Antiproliferative Activity Predictor: A New Reliable In Silico Tool for Drug Response Prediction against NCI60 Panel
Abstract
:1. Introduction
2. Results and Discussion
2.1. NCI60 Antiproliferative Activity Predictor Tool
2.1.1. Description of the Tool Learning Process
2.1.2. Validation of the AAP Tool
2.1.3. Parameter Optimization for Cell Line/Subpanel Activity Prediction
2.1.4. Application of the AAP Tool for the Virtual Screening of an In-House Structure Database
2.2. Chemistry
2.3. Biological Assays: NCI60 Human Tumor Cell Lines Screen Selected Compounds
2.3.1. One-Dose Antiproliferative Assay
2.3.2. Five-Dose Antiproliferative Assay for the Most Active Derivatives, 1a and 3e
3. Materials and Methods
3.1. Computational Studies
3.1.1. Hardware
3.1.2. Software
3.1.3. Database Selection and Dataset Building
3.1.4. MOLDESTO: A New Software for Molecular Descriptor Calculations
3.1.5. DRUDIT Settings for Antiproliferative Activity Predictor (AAP) Tool
3.2. Chemistry
3.3. NCI60 Antiproliferative Screenings
3.3.1. Compound Selection Guidelines
3.3.2. One-Dose Assay
3.3.3. Five-Dose Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shoemaker, R.H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer 2006, 6, 813–823. [Google Scholar] [CrossRef]
- Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A.; Kim, S.; Wilson, C.J.; Lehár, J.; Kryukov, G.V.; Sonkin, D.; et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012, 483, 603–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Soares, J.; Greninger, P.; Edelman, E.J.; Lightfoot, H.; Forbes, S.; Bindal, N.; Beare, D.; Smith, J.A.; Thompson, I.R.; et al. Genomics of Drug Sensitivity in Cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013, 41, D955–D961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomczak, K.; Czerwińska, P.; Wiznerowicz, M. The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge. Contemp. Oncol. 2015, 19, A68–A77. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Bodycombe, N.E.; Cheah, J.H.; Price, E.V.; Liu, K.; Schaefer, G.I.; Ebright, R.Y.; Stewart, M.L.; Ito, D.; Wang, S.; et al. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 2013, 154, 1151–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillet, J.P.; Varma, S.; Gottesman, M.M. The clinical relevance of cancer cell lines. J. Natl. Cancer Inst. 2013, 105, 452–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirabelli, P.; Coppola, L.; Salvatore, M. Cancer cell lines are useful model systems for medical research. Cancers 2019, 11, 1098. [Google Scholar] [CrossRef] [Green Version]
- Goodspeed, A.; Heiser, L.M.; Gray, J.W.; Costello, J.C. Tumor-derived cell lines as molecular models of cancer pharmacogenomics. Mol. Cancer Res. 2016, 14, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Takimoto, C.H. Anticancer drug development at the US National Cancer Institute. Cancer Chemother. Pharmacol. 2003, 52 (Suppl. 1), S29–S33. [Google Scholar] [CrossRef] [PubMed]
- NCI-60 Human Tumor Cell Lines Screen—Introduction. Available online: https://dtp.cancer.gov/discovery_development/nci-60/ (accessed on 15 November 2022).
- Molecular Characterization of the NCI-60. Available online: https://dtp.cancer.gov/discovery_development/nci-60/characterization.htm (accessed on 15 November 2022).
- Covell, D.G.; Huang, R.; Wallqvist, A. Anticancer medicines in development: Assessment of bioactivity profiles within the National Cancer Institute anticancer screening data. Mol. Cancer Ther. 2007, 6, 2261–2270. [Google Scholar] [CrossRef]
- NCI60 Human Timor Cell Lines Screen—Cell Lines in the In Vitro Screen. Available online: https://dtp.cancer.gov/discovery_development/nci-60/cell_list.htm (accessed on 15 November 2022).
