Three Different Interaction Patterns between MCM-41 and Proteins
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of MCM-41 Nanoparticles
2.2. UV-Vis Absorption Spectra of the Interaction between MCM-41 Nanoparticles and Proteins
2.3. Fluorescence Spectra of the Interaction between MCM-41 Nanoparticle and Proteins
2.4. CD Spectra of the Interaction between MCM-41 and Proteins
2.5. Protein Adsorption Assay
2.6. Interaction Patterns
2.7. Inspiration for MCM-41 Drug Delivery Application
3. Materials and Methods
3.1. Materials
3.2. Preparation of MCM-41 Nanoparticles
3.3. Preparation of MCM-41 Nanoparticles Incubated with Proteins
3.4. UV-Vis Absorption Spectra
3.5. Fluorescence Spectra
3.6. CD Spectra
3.7. Protein Adsorption Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manzano, M.; Vallet-Regí, M. Mesoporous silica nanoparticles for drug delivery. Adv. Funct. Mater. 2020, 30, 1902634. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, M.; Raza, F.; Liu, Y.; Wei, Y.; Qiu, M.; Su, J. Recent Developments in Mesoporous Silica Nanoparticles for Tumor Theranostic Applications. Curr. Pharm. Des. 2022, 28, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, Y.; Feng, N. Mesoporous silica nanoparticles: Synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opin. Drug Deliv. 2019, 16, 219–237. [Google Scholar] [CrossRef]
- Kazemzadeh, P.; Sayadi, K.; Toolabi, A.; Sayadi, J.; Zeraati, M.; Chauhan, N.P.S.; Sargazi, G. Structure-Property Relationship for Different Mesoporous Silica Nanoparticles and its Drug Delivery Applications: A Review. Front. Chem. 2022, 10, 823785. [Google Scholar] [CrossRef] [PubMed]
- Mora-Raimundo, P.; Lozano, D.; Manzano, M.; Vallet-Regí, M. Nanoparticles to knockdown osteoporosis-related gene and promote osteogenic marker expression for osteoporosis treatment. ACS Nano 2019, 13, 5451–5464. [Google Scholar] [CrossRef] [Green Version]
- Trzeciak, K.; Kazźmierski, S.; Druzżbicki, K.; Potrzebowski, M.J. Mapping of guest localization in mesoporous silica particles by solid-state NMR and Ab Initio modeling: New insights into benzoic acid and p-fluorobenzoic acid embedded in MCM-41 via ball milling. J. Phys. Chem. C 2021, 125, 10096–10109. [Google Scholar] [CrossRef]
- Kucukturkmen, B.; Inam, W.; Howaili, F.; Gouda, M.; Prabhakar, N.; Zhang, H.; Rosenholm, J.M. Microfluidic-Assisted Fabrication of Dual-Coated pH-Sensitive Mesoporous Silica Nanoparticles for Protein Delivery. Biosensors 2022, 12, 181. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; Alsehli, M.; Al-Enizi, A.; Nafady, A. Recent Advances in Mesoporous Silica Nanoparticles for Targeted Drug Delivery Applications. Curr. Drug Deliv. 2022, 19, 436–450. [Google Scholar] [CrossRef]
- Stephen, S.; Gorain, B.; Choudhury, H.; Chatterjee, B. Exploring the role of mesoporous silica nanoparticle in the development of novel drug delivery systems. Drug Deliv. Transl. Res. 2022, 12, 105–123. [Google Scholar] [CrossRef]
- Zeng, W.; Qian, X.-F.; Zhang, Y.-B.; Yin, J.; Zhu, Z.-K.J.M.R.B. Organic modified mesoporous MCM-41 through solvothermal process as drug delivery system. Mater. Res. Bull. 2005, 40, 766–772. [Google Scholar] [CrossRef]
- Zhang, L.Z.; Tang, G.-Q.; Gao, B.-W.; Zhang, G.-L. Spectroscopic studies on the excited-state properties of the light-induced antiviral drug hypocrellin A loaded in the mesoporous solid. Chem. Phys. Lett. 2004, 396, 102–109. [Google Scholar] [CrossRef]
