Magnetic Luffa-Leaf-Derived Hierarchical Porous Biochar for Efficient Removal of Rhodamine B and Tetracycline Hydrochloride
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of Magnetic Biochar
2.2. Results of Characterizations
2.3. Results of Adsorption Experiments
2.3.1. Adsorption Kinetics
2.3.2. Adsorption Isotherm
2.3.3. Adsorption Thermodynamics
2.3.4. Effect of pH
2.3.5. Results of Cycle Tests
2.4. Probable Adsorption Mechanisms
2.5. Comparison
3. Materials and Methods
3.1. Materials and Reagents
3.2. Preparation of LLBs
3.3. Preparation of Magnetic Biochar
3.4. Adsorption Performances
3.5. Cycling Stability Studies
3.6. Characterization Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, T.; Wang, B.; Gao, B.; Cheng, N.; Feng, Q.; Chen, M.; Wang, S. Degradation of organic pollutants from water by biochar-assisted advanced oxidation processes: Mechanisms and applications. J. Hazard. Mater. 2023, 442, 130075. [Google Scholar] [CrossRef] [PubMed]
- Dapaah, M.F.; Niu, Q.; Yu, Y.; You, T.; Liu, B.; Cheng, L. Efficient persistent organic pollutant removal in water using MIL-metal–organic framework driven Fenton-like reactions: A critical review. Chem. Eng. J. 2022, 431, 134182. [Google Scholar] [CrossRef]
- Christensen, E.R.; Wang, Y.; Huo, J.; Li, A. Properties and fate and transport of persistent and mobile polar organic water pollutants: A review. J. Environ. Chem. Eng. 2022, 10, 107201. [Google Scholar] [CrossRef]
- Naghdi, S.; Shahrestani, M.M.; Zendehbad, M.; Djahaniani, H.; Kazemian, H.; Eder, D. Recent advances in application of metal-organic frameworks (MOFs) as adsorbent and catalyst in removal of persistent organic pollutants (POPs). J. Hazard. Mater. 2023, 442, 130127. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Zhang, Y.; Zhang, Z.; Zhou, L.; Yu, G.; Wen, X.; Chi, T.; Wang, G.; Su, Y.; Deng, F.; et al. Fe-based metal organic frameworks (Fe-MOFs) for organic pollutants removal via photo-Fenton: A review. Chem. Eng. J. 2022, 431, 133932. [Google Scholar] [CrossRef]
- Liu, X.; Lu, J.; Fang, X.; Zhou, J.; Chen, Q. Complexation modelling and oxidation mechanism of organic pollutants in cotton pulp black liquor during iron salt precipitation and electrochemical treatment. Chemosphere 2022, 308, 136374. [Google Scholar] [CrossRef]
- Tian, L.; Zhu, M.; Zhang, L.; Zhou, L.; Fan, J.; Wu, D.; Zou, J. New insights on the role of NaCl electrolyte for degradation of organic pollutants in the system of electrocatalysis coupled with advanced oxidation processes. J. Environ. Chem. Eng. 2022, 10, 107414. [Google Scholar] [CrossRef]
- Idris, M.O.; Kim, H.; Yaqoob, A.A.; Ibrahim, M.N.M. Exploring the effectiveness of microbial fuel cell for the degradation of organic pollutants coupled with bio-energy generation. Sustain. Energy Technol. Assess. 2022, 52, 102183. [Google Scholar] [CrossRef]
- Zaidi, N.A.H.M.; Lim, L.B.L.; Usman, A.; Kooh, M.R.R. Efficient adsorption of malachite green dye using Artocarpus odoratissimus leaves with artificial neural network modelling. Desalination Water Treat. 2018, 101, 313–324. [Google Scholar] [CrossRef]
- Kooh, M.R.R.; Thotagamuge, R.; Chau, Y.C.; Mahadi, A.H.; Lim, C.M. Machine learning approaches to predict adsorption capacity of Azolla pinnata in the removal of methylene blue. J. Taiwan Inst. Chem. E. 2022, 132, 104134. [Google Scholar] [CrossRef]