- Firoozbakht, F.; Yousefi, B.; Schwikowski, B. An overview of machine learning methods for monotherapy drug response prediction. Brief. Bioinform. 2021, 23, bbab408. [Google Scholar] [CrossRef]
- Paull, K.D.; Shoemaker, R.H.; Hodes, L.; Monks, A.; Scudiero, D.A.; Rubinstein, L.; Plowman, J.; Boyd, M.R. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: Development of mean graph and COMPARE algorithm. J. Natl. Cancer Inst. 1989, 81, 1088–1092. [Google Scholar] [CrossRef] [PubMed]
- Zaharevitz, D.W.; Holbeck, S.L.; Bowerman, C.; Svetlik, P.A. COMPARE: A web accessible tool for investigating mechanisms of cell growth inhibition. J. Mol. Graph. Model. 2002, 20, 297–303. [Google Scholar] [CrossRef]
- NCI-60 Analysis Tools—CellMiner. Available online: http://discover.nci.nih.gov/cellminer/ (accessed on 15 November 2022).
- Reinhold, W.C.; Sunshine, M.; Liu, H.; Varma, S.; Kohn, K.W.; Morris, J.; Doroshow, J.; Pommier, Y. CellMiner: A web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set. Cancer Res. 2012, 72, 3499–3511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luna, A.; Elloumi, F.; Varma, S.; Wang, Y.; Rajapakse, V.N.; Aladjem, M.I.; Robert, J.; Sander, C.; Pommier, Y.; Reinhold, W.C. CellMiner Cross-Database (CellMinerCDB) version 1.2: Exploration of patient-derived cancer cell line pharmacogenomics. Nucleic Acids Res. 2021, 49, D1083–D1093. [Google Scholar] [CrossRef]
- Lind, A.P.; Anderson, P.C. Predicting drug activity against cancer cells by random forest models based on minimal genomic information and chemical properties. PLoS ONE 2019, 14, e0219774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.; Wang, H.; Fang, Y.; Wang, J.; Zheng, X.; Liu, X.S. Predicting anticancer drug responses using a dual-layer integrated cell line-drug network model. PLoS Comput. Biol. 2015, 11, e1004498. [Google Scholar] [CrossRef] [PubMed]
- Cadow, J.; Born, J.; Manica, M.; Oskooei, A.; Rodríguez Martínez, M. PaccMann: A web service for interpretable anticancer compound sensitivity prediction. Nucleic Acids Res. 2020, 48, W502–W508. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Park, H.; Yang, H.J.; Lee, S.; Lee, K.Y.; Kim, T.S.; Jung, J.; Shin, J.M. Cancer Drug Response Profile scan (CDRscan): A deep learning model that predicts drug effectiveness from cancer genomic signature. Sci. Rep. 2018, 8, 8857. [Google Scholar] [CrossRef] [Green Version]
- Joo, M.; Park, A.; Kim, K.; Son, W.J.; Lee, H.S.; Lim, G.; Lee, J.; Lee, D.H.; An, J.; Kim, J.H.; et al. A deep learning model for cell growth inhibition IC50 prediction and its application for gastric cancer patients. Int. J. Mol. Sci. 2019, 20, 6276. [Google Scholar] [CrossRef]
- Al-Jarf, R.; de Sá, A.G.C.; Pires, D.E.V.; Ascher, D.B. pdCSM-cancer: Using graph-based signatures to identify small molecules with anticancer properties. J. Chem. Inf. Model. 2021, 61, 3314–3322. [Google Scholar] [CrossRef] [PubMed]
- Lauria, A.; Tutone, M.; Almerico, A.M. Virtual lock-and-key approach: The in silico revival of Fischer model by means of molecular descriptors. Eur. J. Med. Chem. 2011, 46, 4274–4280. [Google Scholar] [CrossRef] [PubMed]