- Park, Y.; Yoon, H.J.; Lee, S.E.; Lee, L.P. Multifunctional Cellular Targeting, Molecular Delivery, and Imaging by Integrated Mesoporous-Silica with Optical Nanocrescent Antenna: MONA. ACS Nano 2022, 16, 2013–2023. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Dong, J.; Huang, X.; Du, X. Protein-Gated Upconversion Nanoparticle-Embedded Mesoporous Silica Nanovehicles via Diselenide Linkages for Drug Release Tracking in Real Time and Tumor Chemotherapy. ACS Appl. Mater. Interfaces 2021, 13, 29070–29082. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, W. The Janus of Protein Corona on nanoparticles for tumor targeting, immunotherapy and diagnosis. J. Control Release 2022, 345, 832–850. [Google Scholar] [CrossRef] [PubMed]
- Kuschnerus, I.; Giri, K.; Ruan, J.; Huang, Y.; Bedford, N.; Garcia-Bennett, A. On the growth of the soft and hard protein corona of mesoporous silica particles with varying morphology. J. Colloid Interface Sci. 2022, 612, 467–478. [Google Scholar] [CrossRef]
- Monopoli, M.P.; Åberg, C.; Salvati, A.; Dawson, K.A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 2012, 7, 779–786. [Google Scholar] [CrossRef]
- Salvati, A.; Pitek, A.S.; Monopoli, M.P.; Prapainop, K.; Bombelli, F.B.; Hristov, D.R.; Kelly, P.M.; Åberg, C.; Mahon, E.; Dawson, K.A. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 2013, 8, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Yadav, I.; Aswal, V.K.; Kohlbrecher, J.J.L. Structure and interaction of nanoparticle–protein complexes. Langmuir 2018, 34, 5679–5695. [Google Scholar] [CrossRef]
- Piludu, M.; Medda, L.; Monduzzi, M.; Salis, A. Gold Nanoparticles: A Powerful Tool to Visualize Proteins on Ordered Mesoporous Silica and for the Realization of Theranostic Nanobioconjugates. Int. J. Mol. Sci. 2018, 19, 1991. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.; Qi, W.; Huang, R.; Su, R.; He, Z.J. Elucidating the influence of gold nanoparticles on the binding of salvianolic acid B and rosmarinic acid to bovine serum albumin. PLoS ONE 2015, 10, e0118274. [Google Scholar] [CrossRef]
- Pandit, S.; Kundu, S.J.C.; Physicochemical, S.A.; Aspects, E. Fluorescence quenching and related interactions among globular proteins (BSA and lysozyme) in presence of titanium dioxide nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2021, 628, 127253. [Google Scholar] [CrossRef]
- Lacerda, S.H.D.P.; Park, J.J.; Meuse, C.; Pristinski, D.; Becker, M.L.; Karim, A.; Douglas, J.F. Interaction of gold nanoparticles with common human blood proteins. ACS Nano 2010, 4, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Onas, A.M.; Biru, I.E.; Garea, S.A.; Iovu, H. Novel Bovine Serum Albumin Protein Backbone Reassembly Study: Strongly Twisted beta-Sheet Structure Promotion upon Interaction with GO-PAMAM. Polymers 2020, 12, 2603. [Google Scholar] [CrossRef] [PubMed]
- Dewald, I.; Isakin, O.; Schubert, J.; Kraus, T.; Chanana, M. Protein identity and environmental parameters determine the final physicochemical properties of protein-coated metal nanoparticles. J. Phys. Chem. C 2015, 119, 25482–25492. [Google Scholar] [CrossRef]
- Deere, J.; Magner, E.; Wall, J.G.; Hodnett, B.K. Mechanistic and structural features of protein adsorption onto mesoporous silicates. J. Phys. Chem. B 2002, 106, 7340–7347. [Google Scholar] [CrossRef]
- Catalano, F.; Alberto, G.; Ivanchenko, P.; Dovbeshko, G.; Martra, G. Effect of silica surface properties on the formation of multilayer or submonolayer protein hard corona: Albumin adsorption on pyrolytic and colloidal SiO2 nanoparticles. J. Phys. Chem. C 2015, 119, 26493–26505. [Google Scholar] [CrossRef] [Green Version]