- Liu, L.; Kong, G.; Zhu, Y.; Lai, D.; Zhang, S.; Che, C. Ultralight, compressive and superhydrophobic methyltriethoxysilane-modified graphene aerogels for recyclable and selective organic pollutants adsorption from water. Appl. Surf. Sci. 2022, 598, 153694. [Google Scholar] [CrossRef]
- Buffa, A.; Mandler, D. Adsorption and detection of organic pollutants by fixed bed carbon nanotube electrochemical membrane. Chem. Eng. J. 2019, 359, 130–137. [Google Scholar] [CrossRef]
- Hu, X.; Zou, C.; Zou, X. The formation of supramolecular carbon nanofiber via amidation reaction on the surface of amino single walled carbon nanotubes for selective adsorption organic pollutants. J. Colloid. Interface Sci. 2019, 542, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Zeghioud, H.; Fryda, L.; Djelal, H.; Assadi, A.; Kane, A. A comprehensive review of biochar in removal of organic pollutants from wastewater: Characterization, toxicity, activation/functionalization and influencing treatment factors. J. Water Process Eng. 2022, 47, 102801. [Google Scholar] [CrossRef]
- Qiu, B.; Shao, Q.; Shi, J.; Yang, C.; Chu, H. Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges. Sep. Purif. Technol. 2022, 300, 121925. [Google Scholar] [CrossRef]
- Shao, F.; Xu, J.; Kang, X.; Hu, Z.; Shao, Y.; Lu, C.; Zhao, C.; Ren, Y.; Zhang, J. An attempt to enhance the adsorption capacity of biochar for organic pollutants-Characteristics of CaCl2 biochar under multiple design conditions. Sci. Total Environ. 2023, 854, 158675. [Google Scholar] [CrossRef]
- Guo, J.; Xu, J.; Liu, X.; Dai, L.; Zhang, C.; Xiao, X.; Huo, K. Enabling dual valorization of lignocellulose by fluorescent lignin carbon dots and biochar-supported persulfate activation: Towards waste-treats-pollutant. J. Hazard. Mater. 2022, 435, 129072. [Google Scholar] [CrossRef]
- Zhang, J.; Koubaa, A.; Xing, D.; Wang, H.; Wang, Y.; Liu, W.; Zhang, Z.; Wang, X.; Wang, Q. Conversion of lignocellulose into biochar and furfural through boron complexation and esterification reactions. Bioresour. Technol. 2020, 312, 123586. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, B.; Chen, G.; Chen, H.; Tang, S. Combining biological and chemical methods to disassemble of cellulose from corn straw for the preparation of porous carbons with enhanced adsorption performance. Int. J. Biol. Macromol. 2022, 209, 315–329. [Google Scholar] [CrossRef]
- Chen, S.; Xia, Y.; Zhang, B.; Chen, H.; Chen, G.; Tang, S. Disassembly of lignocellulose into cellulose, hemicellulose, and lignin for preparation of porous carbon materials with enhanced performances. J. Hazard. Mater. 2021, 408, 124956. [Google Scholar] [CrossRef]
- Shao, L.; Chen, H.; Li, Y.; Li, J.; Chen, G.; Wang, G. Pretreatment of corn stover via sodium hydroxide–urea solutions to improve the glucose yield. Bioresour. Technol. 2020, 307, 123191. [Google Scholar] [CrossRef]
- Xue, D.; Wang, J.; Yao, S. High production of β-glucosidase from a marine Aspergillus niger immobilized on towel gourd vegetable sponges. Chinese Chem. Lett. 2015, 26, 1011–1015. [Google Scholar] [CrossRef]