- Lauria, A.; Tutone, M.; Barone, G.; Almerico, A.M. Multivariate analysis in the identification of biological targets for designed molecular structures: The BIOTA protocol. Eur. J. Med. Chem. 2014, 75, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Lauria, A.; Mannino, S.; Gentile, C.; Mannino, G.; Martorana, A.; Peri, D. DRUDIT: Web-based DRUgs DIscovery Tools to design small molecules as modulators of biological targets. Bioinformatics 2020, 36, 1562–1569. [Google Scholar] [CrossRef] [PubMed]
- Lauria, A.; Abbate, I.; Patella, C.; Martorana, A.; Dattolo, G.; Almerico, A.M. New annelated thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidines, with potent anticancer activity, designed through VLAK protocol. Eur. J. Med. Chem. 2013, 62, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Lauria, A.; Patella, C.; Abbate, I.; Martorana, A.; Almerico, A.M. Lead optimization through VLAK protocol: New annelated pyrrolo-pyrimidine derivatives as antitumor agents. Eur. J. Med. Chem. 2012, 55, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Lauria, A.; Abbate, I.; Gentile, C.; Angileri, F.; Martorana, A.; Almerico, A.M. Synthesis and biological activities of a new class of heat shock protein 90 inhibitors, designed by energy-based pharmacophore virtual screening. J. Med. Chem. 2013, 56, 3424–3428. [Google Scholar] [CrossRef] [PubMed]
- Diana, P.; Martorana, A.; Barraja, P.; Montalbano, A.; Carbone, A.; Cirrincione, G. Nucleophilic substitutions in the isoindole series as a valuable tool to synthesize derivatives with antitumor activity. Tetrahedron 2011, 67, 2072–2080. [Google Scholar] [CrossRef]
- Mingoia, F.; Di Sano, C.; Di Blasi, F.; Fazzari, M.; Martorana, A.; Almerico, A.M.; Lauria, A. Exploring the anticancer potential of pyrazolo[1,2-a]benzo[1,2,3,4]tetrazin-3-one derivatives: The effect on apoptosis induction, cell cycle and proliferation. Eur. J. Med. Chem. 2013, 64, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Kayed, R.; Lo Cascio, F.; Piccionello Palumbo, A.; Pace, A. Novel Small Molecules That Bind and/or Modulate Different Forms of Tau Oligomers. Patent WO2020/219714 A1, 23 April 2020. [Google Scholar]
- Battisti, A.; Palumbo Piccionello, A.; Sgarbossa, A.; Vilasi, S.; Ricci, C.; Ghetti, F.; Spinozzi, F.; Marino Gammazza, A.; Giacalone, V.; Martorana, A.; et al. Curcumin-like compounds designed to modify amyloid beta peptide aggregation patterns. RSC Adv. 2017, 7, 31714–31724. [Google Scholar] [CrossRef]
- Lo Cascio, F.; Puangmalai, N.; Ellsworth, A.; Bucchieri, F.; Pace, A.; Palumbo Piccionello, A.; Kayed, R. Toxic tau oligomers modulated by novel curcumin derivatives. Sci. Rep. 2019, 9, 19011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauria, A.; Martorana, A.; La Monica, G.; Mannino, S.; Mannino, G.; Peri, D.; Gentile, C. In silico identification of small molecules as new Cdc25 inhibitors through the correlation between chemosensitivity and protein expression pattern. Int. J. Mol. Sci. 2021, 22, 3714. [Google Scholar] [CrossRef] [PubMed]
- NCI DTP Chemical Data. Available online: https://wiki.nci.nih.gov/display/NCIDTPdata/Chemical+Data (accessed on 15 November 2022).
