Controllable Synthesis of Hybrid Dendrimers Composed of a Carbosilane Core and an Aromatic Shell: Does Size Matter?
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Hybrid Dendrimers
2.2. Thermal Properties of Hybrid Dendrimers
2.3. The Phase Behavior of the Dendrimers
3. Materials and Methods
3.1. Materials
3.2. Synthetic Procedures
3.2.1. Synthesis of the Monoethynyl HPB Dendron
3.2.2. Synthesis of the Azide-Terminated Dendrimers
Synthesis of G1Si13(Cl)8
Synthesis of G2Si29(Cl)16
Synthesis of G1Si13(N3)8 [18]
Synthesis of G2Si29(N3)16
3.2.3. General Procedure for the “Click” Reactions
Synthesis of G1Si13Ar56
Synthesis of G2Si29Ar112
3.3. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chiozzi, V.; Rossi, F. Inorganic-organic core/shell nanoparticles: Progress and applications. Nanoscale Adv. 2020, 2, 5090–5105. [Google Scholar] [CrossRef] [PubMed]
- Gawande, M.B.; Goswami, A.; Asefa, T.; Guo, H.; Biradar, A.V.; Peng, D.-L.; Zboril, R.; Varma, R.S. Core-shell nanoparticles: Synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 2015, 44, 7540–7590. [Google Scholar] [CrossRef] [PubMed]
- Ghosh Chaudhuri, R.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2373–2433. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kim, T.; Lee, M. Responsive nanostructures from aqueous assembly of rigid-flexible block molecules. Acc. Chem. Res. 2011, 44, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Tambe, P.; Kumar, P.; Paknikar, K.M.; Gajbhiye, V. Smart triblock dendritic unimolecular micelles as pioneering nanomaterials: Advancement pertaining to architecture and biomedical applications. J. Control. Release 2019, 299, 64–89. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Zhang, J.; Zhang, P.; Luan, X.; Mai, Y. “Rod–coil” copolymers get self-assembled in solution. Mater. Chem. Front. 2019, 3, 2283–2307. [Google Scholar] [CrossRef]
- Otep, S.; Tseng, Y.-C.; Yomogita, N.; Chang, J.-F.; Chueh, C.-C.; Michinobu, T. Coil–rod–coil triblock copolymers synthesized by macromolecular clicking and their compatibilizer effects in all-polymer solar cells. J. Mater. Chem. C 2022, 10, 346–359. [Google Scholar] [CrossRef]
- Cai, C.; Lin, J.; Lu, Y.; Zhang, Q.; Wang, L. Polypeptide self-assemblies: Nanostructures and bioapplications. Chem. Soc. Rev. 2016, 45, 5985–6012. [Google Scholar] [CrossRef]
- Machado, C.A.; Smith, I.R.; Savin, D.A. Self-Assembly of Oligo- and Polypeptide-Based Amphiphiles: Recent Advances and Future Possibilities. Macromolecules 2019, 52, 1899–1911. [Google Scholar] [CrossRef]
- Ma, J.-Z.; Liu, Y.-H.; Bao, Y.; Liu, J.-L.; Zhang, J. Research advances in polymer emulsion based on "core-shell" structure particle design. Adv. Colloid Interface Sci. 2013, 197–198, 118–131. [Google Scholar] [CrossRef]
- Zhang, T.; Dvornic, P.R.; Kaganove, S.N. A comparative study of amphiphilic PAMAM dendrimers at the air-water interface with different hydrophobe attachment groups. Langmuir 2007, 23, 10589–10597. [Google Scholar] [CrossRef] [PubMed]
- Guerra, J.; Rodrigo, A.C.; Merino, S.; Tejeda, J.; García-Martínez, J.C.; Sánchez-Verdú, P.; Ceña, V.; Rodríguez-López, J. PPV–PAMAM Hybrid Dendrimers: Self-Assembly and Stabilization of Gold Nanoparticles. Macromolecules 2013, 46, 7316–7324. [Google Scholar] [CrossRef]
- Percec, V.; Rudick, J.G.; Peterca, M.; Yurchenko, M.E.; Smidrkal, J.; Heiney, P.A. Supramolecular structural diversity among first-generation hybrid dendrimers and twin dendrons. Chem. Eur. J. 2008, 14, 3355–3362. [Google Scholar] [CrossRef] [PubMed]