- Anbumani, D.; Dhandapani, K.; Manoharan, J.; Babujanarthanam, R.; Bashir, A.K.H.; Muthusamy, K.; Alfarhan, A.; Kanimozhi, K. Green synthesis and antimicrobial efficacy of titanium dioxide nanoparticles using Luffa acutangula leaf extract. J. King Saud Univ. Sci. 2022, 34, 101896. [Google Scholar] [CrossRef]
- Vanajothi, R.; Sudha, A.; Manikandan, R.; Rameshthangam, P.; Srinivasan, P. Luffa acutangula and Lippia nodiflora leaf extract induces growth inhibitory effect through induction of apoptosis on human lung cancer cell line. Biomed. Prev. Nutr. 2012, 2, 287–293. [Google Scholar] [CrossRef]
- Xu, S.; Qiang, Y.; Fu, A.; Tan, B. Luffa cylindrica roem leaves extract as the environment-friendly inhibitor for copper in sulfuric acid environment. J. Mol. Liq. 2021, 343, 117619. [Google Scholar] [CrossRef]
- Chen, S.; Chen, G.; Chen, H.; Sun, Y.; Yu, X.; Su, Y.; Tang, S. Preparation of porous carbon-based material from corn straw via mixed alkali and its application for removal of dye. Colloid. Surfaces A 2019, 568, 173–183. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, B.; Xia, Y.; Chen, H.; Chen, G.; Tang, S. Influence of mixed alkali on the preparation of edible fungus substrate porous carbon material and its application for the removal of dye. Colloid. Surfaces A 2021, 609, 125675. [Google Scholar] [CrossRef]
- Chen, X.; Yu, G.; Chen, Y.; Tang, S.; Su, Y. Cow dung-based biochar materials prepared via mixed base and its application in the removal of organic pollutants. Int. J. Mol. Sci. 2022, 23, 10094. [Google Scholar] [CrossRef]
- Eskandari, M.J.; Hasanzadeh, I. Size-controlled synthesis of Fe3O4 magnetic nanoparticles via an alternating magnetic field and ultrasonic-assisted chemical co-precipitation. Mater. Sci. Eng. B 2021, 266, 115050. [Google Scholar] [CrossRef]
- Jesus, A.C.B.; Jesus, J.R.; Lima, R.J.S.; Moura, K.O.; Almeida, J.M.A.; Duque, J.G.S.; Meneses, C.T. Synthesis and magnetic interaction on concentrated Fe3O4 nanoparticles obtained by the co-precipitation and hydrothermal chemical methods. Ceram. Int. 2020, 46, 11149–11153. [Google Scholar] [CrossRef]
- Wu, S.; Sun, A.; Zhai, F.; Wang, J.; Xu, W.; Zhang, Q.; Volinsky, A.A. Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater. Lett. 2011, 65, 1882–1884. [Google Scholar] [CrossRef]
- Zhang, B.; Jin, Y.; Qi, J.; Chen, H.; Chen, G.; Tang, S. Porous carbon materials based on Physalis alkekengi L. husk and its application for removal of malachite green. Environ. Technol. Innov. 2021, 21, 101343. [Google Scholar] [CrossRef]
- Xia, Y.; Jin, Y.; Qi, J.; Chen, H.; Chen, G.; Tang, S. Preparation of biomass carbon material based on Fomes fomentarius via alkali activation and its application for the removal of brilliant green in wastewater. Environ. Technol. Innov. 2021, 23, 101659. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, B.; Guo, Z.; Tang, S.; Su, Y.; Yu, X.; Chen, S.; Chen, G. Fungal mycelium modified hierarchical porous carbon with enhanced performance and its application for removal of organic pollutants. J. Environ. Chem. Eng. 2022, 10, 108699. [Google Scholar] [CrossRef]
- Lu, L.; Li, J.; Ng, D.H.L.; Yang, P.; Song, P.; Zuo, M. Synthesis of novel hierarchically porous Fe3O4@MgAl–LDH magnetic microspheres and its superb adsorption properties of dye from water. J. Ind. Eng. Chem. 2017, 46, 315–323. [Google Scholar] [CrossRef]