- Sharma, R.A.; Gescher, A.J.; Steward, W.P. Curcumin: The story so far. Eur. J. Cancer 2005, 41, 1955–1968. [Google Scholar] [CrossRef] [PubMed]
- Adeluola, A.; Zulfiker, A.H.M.; Brazeau, D.; Amin, A.R.M.R. Perspectives for synthetic curcumins in chemoprevention and treatment of cancer: An update with promising analogues. Eur. J. Pharmacol. 2021, 906, 174266. [Google Scholar] [CrossRef]
- Ahsan, M.J.; Choudhary, K.; Jadav, S.S.; Yasmin, S.; Ansari, M.Y.; Sreenivasulu, R. Synthesis, antiproliferative activity, and molecular docking studies of curcumin analogues bearing pyrazole ring. Med. Chem. Res. 2015, 24, 4166–4180. [Google Scholar] [CrossRef]
- Ahsan, M.J. Evaluation of anticancer activity of curcumin analogues bearing a heterocyclic nucleus. Asian Pac. J. Cancer Prev. 2016, 17, 1739–1744. [Google Scholar] [CrossRef] [Green Version]
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm. 2007, 4, 807–818. [Google Scholar] [CrossRef]
- Sabet, S.; Rashidinejad, A.; Melton, L.D.; McGillivray, D.J. Recent advances to improve curcumin oral bioavailability. Trends Food Sci. Technol. 2021, 110, 253–266. [Google Scholar] [CrossRef]
- Sanidad, K.Z.; Sukamtoh, E.; Xiao, H.; McClements, D.J.; Zhang, G. Curcumin: Recent advances in the development of strategies to improve oral bioavailability. Annu. Rev. Food Sci. Technol. 2019, 10, 597–617. [Google Scholar] [CrossRef] [Green Version]
- Kotha, R.R.; Luthria, D.L. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules 2019, 24, 2930. [Google Scholar] [CrossRef]
- Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The essential medicinal chemistry of curcumin. J. Med. Chem. 2017, 60, 1620–1637. [Google Scholar] [CrossRef] [PubMed]
- Olotu, F.; Agoni, C.; Soremekun, O.; Soliman, M.E.S. An update on the pharmacological usage of curcumin: Has it failed in the drug discovery pipeline? Cell Biochem. Biophys. 2020, 78, 267–289. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.C.; Kumar, N.A.; Thakur, G. The potency of heterocyclic curcumin analogues: An evidence-based review. Pharmacol. Res. 2021, 166, 105489. [Google Scholar] [CrossRef] [PubMed]
- Lo Cascio, F.; Garcia, S.; Montalbano, M.; Puangmalai, N.; McAllen, S.; Pace, A.; Palumbo Piccionello, A.; Kayed, R. Modulating disease-relevant tau oligomeric strains by small molecules. J. Biol. Chem. 2020, 295, 14807–14825. [Google Scholar] [CrossRef] [PubMed]
- Sinu, C.R.; Padmaja, D.V.; Ranjini, U.P.; Seetha Lakshmi, K.C.; Suresh, E.; Nair, V. A cascade reaction actuated by nucleophilic heterocyclic carbene catalyzed intramolecular addition of enals via homoenolate to α,β-unsaturated esters: Efficient synthesis of coumarin derivatives. Org. Lett. 2013, 15, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Pace, A.; Buscemi, S.; Piccionello, A.P.; Pibiri, I. Recent advances in the chemistry of 1,2,4-oxadiazoles. Adv. Heterocycl. Chem. 2015, 116, 85–136. [Google Scholar] [CrossRef]
- NCI60 Growth Inhibition Data—Download NCI Cell Line Data. Available online: https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-60+Growth+Inhibition+Data (accessed on 15 November 2022).
- Compound Submission for NCI60 Testing—Selection Guidelines. Available online: https://dtp.cancer.gov/organization/dscb/compoundSubmission/structureSelection.htm (accessed on 15 November 2022).
- NCI60 Screening Methodology—NCI60 Cell One/Five Doses Screen. Available online: https://dtp.cancer.gov/discovery_development/nci-60/methodology.htm (accessed on 15 November 2022).
- NCI-60 Human Cancer Cell Line Screen—Standard Operating Procedures for Sample Preparation for NCI60 Screen. Available online: https://dtp.cancer.gov/discovery_development/nci-60/handling.htm (accessed on 15 November 2022).