- Shcharbin, D.; Pedziwiatr-Werbicka, E.; Vcherashniaya, A.; Janaszewska, A.; Marcinkowska, M.; Goska, P.; Klajnert-Maculewicz, B.; Ionov, M.; Abashkin, V.; Ihnatsyeu-Kachan, A.; et al. Binding of poly(amidoamine), carbosilane, phosphorus and hybrid dendrimers to thrombin-Constants and mechanisms. Colloids Surf. B Biointerfaces 2017, 155, 11–16. [Google Scholar] [CrossRef]
- Serkova, E.S.; Krasnova, I.Y.; Milenin, S.A.; Selezneva, E.V.; Tatarinova, E.A.; Boldyrev, K.L.; Korlyukov, A.A.; Zubavichus, Y.V.; Buzin, M.I.; Serenko, O.A.; et al. Core/shell hybrid dendrimers: Controllable rigidity determines molecular behaviour. Polymer 2018, 138, 83–91. [Google Scholar] [CrossRef]
- Milenin, S.A.; Cherkaev, G.V.; Demchenko, N.V.; Serkova, E.S.; Krasnova, I.Y.; Selezneva, E.V.; Buzin, M.I.; Bakirov, A.V.; Vasil’ev, V.G.; Shifrina, Z.B.; et al. Influence of the Growing Flexible Shell on the Molecular Behavior of Hybrid Dendrimers. Macromolecules 2020, 53, 9706–9716. [Google Scholar] [CrossRef]
- Matsuoka, K.; Terabatake, M.; Saito, Y.; Hagihara, C.; Esumi, Y.; Terunuma, D.; Kuzuhara, H. Synthesis of Carbosilane Compounds Functionalized with Three or Fourβ-Cyclodextrin Moieties. Use of a One-Pot Reaction in Liquid Ammonia for Birch Reduction and the Subsequent SN2 Replacement. Bull. Chem. Soc. Jpn. 1998, 71, 2709–2713. [Google Scholar] [CrossRef]
- Liegertova, M.; Wrobel, D.; Herma, R.; Mullerova, M.; Stastna Cervenkova, L.; Curinova, P.; Strasak, T.; Maly, M.; Cermak, J.; Smejkal, J.; et al. Evaluation of toxicological and teratogenic effects of carbosilane glucose glycodendrimers in zebrafish embryos and model rodent cell lines. Nanotoxicology 2018, 12, 797–818. [Google Scholar] [CrossRef]
- Salvadori, K.; Krupkova, A.; Stastna Cervenkova, L.; Mullerova, M.; Eigner, V.; Strasak, T.; Curinova, P. Controlled Anchoring of (Phenylureido)sulfonamide-Based Receptor Moieties: An Impact of Binding Site Multiplication on Complexation Properties. Molecules 2021, 26, 5670. [Google Scholar] [CrossRef]
- Terazono, Y.; Kodis, G.; Liddell, P.A.; Garg, V.; Moore, T.A.; Moore, A.L.; Gust, D. Multiantenna artificial photosynthetic reaction center complex. J. Phys. Chem. B 2009, 113, 7147–7155. [Google Scholar] [CrossRef]
- Berresheim, A.J.; Muller, M.; Mullen, K. Polyphenylene Nanostructures. Chem. Rev. 1999, 99, 1747–1786. [Google Scholar] [CrossRef] [PubMed]
- Shifrina, Z.B.; Rajadurai, M.S.; Firsova, N.V.; Bronstein, L.M.; Huang, X.; Rusanov, A.L.; Muellen, K. Poly(Phenylene-pyridyl) Dendrimers: Synthesis and Templating of Metal Nanoparticles. Macromolecules 2005, 38, 9920–9932. [Google Scholar] [CrossRef]
- Vij, V.; Bhalla, V.; Kumar, M. Hexaarylbenzene: Evolution of Properties and Applications of Multitalented Scaffold. Chem. Rev. 2016, 116, 9565–9627. [Google Scholar] [CrossRef]
- Roll, M.F.; Kampf, J.W.; Laine, R.M. Crystalline Hybrid Polyphenylene Macromolecules from Octaalkynylsilsesquioxanes, Crystal Structures, and a Potential Route to 3-D Graphenes. Macromolecules 2011, 44, 3425–3435. [Google Scholar] [CrossRef]
- Bauer, R.E.; Enkelmann, V.; Wiesler, U.M.; Berresheim, A.J.; Müllen, K. Single-Crystal Structures of Polyphenylene Dendrimers. Chem. Eur. J. 2002, 8, 3858–3864. [Google Scholar] [CrossRef]
