Giardia lamblia G6PD::6PGL Fused Protein Inhibitors Decrease Trophozoite Viability: A New Alternative against Giardiasis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Purification of the Recombinant Protein G6PD::6PGL
2.2. Selection of Inhibitors of G6PD::6PGL Fused Enzyme of Giardia lamblia
2.3. In Vitro Screening of Fused G6PD::6PGL Inactivation
2.4. Rate Inactivation Constants (k2) of Selected Compounds
2.5. Circular Dichroism (CD) Assay
2.6. Intrinsic and Extrinsic Fluorescence Assays
2.7. Molecular Docking Method to Estimate the Binding Energy
2.8. Concentration-Dependent Effect of Compounds on Giardia lamblia Trophozoites
2.9. Cytotoxic Effect of Compounds on Human Intestinal Caco-2 and HT29 Cells
3. Materials and Methods
3.1. Overexpression and Purification of the Fused G6PD::6PGL Protein from Giardia lamblia
3.2. Functional Studies of the G6PD::6PGL Fused Enzyme Exposed to the Compounds
3.2.1. Screening of In-House Chemical Library Compounds on the Activity of the Enzyme G6PD::6PGL of G. lamblia
3.2.2. Enzymatic Inhibition Assays of the G6PD::6PGL Protein with Selected Compounds
3.2.3. Second-Order Inactivation Constant (k2) of G6PD::6PGL from Giardia lamblia
3.3. Structural Studies of the G6PD::6PGL Fused Enzyme Exposed Inhibitory Compounds
3.3.1. Circular Dichroism (DC) Assays
3.3.2. Intrinsic and Extrinsic Fluorescence Assays
3.4. Molecular Docking Method to Estimate the Binding Energy
3.5. In Vitro Assays
3.5.1. Antigiardial Activity
3.5.2. In Vitro Cytotoxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morch, K.; Hanevik, K. Giardiasis treatment: An update with a focus on refractory disease. Curr. Opin. Infect. Dis. 2020, 33, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Xiao, L. Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. Clin. Microbiol. Rev. 2011, 24, 110–140. [Google Scholar] [CrossRef] [Green Version]
- Cernikova, L.; Faso, C.; Hehl, A.B. Five facts about Giardia lamblia. PLoS Pathog. 2018, 14, e1007250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halliez, M.C.; Buret, G.A. Extra-intestinal and long term consequences of Giardia duodenalis infections. World J. Gastroenterol. 2013, 21, 8974–8985. [Google Scholar] [CrossRef] [PubMed]
- Adam, R.D. Giardia duodenalis: Biology and Pathogenesis. Clin. Microbiol. Rev. 2021, 34, e00024-19. [Google Scholar] [CrossRef]
- Rivera, M.; De la Parte, M.A.; Hurtado, P.; Magaldi, L.; Collazo, M. Giardiasis intestinal. Mini-Revisión. Investig. Clin. 2002, 43, 119–128. [Google Scholar]
- Trelis, M.; Taroncher-Ferrer, S.; Gozalbo, M.; Ortiz, V.; Soriano, J.M.; Osuna, A.; Merino-Torres, J.F. Giardia intestinalis and Fructose Malabsorption: A Frequent Association. Nutrients 2019, 11, 2973. [Google Scholar] [CrossRef] [Green Version]
- Cordingley, F.T.; Crawford, G.P.M. Giardia infection causes vitamin b12 deficiency. Aust. N. Z. J. Med. 1986, 16, 78–79. [Google Scholar] [CrossRef]