Z | N | G | ||
---|---|---|---|---|
a | b | c | ||
50 | 240 | 1.22 (1) | 1.23 (2) | 1.23 (3) |
500 | 1.22 (7) | 1.30 (8) | 1.31 (9) | |
760 | 1.32 (13) | 1.44 (14) | 1.42 (15) | |
100 | 240 | 1.31 (4) | 1.64(5) | 1.72 (6) |
500 | 1.23 (10) | 1.51 (11) | 1.53 (12) | |
760 | 1.28 (16) | 1.42 (17) | 1.44 (18) |
PANELS | CELL LINES | RUN | AVERAGE |DTV(GI50)| |
---|---|---|---|
Breast Cancer | BT-549 | 4 | 1.35 |
HS-578T | 3 | 1.30 | |
MCF7 | 1/7 | 1.30 | |
MDA-MB-231-ATCC | 7 | 1.22 | |
T-47D | 7 | 1.16 | |
CNS Cancer | SF-268 | 7 | 1.17 |
SF-295 | 1 | 1.25 | |
SF-539 | 4 | 1.18 | |
SNB-19 | 7 | 1.15 | |
SNB-75 | 1 | 1.16 | |
U251 | 1 | 1.24 | |
Colon Cancer | COLO-205 | 10 | 1.13 |
HCC-2998 | 1 | 1.09 | |
HCT-116 | 2/7 | 1.13 | |
HCT-15 | 2 | 1.21 | |
HT29 | 1 | 1.14 | |
KM12 | 1 | 1.19 | |
SW-620 | 2 | 1.14 | |
Leukemia | CCRF-CEM | 7 | 1.13 |
HL-60TB | 7 | 1.22 | |
K-562 | 2 | 1.27 | |
MOLT-4 | 3 | 1.12 | |
RPMI-8226 | 10 | 1.12 | |
SR | 2 | 1.28 | |
Melanoma | LOX-IMVI | 3 | 1.16 |
M14 | 1/3 | 1.20 | |
MALME-3M | 10 | 1.19 | |
MDA-MB-435 | 3 | 1.22 | |
SK-MEL-2 | 3 | 1.03 | |
SK-MEL-28 | 2/3 | 0.97 | |
SK-MEL-5 | 2 | 1.26 | |
UACC-257 | 2 | 1.07 | |
UACC-62 | 10 | 1.31 | |
Non-Small-Cell Lung Cancer | A549-ATCC | 3 | 1.18 |
EKVX | 1 | 1.02 | |
HOP-62 | 1/8 | 1.19 | |
HOP-92 | 10 | 1.21 | |
NCI-H226 | 7 | 1.07 | |
NCI-H23 | 4 | 1.16 | |
NCI-H322M | 1 | 1.10 | |
NCI-H460 | 2 | 1.26 | |
NCI-H522 | 7 | 1.09 | |
Ovarian Cancer | IGROV1 | 1/3 | 1.25 |
NCI-ADR-RES | 4 | 1.31 | |
OVCAR-3 | 1/4 | 1.22 | |
OVCAR-4 | 7 | 1.00 | |
OVCAR-5 | 16 | 1.02 | |
OVCAR-8 | 1 | 1.14 | |
SK-OV-3 | 7 | 1.18 | |
Prostate Cancer | DU-145 | 10 | 1.19 |
PC-3 | 2 | 1.19 | |
Renal Cancer | 786-0 | 10 | 1.16 |
A498 | 1 | 1.21 | |
ACHN | 7 | 1.19 | |
CAKI-1 | 1 | 1.11 | |
RXF-393 | 10 | 1.12 | |
SN12C | 1/10 | 1.16 | |
TK-10 | 10 | 0.99 | |
UO-31 | 2 | 1.16 |
PANELS | RUN | AVERAGE|DTV(GI50)| |
---|---|---|
Breast Cancer | 1/3 | 1.37 |
CNS Cancer | 1 | 1.23 |
Colon Cancer | 1 | 1.19 |
Leukemia | 2 | 1.23 |
Melanoma | 3 | 1.18 |
Non-Small-Cell Lung Cancer | 2/7 | 1.20 |
Ovarian Cancer | 1 | 1.21 |
Prostate Cancer | 1 | 1.23 |
Renal Cancer | 10 | 1.15 |
PANEL 1 | 1a | 1b | 1c | 2a | 3e |
---|---|---|---|---|---|
Leukemia | 14.84 | 78.71 | 96.37 | 77.47 | 18.53 |
Non-Small-Cell Lung Cancer | 61.79 | 98.02 | 95.47 | 84.39 | 29.86 |