- Liu, H.; Ren, X.; Chen, L. Synthesis and characterization of magnetic metal–organic framework for the adsorptive removal of rhodamine B from aqueous solution. J. Ind. Eng. Chem. 2016, 34, 278–285. [Google Scholar] [CrossRef]
- Amaral, M.M.; Yukuhiro, V.Y.; Vicentini, R.; Peterlevitz, A.C.; Silva, L.M.D.; Fernandez, P.; Zanin, H. Direct observation of the CO2 formation and C–H consumption of carbon electrode in an aqueous neutral electrolyte supercapacitor by in-situ FTIR and Raman. J. Energy Chem. 2022, 71, 488–496. [Google Scholar] [CrossRef]
- Li, K.; Liu, Q.; Cheng, H.; Hu, M.; Zhang, S. Classification and carbon structural transformation from anthracite to natural coaly graphite by XRD, Raman spectroscopy, and HRTEM. Spectrochim. Acta A 2021, 249, 119286. [Google Scholar] [CrossRef]
- Chen, X.; Lin, J.; Su, Y.; Tang, S. One-step carbonization synthesis of magnetic biochar with 3D network structure and its application in organic pollutant control. Int. J. Mol. Sci. 2022, 23, 12579. [Google Scholar] [CrossRef]
- Chen, S.; Tang, S.; Sun, Y.; Wang, G.; Chen, H.; Yu, X.; Su, Y.; Chen, G. Preparation of a highly porous carbon material based on quinoa husk and its application for removal of dyes by adsorption. Materials 2018, 11, 1407. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Z.; Xia, Y.; Zhang, B.; Chen, H.; Chen, G.; Tang, S. Porous carbon material derived from fungal hyphae and its application for the removal of dye. RSC Adv. 2019, 9, 25480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Maabreh, A.M.; Abuassaf, R.A.; Hmedat, D.A.; Alkhabbas, M.; Edris, G.; Hussein-Al-Ali, S.H.; Alawaideh, S. Adsorption characteristics of hair dyes removal from aqueous solution onto oak cupules powder coated with ZnO. Int. J. Mol. Sci. 2022, 23, 11959. [Google Scholar] [CrossRef] [PubMed]
- Tonk, S.; Rapo, E. Linear and nonlinear regression analysis for the adsorption of remazol dye by romanian brewery waste by-product, Saccharomyces cerevisiae. Int. J. Mol. Sci. 2022, 23, 11827. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Lopez, M.I.; Pellicer, J.A.; Gomez-Morte, T.; Aunon, D.; Gomez-Lopez, V.M.; Yanez-Gascon, M.J.; Gil-Izquierdo, A.; Ceron-Carrasco, J.P.; Crini, G.; Nunez-Delicado, E.; et al. Removal of an azo dye from wastewater through the use of two technologies: Magnetic cyclodextrin polymers and pulsed light. Int. J. Mol. Sci. 2022, 23, 8406. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Tian, X.; Zhang, Y.; Zhu, G.; Gao, Q.; Liu, J.; Yu, X. A weed-derived hierarchical porous carbon with a large specific surface area for efficient dye and antibiotic removal. Int. J. Mol. Sci. 2022, 23, 6146. [Google Scholar] [CrossRef]
- Cai, Z.; Liu, Q.; Li, H.; Wang, J.; Tai, G.; Wang, F.; Han, J.; Zhu, Y.; Wu, G. Waste-to-resource strategy to fabricate functionalized MOFs composite material based on Durian Shell biomass carbon fiber and Fe3O4 for highly efficient and recyclable dye adsorption. Int. J. Mol. Sci. 2022, 23, 5900. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.S.; Jabbar, N.M.; Alardhi, S.M.; Majdi, H.S.; Albayati, T.M. Adsorption of methyl violet dye onto a prepared bio-adsorbent from date seeds: Isotherm, kinetics, and thermodynamic studies. Heliyon 2022, 8, e10276. [Google Scholar] [CrossRef]