- Carter, E.R.; Nabarro, L.E.; Hedley, L.; Chiodini, P.L. Nitroimidazole-refractory giardiasis: A growing problem requiring rational solutions. Clin. Microbiol. Infect. 2018, 24, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Saghaug, C.S.; Klotz, C.; Kallio, J.P.; Brattbakk, H.R.; Stokowy, T.; Aebischer, T.; Kursula, I.; Langeland, N.; Hanevik, K. Genetic variation in metronidazole metabolism and oxidative stress pathways in clinical Giardia lamblia assemblage A and B isolates. Infect. Drug Resist. 2019, 10, 1221–1235. [Google Scholar] [CrossRef] [Green Version]
- Riches, A.; Hart, C.J.; Trenholme, K.R.; Skinner-Adams, T.S. Anti-Giardia Drug Discovery: Current Status and Gut Feelings. J. Med. Chem. 2020, 63, 13330–13354. [Google Scholar] [CrossRef]
- Colín-Lozano, B.; León-Rivera, I.; Chan-Bacab, M.J.; Ortega-Morales, B.O.; Moo-Puc, R.; López-Guerrero, V.; Hernández-Núñez, E.; Argüello-Garcia, R.; Scior, T.; Barbosa-Cabrera, E.; et al. Synthesis, in vitro and in vivo giardicidal activity of nitrothiazole-NSAID chimeras displaying broad antiprotozoal spectrum. Bioorg. Med. Chem. Lett. 2017, 27, 3490–3494. [Google Scholar] [CrossRef]
- Stover, N.A.; Dixon, T.A.; Cavalcanti, A.R. Multiple independent fusions of glucose-6-phosphate dehydrogenase with enzymes in the pentose phosphate pathway. PLoS ONE 2011, 6, e22269. [Google Scholar] [CrossRef] [Green Version]
- Jortzik, E.; Mailu, B.M.; Preuss, J.; Fischer, M.; Bode, L.; Rahlfs, S.; Becker, K. Glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase: A unique bifunctional enzyme from Plasmodium falciparum. Biochem. J. 2011, 15, 641–650. [Google Scholar] [CrossRef] [Green Version]
- Allen, S.M.; Lim, E.E.; Jortzik, E.; Preuss, J.; Chua, H.H.; MacRae, J.I.; Rahlfs, S.; Haeussler, K.; Downton, M.T.; McConville, M.J.; et al. Plasmodium falciparum glucose-6-phosphate dehydrogenase 6-phosphogluconolactonase is a potential drug target. FEBS J. 2015, 282, 3808–3823. [Google Scholar] [CrossRef]
- Crooke, A.; Diez, A.; Mason, P.J.; Bautista, J.M. Transient silencing of Plasmodium falciparum bifunctional glucose-6-phosphate dehydrogenase- 6-phosphogluconolactonase. FEBS J. 2006, 273, 1537–1546. [Google Scholar] [CrossRef]
- Santos, R.; Ursu, O.; Gaulton, A.; Bento, A.P.; Donadi, R.S.; Bologa, C.G.; Karlsson, A.; Al-Lazikani, B.; Hersey, A.; Oprea, T.I.; et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 2017, 16, 19–34. [Google Scholar] [CrossRef]
- Bernhardsgrütter, I.; Vögeli, B.; Wagner, T.; Peter, D.M.; Cortina, N.S.; Kahnt, J.; Bange, G.; Engilberge, S.; Girard, E.; Riobé, F.; et al. The multicatalytic compartment of propionyl-CoA synthase sequesters a toxic metabolite. Nat. Chem. Biol. 2018, 14, 1127–1132. [Google Scholar] [CrossRef]
- Morales-Luna, L.; Serrano-Posada, H.; González-Valdez, A.; Ortega-Cuellar, D.; Vanoye-Carlo, A.; Hernández-Ochoa, B.; Sierra-Palacios, E.; Rufino-González, Y.; Castillo-Rodríguez, R.A.; de la Cruz, V.P.; et al. Biochemical Characterization and Structural Modeling of Fused Glucose-6-Phosphate Dehydrogenase-Phosphogluconolactonase from Giardia lamblia. Int. J. Mol. Sci. 2018, 19, 2518. [Google Scholar] [CrossRef] [Green Version]