- Engel, G.E.; Wilke, S.; König, O.; Harris, K.D.M.; Leusen, F.J.J. PowderSolve—A complete package for crystal structure solution from powder diffraction patterns. J. Appl. Cryst. 1999, 32, 1169–1179. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Pisula, W.; Kudernac, T.; Wu, D.; Zhi, L.; De Feyter, S.; Mullen, K. Controlled self-assembly of C3-symmetric hexa-peri-hexabenzocoronenes with alternating hydrophilic and hydrophobic substituents in solution, in the bulk, and on a surface. J. Am. Chem. Soc. 2009, 131, 4439–4448. [Google Scholar] [CrossRef] [PubMed]
- Maly, K.E.; Maris, T.; Gagnon, E.; Wuest, J.D. Inclusion Compounds of Hexakis(4-cyanophenyl)benzene: Open Networks Maintained by C−H···N Interactions. Cryst. Growth Des. 2006, 6, 461–466. [Google Scholar] [CrossRef]
- Bakirov, A.V.; Tatarinova, E.A.; Milenin, S.A.; Shcherbina, M.A.; Muzafarov, A.M.; Chvalun, S.N. Close-packed polybutylcarbosilane dendrimers of higher generations. Soft Matter 2018, 14, 9755–9759. [Google Scholar] [CrossRef]
- Rebrov, E.A.; Leshchiner, I.D.; Muzafarov, A.M. Synthesis of Carbosilane Dendrimers with Variable Distance between Branching Nodes. Macromolecules 2012, 45, 8796–8804. [Google Scholar] [CrossRef]
- Kim, S.-B.; Lee, C.-H.; Jun, C.-H. Styrylsilane coupling reagents for immobilization of organic functional groups on silica and glass surfaces. Chem. Commun. 2018, 54, 9961–9964. [Google Scholar] [CrossRef] [PubMed]
Cycle | G1 | G2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Tcc, °C | Tmelt, °C | ΔHmelt, J/g | Tcryst, °C | ΔHcryst, J/g | Tcc, °C | Tmelt, °C | ΔHmelt, J/g | Tcryst, °C | ΔHcryst, J/g | ||
1 | Heating | 213 | 306 | 31 | - | - | 212 | 312 | 23 | - | - |
Cooling | - | - | - | 220/240 | 29 | - | - | - | 225 | 19 | |
2 | Heating | - | 273 | 31 | - | - | - | 276/311 | 21/23 | - | - |
Cooling | - | - | - | 216 | 25 | - | - | - | 223 | 19 | |
3 | Heating | 271 | 29 | - | - | 273/303 | 20/22 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ardabevskaia, S.N.; Chamkina, E.S.; Krasnova, I.Y.; Milenin, S.A.; Sukhova, E.A.; Boldyrev, K.L.; Bakirov, A.V.; Serenko, O.A.; Shifrina, Z.B.; Muzafarov, A.M. Controllable Synthesis of Hybrid Dendrimers Composed of a Carbosilane Core and an Aromatic Shell: Does Size Matter? Int. J. Mol. Sci. 2022, 23, 15461. https://doi.org/10.3390/ijms232415461
Ardabevskaia SN, Chamkina ES, Krasnova IY, Milenin SA, Sukhova EA, Boldyrev KL, Bakirov AV, Serenko OA, Shifrina ZB, Muzafarov AM. Controllable Synthesis of Hybrid Dendrimers Composed of a Carbosilane Core and an Aromatic Shell: Does Size Matter? International Journal of Molecular Sciences. 2022; 23(24):15461. https://doi.org/10.3390/ijms232415461
Chicago/Turabian StyleArdabevskaia, Sofia N., Elena S. Chamkina, Irina Yu. Krasnova, Sergey A. Milenin, Ekaterina A. Sukhova, Konstantin L. Boldyrev, Artem V. Bakirov, Olga A. Serenko, Zinaida B. Shifrina, and Aziz M. Muzafarov. 2022. "Controllable Synthesis of Hybrid Dendrimers Composed of a Carbosilane Core and an Aromatic Shell: Does Size Matter?" International Journal of Molecular Sciences 23, no. 24: 15461. https://doi.org/10.3390/ijms232415461
APA StyleArdabevskaia, S. N., Chamkina, E. S., Krasnova, I. Y., Milenin, S. A., Sukhova, E. A., Boldyrev, K. L., Bakirov, A. V., Serenko, O. A., Shifrina, Z. B., & Muzafarov, A. M. (2022). Controllable Synthesis of Hybrid Dendrimers Composed of a Carbosilane Core and an Aromatic Shell: Does Size Matter? International Journal of Molecular Sciences, 23(24), 15461. https://doi.org/10.3390/ijms232415461