Colon Cancer | −16.06 | 80.65 | 95.84 | 86.52 | 21.07 |
CNS Cancer | 32.98 | 98.55 | 101.40 | 98.19 | 18.66 |
Melanoma | 24.26 | 97.49 | 100.59 | 96.74 | 22.40 |
Ovarian Cancer | 46.48 | 103.35 | 101.45 | 95.29 | 32.68 |
Renal Cancer | 21.07 | 100.02 | 100.31 | 94.36 | 34.17 |
Prostate Cancer | 33.06 | 102.04 | 101.62 | 88.89 | 40.34 |
Breast Cancer | 18.21 | 86.77 | 99.62 | 88.93 | 24.71 |
Overall average | 26.29 | 93.96 | 99.19 | 90.09 | 26.93 |
PANEL | CELL LINE 1 | 1a | 3e | Curcumin | ||||||
---|---|---|---|---|---|---|---|---|---|---|
GI50 | TGI | LC50 | GI50 | TGI | LC50 | GI50 | TGI | LC50 | ||
Leukemia | CCRF-CEM | 5.65 | 4.7 | 4 | 5.4 | 4 | 4 | 5.52 | 4.81 | 4 |
HL-60(TB) | 5.63 | 4.77 | 4 | 5.63 | 5.07 | 4 | 5.14 | 4.60 | 4.04 | |
K-562 | 5.97 | 4 | 4 | 5.74 | 4 | 4 | 5.51 | 4.26 | 4 | |
MOLT-4 | 5.69 | 4.72 | 4 | 5.49 | 4 | 4 | 5.33 | 4.75 | 4.12 | |
RPMI-8226 | 6.41 | 5.63 | 4 | 5.58 | 4 | 4 | 5.68 | 5.20 | 4 | |
Panel average | 5.87 | 4.76 | 4 | 5.57 | 4.21 | 4 | 5.43 | 4.72 | 4.03 | |
Non-Small-Cell Lung Cancer | A549/ATCC | 4 | 4 | 4 | 5.32 | 4 | 4 | 4.89 | 4.50 | 4.11 |
EKVX | 5.3 | 4 | 4 | 5.21 | 4 | 4 | 4.82 | 4.45 | 4.10 | |
HOP-62 | 5.17 | 4 | 4 | 5.28 | 4 | 4 | 5.44 | 4.72 | 4.24 | |
HOP-92 | 4.82 | 4.08 | 4 | 5.6 | 4.63 | 4 | NT | NT | NT | |
NCI-H226 | 5.63 | NT 1 | 4 | 4.83 | 4 | 4 | 4.73 | 4.27 | 4 | |
NCI-H23 | 5.52 | 4 | 4 | 5.36 | 4 | 4 | 5.25 | 4.50 | 4 | |
NCI-H322M | 5.17 | 4 | 4 | 4.84 | 4 | 4 | 4.78 | 4.49 | 4.21 | |
NCI-H460 | 5.51 | 4.95 | 4 | 5.37 | 4 | 4 | 5.09 | 4.64 | 4.22 | |
NCI-H522 | 5.43 | 4.72 | 4 | 5.72 | 5.17 | 4.02 | 5.27 | 4.78 | 4.07 | |
Panel average | 5.17 | 4.22 | 4.00 | 5.28 | 4.20 | 4 | 5.03 | 4.54 | 4.12 | |
Colon Cancer | COLO-205 | 5.72 | 5.31 | 4.4 | 5.08 | 4.01 | 4 | 4.87 | 4.54 | 4.21 |
HCC-2998 | 5.77 | 5.49 | 5.22 | 4.71 | 4 | 4 | 5.52 | 5.09 | 4.53 | |
HCT-116 | 6.5 | 5.88 | 5.39 | 5.59 | 4.75 | 4 | 5.53 | 5.03 | 4.28 | |
HCT-15 | 6.11 | 5.21 | 4.25 | 5.56 | 4 | 4 | 5.39 | 4.73 | 4.14 | |
HT-29 | 6.12 | 5.58 | 5.09 | 5.58 | 4.97 | 4 | 5.29 | 4.49 | 4 | |
KM12 | 5.8 | 5.43 | 5.07 | 5.16 | 4 | 4 | 5.27 | 4.71 | 4.19 | |
SW-620 | 5.97 | 5.48 | 4.97 | 5.48 | 4 | 4 | 5.38 | 4.67 | 4.07 | |
Panel average | 6.00 | 5.48 | 4.91 | 5.31 | 4.25 | 4 | 5.32 | 4.75 | 4.20 | |
CNS Cancer | SF-268 | 5.6 | 5.07 | 4 | 5.11 | 4 | 4 | 5.15 | 4.44 | 4 |