- Sodeinde, O.; Clarke, J.L.; Vulliamy, T.J.; Luzzatto, L.; Mason, P.J. Expression of Plasmodium falciparum G6PD-6PGL in laboratory parasites and in patient isolates in G6PD-deficient and normal Nigerian children. Br. J. Haematol. 2003, 122, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Morales-Luna, L.; González-Valdez, A.; Sixto-López, Y.; Correa-Basurto, J.; Hernández-Ochoa, B.; Cárdenas-Rodríguez, N.; Castillo-Rodríguez, R.A.; Ortega-Cuellar, D.; Arreguin-Espinosa, R.; Pérez de la Cruz, V.; et al. Identification of the NADP+ Structural Binding Site and Coenzyme Effect on the Fused G6PD::6PGL Protein from Giardia lamblia. Biomolecules 2019, 27, 10046. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Rosas, V.; Hernández-Ochoa, B.; Navarrete-Vázquez, G.; Martínez-Conde, C.; Gómez-Chávez, F.; Morales-Luna, L.; González-Valdez, A.; Arreguin-Espinosa, R.; Enríquez-Flores, S.; de la Cruz, V.P.; et al. Kinetic and Molecular Docking Studies to Determine the Effectc of Inhibitors on the Activity and Structure of Fused G6PD::6PGL Protein from Trichomonas vaginalis. Molecules 2022, 27, 1174. [Google Scholar] [CrossRef] [PubMed]
- Preuss, J.; Hedrick, M.; Sergienko, E.; Pinkerton, A.; Mangravita-Novo, A.; Smith, L.; Marx, C.; Fischer, E.; Jortzik, E.; Rahlfs, S.; et al. High-throughput screening for small-molecule inhibitors of plasmodium falciparum glucose-6-phosphate dehydrogenase 6-phosphogluconolactonase. J. Biomol. Screen. 2012, 17, 738–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez-Nava, E.J.; Hernández-Ochoa, B.; Navarrete-Vázquez, G.; Arreguín-Espinosa, R.; Ortega-Cuellar, D.; González-Valdez, A.; Martínez-Rosas, V.; Morales-Luna, L.; Martínez-Miranda, J.; Sierra-Palacios, E.; et al. Novel inhibitors of human glucose-6-phosphate dehydrogenase (HsG6PD) affect the activity and stability of the protein. Biochim. Biophys. Acta Gen. Subj. 2021, 1865, 129828. [Google Scholar] [CrossRef] [PubMed]
- Kotaka, M.; Gover, S.; Vandeputte-Rutten, L.; Au, S.W.; Lam, V.M.; Adams, M.J. Structural studies of glucose-6-phosphate and NADP+ binding to human glucose-6-phosphate dehydrogenase. Acta Crystallogr. D Biol. Crystallogr. 2005, 61, 495–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chadha, N.; Bahia, M.S.; Kaur, M.; Silakari, O. Thiazolidine-2,4-dione derivates: Programmed chemical weapons for key protein targets of various pathological conditions. Bioorg. Med. Chem. 2015, 23, 2953–2974. [Google Scholar] [CrossRef]
- Naim, M.; Jahangir, M.; Ahmad, S.; Nawaz, F.; Shrivastava, N.; Sahu, M.; Alam, O. Therapeutic journey of 2,4-thiazolidinediones as a versatile scaffold: An insight into structure activity relationship. Eur. J. Med. Chem. 2017, 129, 218–250. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Z.; Zhu, Y.; Qin, S. Glucose-6-phosphate dehydrogenase: A biomarker and potential therapeutic target for cancer. Anticancer Agents Med. Chem. 2014, 14, 280–289. [Google Scholar] [CrossRef]
- Song, J.; Sun, H.; Zhang, S.; Shan, C. The Multiple Roles of Glucose-6-Phosphate Dehydrogenase in Tumorigenesis and Cancer Chemoresistance. Life 2022, 12, 271. [Google Scholar] [CrossRef]