- Saeed, T.; Naeem, A.; Din, I.U.; Farooq, M.; Khan, I.W.; Hamayun, M.; Malik, T. Synthesis of chitosan composite of metal-organic framework for the adsorption of dyes; kinetic and thermodynamic approach. J. Hazard. Mater. 2022, 427, 127902. [Google Scholar] [CrossRef]
- Koyuncu, D.D.E.; Okur, M. Removal of AV 90 dye using ordered mesoporous carbon materials prepared via nanocasting of KIT-6: Adsorption isotherms, kinetics and thermodynamic analysis. Sep. Purif. Technol. 2021, 257, 117657. [Google Scholar] [CrossRef]
- Kumbhar, P.; Narale, D.; Bhosale, R.; Jambhale, C.; Kim, J.; Kolekar, S. Synthesis of tea waste/Fe3O4 magnetic composite (TWMC) for efficient adsorption of crystal violet dye: Isotherm, kinetic and thermodynamic studies. J. Environ. Chem. Eng. 2022, 10, 107893. [Google Scholar] [CrossRef]
- Zhang, B.; Jin, Y.; Huang, X.; Tang, S.; Chen, H.; Su, Y.; Yu, X.; Chen, S.; Chen, G. Biological self-assembled hyphae/starch porous carbon composites for removal of organic pollutants from water. Chem. Eng. J. 2022, 450, 138264. [Google Scholar] [CrossRef]
- Wu, W.; Wu, C.; Zhang, G.; Liu, J.; Li, Y.; Li, G. Synthesis and characterization of magnetic K2CO3-activated carbon produced from bamboo shoot for the adsorption of Rhodamine b and CO2 capture. Fuel 2023, 332, 126107. [Google Scholar] [CrossRef]
- Tang, L.; Cai, Y.; Yang, G.; Liu, Y.; Zeng, G.; Zhou, Y.; Li, S.; Wang, J.; Zhang, S.; Fang, Y.; et al. Cobalt nanoparticles-embedded magnetic ordered mesoporous carbon for highly effective adsorption of rhodamine B. Appl. Surf. Sci. 2014, 314, 746–753. [Google Scholar] [CrossRef]
- Spessato, L.; Duarte, V.A.; Viero, P.; Zanella, H.; Fonseca, J.M.; Arroyo, P.A.; Almeida, V.C. Optimization of Sibipiruna activated carbon preparation by simplex-centroid mixture design for simultaneous adsorption of rhodamine B and metformin. J. Hazard. Mater. 2021, 411, 125166. [Google Scholar] [CrossRef]
- Xue, S.; Tan, J.; Ma, X.; Xu, Y.; Wan, R.; Tao, H. Boron-doped activated carbon derived from Zoysia sinica for Rhodamine B adsorption: The crucial roles of defect structures. FlatChem 2022, 34, 100390. [Google Scholar] [CrossRef]
- Xue, S.; Tu, B.; Li, Z.; Ma, X.; Xu, Y.; Li, M.; Fang, C.; Tao, H. Enhanced adsorption of Rhodamine B over Zoysia sinica Hance-based carbon activated by amminium chloride and sodium hydroxide treatments. Colloid. Surface A 2021, 618, 126489. [Google Scholar] [CrossRef]
- Yang, Z.; Zhao, Z.; Yang, X.; Ren, Z. Xanthate modified magnetic activated carbon for efficient removal of cationic dyes and tetracycline hydrochloride from aqueous solutions. Colloid. Surface A 2021, 615, 126273. [Google Scholar] [CrossRef]
- Xia, C.; Huang, H.; Liang, D.; Xie, Y.; Kong, F.; Yang, Q.; Fu, J.; Dou, Z.; Zhang, Q.; Meng, Z. Adsorption of tetracycline hydrochloride on layered double hydroxide loaded carbon nanotubes and site energy distribution analysis. Chem. Eng. J. 2022, 443, 136398. [Google Scholar] [CrossRef]
- Liu, D.; Gu, W.; Zhou, L.; Lei, J.; Wang, L.; Zhang, J.; Liu, Y. From biochar to functions: Lignin induced formation of Fe3C in carbon/Fe composites for efficient adsorption of tetracycline from wastewater. Sep. Purif. Technol. 2023, 304, 122217. [Google Scholar] [CrossRef]