SF-295 | 5.52 | 4.51 | 4 | 5.53 | 4.75 | 4 | 5.10 | 4.68 | 4.32 | |
SF-539 | 5.67 | 5.29 | 4.22 | 5.57 | 5.03 | 4.09 | 5.55 | 5.05 | 4.48 | |
SNB-19 | 5.51 | 4.63 | 4 | 5.39 | 4.04 | 4 | 5.05 | 4.61 | 4.20 | |
SNB-75 | 5.6 | 4.47 | 4 | 5.38 | 4.34 | 4 | 5.17 | 4.74 | 4.35 | |
U251 | 5.81 | 5.44 | 5.07 | 5.42 | 4.73 | 4 | 5.33 | 4.78 | 4.31 | |
Panel average | 5.62 | 4.90 | 4.22 | 5.40 | 4.48 | 4.02 | 5.22 | 4.72 | 4.28 | |
Melanoma | LOX IMVI | 5.84 | 5.49 | 5.15 | 5.51 | 4.54 | 4 | 5.57 | 5.07 | 4 |
MALME-3M | 5.24 | 4.1 | 4 | 5.21 | 4 | 4 | 4.85 | 4.56 | 4.27 | |
M14 | 5.77 | 5.36 | 4.24 | 5.51 | 4.58 | 4 | 5.42 | 4.80 | 4.35 | |
MDA-MB-435 | 5.94 | 5.53 | 5.11 | 6.03 | 5.41 | 4.19 | 5.53 | 4.92 | 4.40 | |
SK-MEL-2 | 4.51 | 4 | 4 | 5.54 | 4.73 | 4 | 4.78 | 4.39 | 4.06 | |
SK-MEL-28 | 5.74 | 5.4 | NT | 5.3 | 4 | 4 | 5.35 | 4.80 | 4.30 | |
SK-MEL-5 | 5.67 | 5.21 | 4 | 5.66 | 4.99 | 4 | 5.06 | 4.65 | 4.28 | |
UACC-257 | 5.61 | 5.13 | 4 | 4.97 | 4 | 4 | 4.94 | 4.62 | 4.31 | |
UACC-62 | 5.72 | 5.31 | 4.52 | 5.62 | 5 | 4 | 5.19 | 4.69 | 4.26 | |
Panel average | 5.56 | 5.06 | 4.38 | 5.48 | 4.58 | 4.02 | 5.19 | 4.72 | 4.25 | |
Ovarian Cancer | IGROV-1 | 5.57 | NT | 4 | 5.37 | 4 | 4 | 5.10 | 4.57 | 4.09 |
OVCAR-3 | 5.55 | 5 | 4 | 5.3 | 4.09 | 4 | 5.18 | 4.61 | 4.17 | |
OVCAR-4 | 5.39 | 4 | 4 | 5.04 | 4 | 4 | 5.03 | 4.44 | 4 | |
OVCAR-5 | 5.6 | 5.09 | 4 | 5.31 | 4.27 | 4 | 4.78 | 4.45 | 4.12 | |
OVCAR-8 | 5.53 | 4 | 4 | 5.06 | 4 | 4 | 5.13 | 4.55 | 4.08 | |
NCI/ADR-RES | 5.38 | 4 | 4 | 5.45 | 4 | 4 | 5.14 | 4.12 | 4 | |
SK-OV-3 | 4.44 | 4 | 4 | 5.06 | 4.03 | 4 | 5.05 | 4.68 | 4.33 | |
Panel average | 5.35 | 4.35 | 4.00 | 5.23 | 4.06 | 4 | 5.06 | 4.49 | 4.11 | |
Renal Cancer | 786-0 | 5.64 | 5.1 | 4 | 5.25 | 4 | 4 | 5.48 | 4.97 | 4.42 |
A-498 | 5.65 | 4.7 | 4 | 6.62 | 5.04 | 4 | 4.80 | 4.48 | 4.16 | |
ACHN | 5.69 | 5.27 | 4 | 4.86 | 4 | 4 | 4.91 | 4.54 | 4.17 | |
CAKI-1 | 5.5 | 4 | 4 | 4.94 | 4 | 4 | 4.92 | 4.60 | 4.30 | |
RXF-393 | 5.83 | 5.52 | 5.2 | 5.1 | 4.11 | 4 | 5.52 | 4.95 | 4.27 | |
SN12C | 5.51 | 4.75 | 4 | 5.26 | 4 | 4 | 5.08 | 4.60 | 4.20 | |
TK-10 | 5.42 | 4.6 | 4 | 5.42 | 4.56 | 4 | 4.85 | 4.51 | 4.18 | |
UO-31 | 5.79 | 5.47 | 5.14 | 5.32 | 4 | 4 | 4.95 | 4.61 | 4.27 | |
Panel average | 5.63 | 4.93 | 4.29 | 5.35 | 4.21 | 4 | 5.06 | 4.66 | 4.25 | |