- Navarrete-Vázquez, G.; Chávez-Silva, F.; Colín-Lozano, B.; Estrada-Soto, S.; Hidalgo-Figueroa, S.; Guerrero-Álvarez, J.; Méndez, S.T.; Reyes-Vivas, H.; Oria-Hernández, J.; Canul-Canché, J.; et al. Synthesis of nitro(benzo)thiazole acetamides and in vitro antiprotozoal effect against amitochondriate parasites Giardia intestinalis and Trichomonas vaginalis. Bioorg. Med. Chem. 2015, 23, 2204–2210. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Kalisiak, J.; Korthals, K.; Lauwaet, T.; Cheung, D.Y.; Lozano, R.; Cobo, E.R.; Upcroft, P.; Upcroft, J.A.; Berg, D.E.; et al. Expanded therapeutic potential in activity space of next-generation 5-nitroimidazole antimicrobials with broad structural diversity. Proc. Natl. Acad. Sci. USA 2013, 110, 17564–17569. [Google Scholar] [CrossRef]
- Müller, J.; Sterk, M.; Hemphill, A.; Müller, N. Characterization of Giardia lamblia WB C6 clones resistant to nitazoxanide and to metronidazole. J. Antimicrob. Chemother. 2007, 60, 280–287. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.; Wastling, J.; Sanderson, S.; Müller, N.; Hemphill, A. A novel Giardia lamblia nitroreductase, GlNR1, interacts with nitazoxanide and other thiazolides. Antimicrob. Agents Chemother. 2007, 51, 1979–1986. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.; Schildknecht, P.; Müller, N. Metabolism of nitro drugs metronidazole and nitazoxanide in Giardia lamblia: Characterization of a novel nitroreductase (GlNR2). J. Antimicrob. Chemother. 2013, 68, 1781–1789. [Google Scholar] [CrossRef] [Green Version]
- Nepali, K.; Lee, H.Y.; Liou, J.P. Nitro-Group-Containing Drugs. J. Med. Chem. 2019, 62, 2851–2893. [Google Scholar] [CrossRef]
- Patterson, S.; Wyllie, S. Nitro drugs for the treatment of trypanosomatid diseases: Past, present, and future prospects. Trends Parasitol. 2014, 30, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Ghashghaeinia, M.; Giustarini, D.; Koralkova, P.; Köberle, M.; Alzoubi, K.; Bissinger, R.; Hosseinzadeh, Z.; Dreischer, P.; Bernhardt, I.; Lang, F.; et al. Pharmacological targeting of glucose-6-phosphate dehydrogenase in human erythrocytes by Bay 11-7082, parthenolide and dimethyl fumarate. Sci. Rep. 2016, 29, 28754. [Google Scholar] [CrossRef] [Green Version]
- Abdi, K.; Khalaj, A.; Ostad, S.N.; Lamei, N.; Khoshayand, M.R. Synthesis, in vitro aerobic and hypoxic cytotoxicity and radiosensitizing activity of novel metronidazole tethered 5-fluorouracil. DARU J. Pharm. Sci. 2013, 21, 76. [Google Scholar] [CrossRef] [Green Version]
- Abhari, F.M.; Pirestani, M.; Dalimi, A. Anti-amoebic activity of a cecropin-melittin hybrid peptide (CM11) against trophozoites of Entamoeba histolytica. Wien. Klin. Wochenschr. 2019, 131, 427–434. [Google Scholar] [CrossRef]
- Lü, Z.; Li, X.; Li, K.; Wang, C.; Du, T.; Huang, W.; Ji, M.; Li, C.; Xu, F.; Xu, P.; et al. Structure-Activity Study of Nitazoxanide Derivatives as Novel STAT3 Pathway Inhibitors. ACS Med. Chem. Lett. 2021, 12, 696–703. [Google Scholar] [CrossRef]
- Lü, Z.; Li, X.; Li, K.; Ripani, P.; Shi, X.; Xu, F.; Wang, M.; Zhang, L.; Brunner, T.; Xu, P.; et al. Nitazoxanide and related thiazolides induce cell death in cancer cells by targeting the 20S proteasome with novel binding modes. Biochem. Pharmacol. 2022, 197, 114913. [Google Scholar] [CrossRef] [PubMed]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021, 49, W5–W14. [Google Scholar] [CrossRef] [PubMed]
