng. 2021, 68, 2400–2411. [Google Scholar] [CrossRef] [PubMed]
- Novickij, V.; Rembialkowska, N.; Staigvila, G.; Kulbacka, J. Effects of extracellular medium conductivity on cell response in the context of sub-microsecond range calcium electroporation. Sci. Rep. 2020, 10, 3718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choromanska, A.; Saczko, J.; Kulbacka, J. Caffeic Acid Phenethyl Ester Assisted by Reversible Electroporation—In Vitro Study on Human Melanoma Cells. Pharmaceutics 2020, 12, 478. [Google Scholar] [CrossRef]
- Rousseau, A.; Bertolotti, A. Regulation of proteasome assembly and activity in health and disease. Nat. Rev. Mol. Cell Biol. 2018, 19, 697–712. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, Y.; Costa, S.; Collins, A.R.; Azqueta, A. The comet assay, DNA damage, DNA repair and cytotoxicity: Hedgehogs are not always dead. Mutagenesis 2013, 28, 427–432. [Google Scholar] [CrossRef]
Protocol | EPG85-257P | EPG85-257RDB |
---|---|---|
control cells | 100% + (cytoplasm) | 100% ++ (cytoplasm) |
12.5 kV/cm | 100% ++ | 100% ++/+++ |
25 kV/cm | 100% ++ | 100%, nuclear envelope +; cytoplasm ++ |
37.5 kV/cm | 100% ++ | 100% ++/+++ |
50 kV/cm | 100% ++ (nuclear envelope) | 100% ++/+++ |
1 mM Ca2+ | 100% + | 100% ++ |
12.5 kV/cm + 1 mM Ca2+ | 100% ++ | 100% ++/+++ |
25 kV/cm + 1 mM Ca2+ | 100% ++/+++ (nuclear loc.) | 100% ++/+++ (nuclear loc.) |
37.5 kV/cm + 1 mM Ca2+ | 100% +++ nuclear envelope localization | 98% ++/+++ Nuclear envelope localization |
50 kV/cm + 1 mM Ca2+ | 100% +++ reduced cell number | 100% +++ reduced cell number |
2 mM Ca2+ | 100% + | 100% +/++ |
12.5 kV/cm + 2 mM Ca2+ | 100% + | 100% +/++ |
25 kV/cm + 2 mM Ca2+ | 100% ++ (nuclear envelope) | 100% ++/+++ (nuclear envelope) |
37.5 kV/cm + 2 mM Ca2+ | 100% ++ (nuclear and cytoplasm) | 100% ++/+++ (nuclear and cytoplasm) |
50 kV/cm + 2 mM Ca2+ | 100% +++ damaged cells (nuclei) | 100% +++ damaged cells (nuclear localization) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulbacka, J.; Rembiałkowska, N.; Szewczyk, A.; Rossowska, J.; Drąg-Zalesińska, M.; Kulbacki, M.; Choromańska, A. Nanosecond PEF Induces Oxidative Stress and Apoptosis via Proteasomal Activity Inhibition in Gastric Adenocarcinoma Cells with Drug Resistance. Int. J. Mol. Sci. 2022, 23, 12943. https://doi.org/10.3390/ijms232112943
Kulbacka J, Rembiałkowska N, Szewczyk A, Rossowska J, Drąg-Zalesińska M, Kulbacki M, Choromańska A. Nanosecond PEF Induces Oxidative Stress and Apoptosis via Proteasomal Activity Inhibition in Gastric Adenocarcinoma Cells with Drug Resistance. International Journal of Molecular Sciences. 2022; 23(21):12943. https://doi.org/10.3390/ijms232112943
Chicago/Turabian StyleKulbacka, Julita, Nina Rembiałkowska, Anna Szewczyk, Joanna Rossowska, Małgorzata Drąg-Zalesińska, Marek Kulbacki, and Anna Choromańska. 2022. "Nanosecond PEF Induces Oxidative Stress and Apoptosis via Proteasomal Activity Inhibition in Gastric Adenocarcinoma Cells with Drug Resistance" International Journal of Molecular Sciences 23, no. 21: 12943. https://doi.org/10.3390/ijms232112943
APA StyleKulbacka, J., Rembiałkowska, N., Szewczyk, A., Rossowska, J., Drąg-Zalesińska, M., Kulbacki, M., & Choromańska, A. (2022). Nanosecond PEF Induces Oxidative Stress and Apoptosis via Proteasomal Activity Inhibition in Gastric Adenocarcinoma Cells with Drug Resistance. International Journal of Molecular Sciences, 23(21), 12943. https://doi.org/10.3390/ijms232112943