- Yang, G.; Gao, Q.; Yang, S.; Yin, S.; Cai, X.; Yu, X.; Zhang, S.; Fang, Y. Strong adsorption of tetracycline hydrochloride on magnetic carbon-coated cobalt oxide nanoparticles. Chemosphere 2020, 239, 124831. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, J.; Zeng, Q.; Liang, Z.; Ye, X.; Lv, Y.; Liu, M. Preparation of Eucommia ulmoides lignin-based high-performance biochar containing sulfonic group: Synergistic pyrolysis mechanism and tetracycline hydrochloride adsorption. Bioresour. Technol. 2021, 329, 124856. [Google Scholar] [CrossRef] [PubMed]
Samples | SBET (m2/g) | Pm (nm) | Vtotal (cm3/g) |
---|---|---|---|
CLL | 9.0 | 11.27 | 0.0253 |
LLB-Na | 2139.2 | 2.22 | 1.1886 |
LLB-K | 1500.8 | 2.85 | 1.0692 |
LLB-MB | 2446.6 | 2.78 | 1.6990 |
LLB-MB@Fe3O4 | 2565.4 | 2.28 | 1.4643 |
Adsorbates | Adsorbents | Models | Parameters | C0 (mg/L) | ||
---|---|---|---|---|---|---|
100 | 200 | 300 | ||||
RhB | LLB-MB | PFK | Qe (mg/g) | 941.6 | 1386.6 | 1606.5 |
k1 (min−1) | 0.0087 | 0.0046 | 0.0038 | |||
Qe.cat (mg/g) | 904.1 | 1356.3 | 1571.5 | |||
R2 | 0.9842 | 0.9957 | 0.9928 | |||
PSK | k2 (g mg−1 min−1) | 0.0006 | 0.0007 | 0.0005 | ||
Qe.cat (mg/g) | 943.3 | 1395.7 | 1625.2 | |||
R2 | 0.9987 | 0.9998 | 0.9995 | |||
LLB-MB@Fe3O4 | PFK | Qe (mg/g) | 998.1 | 1502.2 | 1698.2 | |
k1 (min−1) | 0.0033 | 0.0059 | 0.0045 | |||
Qe.cat (mg/g) | 988.3 | 1415.9 | 1670.0 | |||
R2 | 0.9981 | 0.9457 | 0.9965 | |||
PSK | k2 (g mg−1 min−1) | 0.0006 | 0.0005 | 0.0006 | ||
Qe.cat (mg/g) | 1024.2 | 1513.0 | 1716.2 | |||
R2 | 0.9964 | 0.9994 | 0.9998 | |||
TH | LLB-MB | PFK | Qe (mg/g) | 831.4 | 1298.0 | 1602.4 |
k1 (min−1) | 0.0059 | 0.0066 | 0.0078 | |||
Qe.cat (mg/g) | 798.3 | 1237.1 | 1570.1 | |||
R2 | 0.9845 | 0.9450 | 0.9936 | |||
PSK | k2 (g mg−1 min−1) | 0.0005 | 0.0005 | 0.0004 | ||
Qe.cat (mg/g) | 842.0 | 1321.4 | 1628.6 | |||
R2 | 0.9998 | 0.9989 | 0.9996 | |||
LLB-MB@Fe3O4 | PFK | Qe (mg/g) | 896.1 | 1453.5 | 1749.9 | |
k1 (min−1) | 0.0061 | 0.0035 | 0.0085 | |||
Qe.cat (mg/g) | 874.8 | 1413.7 | 1680.4 | |||
R2 | 0.9939 | 0.9933 | 0.9863 | |||
PSK | k2 (g mg−1 min−1) | 0.0005 | 0.0004 | 0.0003 | ||
Qe.cat (mg/g) | 917.5 | 1469.3 | 1756.1 | |||
R2 | 0.9983 | 0.9994 | 0.9994 |
Adsorbates | Adsorbents | Parameters | C0 (mg/L) | ||
---|---|---|---|---|---|
100 | 200 | 300 | |||
RhB | LLB-MB | k3 (5−15 min) | 12.01 | 16.92 | 20.92 |
R2 | 0.9783 | 0.9678 | 0.9950 | ||
k3 (20−60 min) | 1.58 | 1.13 | 1.54 | ||
R2 | 0.9865 | 0.9734 | 0.8933 | ||
LLB-MB@Fe3O4 | k3 (5−15 min) | 19.43 | 22.55 | 20.15 | |
R2 | 0.9646 | 0.9529 | 0.9712 | ||
k3 (20−60 min) | 0.77 | 1.88 | 1.19 | ||
R2 | 0.7960 | 0.9586 | 0.9067 | ||
TH | LLB-MB | k3 (5−15 min) | 14.90 | 22.13 | 24.71 |
R2 | 0.9686 | 0.9399 | 0.9875 | ||
k3 (20−60 min) | 1.70 | 1.53 | 1.72 | ||
R2 | 0.9313 | 0.9160 | 0.9258 | ||
LLB-MB@Fe3O4 | k3 (5−15 min) | 18.91 | 22.86 | 26.14 | |
R2 | 0.9467 | 0.9378 | 0.9856 | ||
k3 (20−60 min) | 1.40 | 1.78 | 2.64 | ||
R2 | 0.8833 | 0.9247 | 0.9656 |
Adsorbates | Adsorbents | Types | Parameters | Values |
---|---|---|---|---|
RhB | LLB-MB | Langmuir | Qm (mg/g) | 1531.6 |
KL (L/mg) | 0.2699 | |||
R2 | 0.8738 | |||
Freundlich | KF (mg g−1(L mg−1)1/n) | 725.93 | ||
nF | 6.30 | |||
R2 | 0.9972 | |||