- Madrigal-Angulo, J.L.; Ménez-Guerrero, C.; Estrada-Soto, S.; Ramírez-Espinosa, J.J.; Almanza-Pérez, J.C.; León-Rivera, I.; Hernández-Núñez, E.; Aguirre-Vidal, Y.; Flores-León, C.D.; Aguayo-Ortíz, R.; et al. Synthesis, in vitro, in silico and in vivo hypoglycemic and lipid-lowering effects of 4-benzyloxy-5-benzylidene-1,3-thiazolidine-2,4-diones mediated by dual PPAR α/γ modulation. Bioorg. Med. Chem. Lett. 2022, 70, 128804. [Google Scholar] [CrossRef] [PubMed]
- Colin-Lozano, B.; Torres-Gomez, H.; Hidalgo-Figueroa, S.; Chávez-Silva, F.; Estrada-Soto, S.; Almanza-Pérez, J.C.; Navarrete-Vazquez, G. Synthesis, In Vitro, In Vivo and In Silico Antidiabetic Bioassays of 4-Nitro(thio)phenoxyisobutyric Acids Acting as Unexpected PPARγ Modulators: An In Combo Study. Pharmaceuticals 2022, 15, 102. [Google Scholar] [CrossRef] [PubMed]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Hernández-Ochoa, B.; Gómez-Manzo, S.; Sánchez-Carrillo, A.; Marcial-Quino, J.; Rocha-Ramírez, L.M.; Santos-Segura, A.; Ramírez-Nava, E.J.; Arreguin-Espinosa, R.; Cuevas-Cruz, M.; Méndez-Tenorio, A.; et al. Enhanced Antigiardial Effect of Omeprazole Analog Benzimidazole Compounds. Molecules 2020, 25, 3979. [Google Scholar] [CrossRef]
- García-Torres, I.; de la Mora-de la Mora, I.; Marcial-Quino, J.; Gómez-Manzo, S.; Vanoye-Carlo, A.; Navarrete-Vázquez, G.; Colín-Lozano, B.; Gutiérrez-Castrellón, P.; Sierra-Palacios, E.; López-Velázquez, G.; et al. Proton pump inhibitors drastically modify triosephosphate isomerase from Giardia lamblia at functional and structural levels, providing molecular leads in the design of new antigiardiasic drugs. Biochim. Biophys. Acta 2016, 1860, 97–107. [Google Scholar] [CrossRef]
- Grosdidier, A.; Zoete, V.; Michielin, O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011, 39, W270–W277. [Google Scholar] [CrossRef] [Green Version]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making protein folding accessible to all. Nat. Methods 2022, 19, 679–682. [Google Scholar] [CrossRef]
- Williams, C.J.; Headd, J.J.; Moriarty, N.W.; Prisant, M.G.; Videau, L.L.; Deis, L.N.; Verma, V.; Keedy, D.A.; Hintze, B.J.; Chen, V.B.; et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 2018, 27, 293–315. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
Compounds | G6PD::6PGL Inhibition (%) at (400 μM) | HsG6PD Inhibition (%) at (400 μM) | G6PD::6PGL IC50 (μM) |
---|---|---|---|
CNZ-7 | 85 | 68 | 150 |
CNZ-8 | 71 | 43 | 80 |
CMC-1 | 98 | 34 | 70 |
FLP-2 | 90 | 20 | 256 |
Nitazoxanide | 100 | ND | 78 |
Barbituric acid | 0 | ND | >500 |
Compounds | Substrates Binding Site | Structural NADP+ Binding Site | ||
---|---|---|---|---|
H-Bond | ΔG (kcal/mol) | H-Bond | ΔG (kcal/mol) | |
CNZ-7 | 4 | −7.47 | 3 | −8.62 |
CNZ-8 | 3 | −7.06 | 6 | −7.60 |
CMC-1 | 4 | −6.55 | 2 | −7.22 |
FLP-2 | 2 | −7.11 | 1 | −7.66 |
Compounds | IC50 (µM) | CC50 (µM) | |
---|---|---|---|
G. lamblia | HT29 (SI) | Caco-2 (SI) | |
CNZ-7 | 8.7 | 529 (60) | 640 (74) |