Prostate Cancer | PC-3 | 5.48 | 4 | 4 | 5.39 | 4 | 4 | 5.06 | 4.59 | 4.15 |
DU-145 | 5.51 | 4.85 | 4 | 4.82 | 4 | 4 | 4.81 | 4.53 | 4.25 | |
Panel average | 5.50 | 4.43 | 4.00 | 5.11 | 4.00 | 4 | 4.93 | 4.56 | 4.20 | |
Breast Cancer | MCF7 | 6.29 | 5.02 | 4 | 5.46 | 4 | 4 | 5.48 | 4.46 | 4 |
MDA-MB-231/ATCC | 5.65 | 5.22 | 4 | 5.44 | 4.36 | 4 | 4.75 | 4.25 | 4 | |
HS 578T | 5.57 | 4 | 4 | 5.43 | 4.32 | 4 | 4.96 | 4.23 | 4 | |
BT-549 | 5.74 | 5.35 | 4.66 | 5.54 | 4.45 | 4 | 5.30 | 4.86 | 4.37 | |
T-47D | 5.65 | 4 | 4 | 5.46 | 4.09 | 4 | 5.08 | 4.33 | 4 | |
MDA-MB-468 | 5.81 | 5.43 | 4 | 5.54 | 4.56 | 4 | NT | NT | NT | |
Panel average | 5.79 | 4.84 | 4.11 | 5.48 | 4.30 | 4 | 5.11 | 4.43 | 4.07 | |
Overall average | 5.59 | 4.81 | 4.24 | 5.37 | 4.28 | 4.01 | 5.16 | 4.63 | 4.17 | |
Range | 4–6.5 | 4–5.88 | 4–5.39 | 4.71–6.62 | 4–5.41 | 4–4.19 | 4.73–5.68 | 4–5.20 | 4–4.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martorana, A.; La Monica, G.; Bono, A.; Mannino, S.; Buscemi, S.; Palumbo Piccionello, A.; Gentile, C.; Lauria, A.; Peri, D. Antiproliferative Activity Predictor: A New Reliable In Silico Tool for Drug Response Prediction against NCI60 Panel. Int. J. Mol. Sci. 2022, 23, 14374. https://doi.org/10.3390/ijms232214374
Martorana A, La Monica G, Bono A, Mannino S, Buscemi S, Palumbo Piccionello A, Gentile C, Lauria A, Peri D. Antiproliferative Activity Predictor: A New Reliable In Silico Tool for Drug Response Prediction against NCI60 Panel. International Journal of Molecular Sciences. 2022; 23(22):14374. https://doi.org/10.3390/ijms232214374
Chicago/Turabian StyleMartorana, Annamaria, Gabriele La Monica, Alessia Bono, Salvatore Mannino, Silvestre Buscemi, Antonio Palumbo Piccionello, Carla Gentile, Antonino Lauria, and Daniele Peri. 2022. "Antiproliferative Activity Predictor: A New Reliable In Silico Tool for Drug Response Prediction against NCI60 Panel" International Journal of Molecular Sciences 23, no. 22: 14374. https://doi.org/10.3390/ijms232214374
APA StyleMartorana, A., La Monica, G., Bono, A., Mannino, S., Buscemi, S., Palumbo Piccionello, A., Gentile, C., Lauria, A., & Peri, D. (2022). Antiproliferative Activity Predictor: A New Reliable In Silico Tool for Drug Response Prediction against NCI60 Panel. International Journal of Molecular Sciences, 23(22), 14374. https://doi.org/10.3390/ijms232214374