LLB-MB@Fe3O4 | Langmuir | Qm (mg/g) | 1582.6 | |
KL (L/mg) | 1.4446 | |||
R2 | 0.8637 | |||
Freundlich | KF (mg g−1(L mg−1)1/n) | 995.64 | ||
nF | 9.13 | |||
R2 | 0.9957 | |||
TH | LLB-MB | Langmuir | Qm (mg/g) | 1788.0 |
KL (L/mg) | 0.0456 | |||
R2 | 0.9662 | |||
Freundlich | KF (mg g−1(L mg−1)1/n) | 355.54 | ||
nF | 3.27 | |||
R2 | 0.9991 | |||
LLB-MB@Fe3O4 | Langmuir | Qm (mg/g) | 1844.6 | |
KL (L/mg) | 0.0870 | |||
R2 | 0.9728 | |||
Freundlich | KF (mg g−1(L mg−1)1/n) | 533.27 | ||
nF | 4.01 | |||
R2 | 0.9912 |
Adsorbates | Adsorbents | T (K) | ∆G (kJ/mol) | ∆H (kJ/mol) | ∆S (J mol−1 K−1) |
---|---|---|---|---|---|
RhB | LLB-MB | 293 | −6.92 | 16.23 | 79.00 |
298 | −7.34 | ||||
303 | −7.86 | ||||
308 | −8.21 | ||||
313 | −8.50 | ||||
LLB-MB@Fe3O4 | 293 | −7.70 | 26.98 | 118.36 | |
298 | −8.22 | ||||
303 | −8.69 | ||||
308 | −9.40 | ||||
313 | −10.07 | ||||
TH | LLB-MB | 293 | −6.78 | 6.47 | 45.22 |
298 | −7.09 | ||||
303 | −7.36 | ||||
308 | −7.52 | ||||
313 | −7.68 | ||||
LLB-MB@Fe3O4 | 293 | −7.46 | 15.45 | 78.18 | |
298 | −7.86 | ||||
303 | −8.31 | ||||
308 | −8.73 | ||||
313 | −9.02 |
Adsorbents | Qe for RhB (mg/g) | Qe for TH (mg/g) | References |
---|---|---|---|
LLB-MB@Fe3O4 | 1701.7 | 1755.9 | This work |
LLB-MB | 1608.1 | 1602.2 | This work |
Magnetic K2CO3-activated carbon | 229.9 | - | [52] |
Magnetic ordered mesoporous carbon | 468.0 | - | [53] |
Sibipiruna activated carbon | 630.9 | - | [54] |
Quinoa-husk-based porous carbon | 759.4 | - | [40] |
Boron-doped activated carbon | 1337.2 | - | [55] |
Zoysia sinica Hance-based carbon | 1375.8 | - | [56] |
Edible fungus substrate porous carbon | 1497.0 | - | [27] |
Corn straw porous carbon | 1578.0 | - | [26] |
Fungal hyphae porous carbon | 1912.0 | - | [41] |
Cow-dung-based biochar | 1241.0 | 1105.0 | [28] |
Hyphae/starch porous carbon composites | 1185.7 | 1386.0 | [51] |
Trichoderma reesei-based magnetic biochar | - | 171.3 | [39] |
Xanthate-modified activated carbon | - | 210.9 | [57] |
Carbon nanotubes | - | 756.2 | [58] |
Carbon-Fe3C/lignin composites | - | 760.4 | [59] |
Magnetic carbon | - | 769.4 | [60] |
Lignin-based biochar | - | 1163.0 | [61] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.; Zheng, Y.; Feng, M.; Chen, S. Magnetic Luffa-Leaf-Derived Hierarchical Porous Biochar for Efficient Removal of Rhodamine B and Tetracycline Hydrochloride. Int. J. Mol. Sci. 2022, 23, 15703. https://doi.org/10.3390/ijms232415703
Su Y, Zheng Y, Feng M, Chen S. Magnetic Luffa-Leaf-Derived Hierarchical Porous Biochar for Efficient Removal of Rhodamine B and Tetracycline Hydrochloride. International Journal of Molecular Sciences. 2022; 23(24):15703. https://doi.org/10.3390/ijms232415703
Chicago/Turabian StyleSu, Yingjie, Yangyang Zheng, Meiqin Feng, and Siji Chen. 2022. "Magnetic Luffa-Leaf-Derived Hierarchical Porous Biochar for Efficient Removal of Rhodamine B and Tetracycline Hydrochloride" International Journal of Molecular Sciences 23, no. 24: 15703. https://doi.org/10.3390/ijms232415703
APA StyleSu, Y., Zheng, Y., Feng, M., & Chen, S. (2022). Magnetic Luffa-Leaf-Derived Hierarchical Porous Biochar for Efficient Removal of Rhodamine B and Tetracycline Hydrochloride. International Journal of Molecular Sciences, 23(24), 15703. https://doi.org/10.3390/ijms232415703