CNZ-8 | 15.2 | 622 (41) | 633 (41) |
FLP-2 | 15.3 | 1912 (125) | 3184 (208) |
CMC-1 | 24.1 | 3218 (134) | 4006 (166) |
Metronidazole | 4.8 | 265.9 (52) [38] | 19 (3.9) [39] |
Nitazoxanide | 4.2 | >50 (12) [40] | 26.8 (7) [41] |
Model | Compounds | ||||||
---|---|---|---|---|---|---|---|
CNZ-7 | CNZ-8 | FLP-2 | CMC-1 | Nitazoxanide | Barbituric Acid | ||
A | Gastrointestinal absorption | (+++) | (+++) | (+++) | (+++) | (+++) | (---) |
Blood–brain barrier permeation | (+) | (+) | (+++) | (+++) | (+) | (--) | |
D | Plasma protein binding | 93% | 81.4% | 62.8% | 96.7% | 67.0% | 32.9% |
Volume distribution | 0.68 L/kg | 0.824 L/kg | 0.59 L/kg | 0.337 L/kg | 0.541 L/kg | 0.521 L/kg | |
M | CYP3A4 substrate | (-) | (--) | (--) | (--) | (--) | (---) |
CYP2D6 substrate | (++) | (-) | (--) | (-) | (--) | (---) | |
E | Clearance | 5.69 mL/min/Kg | 2.91 mL/min/Kg | 6.6 mL/min/Kg | 0.51 mL/min/kg | 2.14 mL/min/kg | 2.14 mL/min/kg |
Half-life (T½) | >3 h | >3 h | >3 h | >3 h | >3 h | >3 h | |
T | hERG blockers | (--) | (---) | (---) | (--) | (---) | (---) |
Rat oral acute toxicity | (--) | (--) | (++) | (---) | (+++) | (---) | |
Carcinogenicity | (+++) | (+++) | (+++) | (--) | (+++) | (--) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Luna, L.; Hernández-Ochoa, B.; Martínez-Rosas, V.; Navarrete-Vázquez, G.; Ortega-Cuellar, D.; Rufino-González, Y.; González-Valdez, A.; Arreguin-Espinosa, R.; Franco-Vásquez, A.M.; Pérez de la Cruz, V.; et al. Giardia lamblia G6PD::6PGL Fused Protein Inhibitors Decrease Trophozoite Viability: A New Alternative against Giardiasis. Int. J. Mol. Sci. 2022, 23, 14358. https://doi.org/10.3390/ijms232214358
Morales-Luna L, Hernández-Ochoa B, Martínez-Rosas V, Navarrete-Vázquez G, Ortega-Cuellar D, Rufino-González Y, González-Valdez A, Arreguin-Espinosa R, Franco-Vásquez AM, Pérez de la Cruz V, et al. Giardia lamblia G6PD::6PGL Fused Protein Inhibitors Decrease Trophozoite Viability: A New Alternative against Giardiasis. International Journal of Molecular Sciences. 2022; 23(22):14358. https://doi.org/10.3390/ijms232214358
Chicago/Turabian StyleMorales-Luna, Laura, Beatriz Hernández-Ochoa, Víctor Martínez-Rosas, Gabriel Navarrete-Vázquez, Daniel Ortega-Cuellar, Yadira Rufino-González, Abigail González-Valdez, Roberto Arreguin-Espinosa, Adrián Marcelo Franco-Vásquez, Verónica Pérez de la Cruz, and et al. 2022. "Giardia lamblia G6PD::6PGL Fused Protein Inhibitors Decrease Trophozoite Viability: A New Alternative against Giardiasis" International Journal of Molecular Sciences 23, no. 22: 14358. https://doi.org/10.3390/ijms232214358
APA StyleMorales-Luna, L., Hernández-Ochoa, B., Martínez-Rosas, V., Navarrete-Vázquez, G., Ortega-Cuellar, D., Rufino-González, Y., González-Valdez, A., Arreguin-Espinosa, R., Franco-Vásquez, A. M., Pérez de la Cruz, V., Enríquez-Flores, S., Martínez-Conde, C., Canseco-Ávila, L. M., Gómez-Chávez, F., & Gómez-Manzo, S. (2022). Giardia lamblia G6PD::6PGL Fused Protein Inhibitors Decrease Trophozoite Viability: A New Alternative against Giardiasis. International Journal of Molecular Sciences, 23(22), 14358. https://doi.org/10.3390/ijms232214358