- Vinu, A.A.; Murugesan, V.; Hartmann, M. Adsorption of lysozyme over mesoporous molecular sieves MCM-41 and SBA-15: Influence of pH and aluminum incorporation. J. Phys. Chem. B 2004, 108, 7323–7330. [Google Scholar] [CrossRef]
- Mazzaferro, E.M.; Edwards, T. Update on Albumin Therapy in Critical Illness. Vet. Clin. N. Am. Small Anim. Pract. 2020, 50, 1289–1305. [Google Scholar] [CrossRef]
- Ragland, S.A.; Criss, A.K. From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS Pathog. 2017, 13, e1006512. [Google Scholar] [CrossRef] [Green Version]
- Talamini, L.; Violatto, M.B.; Cai, Q.; Monopoli, M.P.; Kantner, K.; Krpetic, Z.; Perez-Potti, A.; Cookman, J.; Garry, D.; Silveira, C.P. Influence of size and shape on the anatomical distribution of endotoxin-free gold nanoparticles. ACS Nano 2017, 11, 5519–5529. [Google Scholar] [CrossRef]
- Gref, R.; Lück, M.; Quellec, P.; Marchand, M.; Dellacherie, E.; Harnisch, S.; Blunk, T.; Müller, R.J.C.; Biointerfaces, S.B. ‘Stealth’corona-core nanoparticles surface modified by polyethylene glycol (PEG): Influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf. B Biointerfaces 2000, 18, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Debayle, M.; Balloul, E.; Dembele, F.; Xu, X.; Hanafi, M.; Ribot, F.; Monzel, C.; Coppey, M.; Fragola, A.; Dahan, M.J.B. Zwitterionic polymer ligands: An ideal surface coating to totally suppress protein-nanoparticle corona formation? Biomaterials 2019, 219, 119357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Peng, Z.; Leblanc, R.M. Method To Determine Protein Concentration in the Protein-Nanoparticle Conjugates Aqueous Solution Using Circular Dichroism Spectroscopy. Anal. Chem. 2015, 87, 6455–6459. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Yan, C.; Gao, S.; Liu, Y. Surface chemistry of gold nanoparticles determines interactions with bovine serum albumin. Mater. Sci. Eng. C 2019, 103, 109856. [Google Scholar] [CrossRef] [PubMed]
Test | Result | Conclusion |
---|---|---|
UV-Vis | The Abs increase of BHb was greater than BSA and lower than Lyso. | The interactions between MCM-41 and the three proteins were different. |
Fluorescence | The fluorescence quenching degree of BSA was stronger than that of Lyso, and the fluorescence intensity of BHb increased. | The interaction force followed the rank of MCM-41-BSA > MCM-41-Lyso > MCM-41-BHb. |
CD | The extent of secondary structure change was BSA > Lyso > BHb. | The intensity of interaction between proteins and MCM-41 was BSA > Lyso > BHb. |
Protein adsorption | The adsorption amount of MCM-41 was BSA > Lyso > BHb. | The adsorption capability was BSA > Lyso > BHb. |
Protein | Molecular Weight (MW) | Isoelectric Point (PI) | Grand Average of Hydropathicity (GRAVY) | Amino Acid Residue Number |
---|---|---|---|---|
BSA | 69,222 | 5.82 | −0.433 | 583 |
Lyso | 14,780 | 10.80 | −0.153 | 129 |
BHb | 64,690 | 6.80 | 0.004 | 141 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Zhong, Z.; Wang, W.; Huang, Y.; Wu, C.; Pan, X.; Huang, Z. Three Different Interaction Patterns between MCM-41 and Proteins. Int. J. Mol. Sci. 2022, 23, 15850. https://doi.org/10.3390/ijms232415850
Xie Y, Zhong Z, Wang W, Huang Y, Wu C, Pan X, Huang Z. Three Different Interaction Patterns between MCM-41 and Proteins. International Journal of Molecular Sciences. 2022; 23(24):15850. https://doi.org/10.3390/ijms232415850
Chicago/Turabian StyleXie, Yuke, Ziqiao Zhong, Wenhao Wang, Ying Huang, Chuanbin Wu, Xin Pan, and Zhengwei Huang. 2022. "Three Different Interaction Patterns between MCM-41 and Proteins" International Journal of Molecular Sciences 23, no. 24: 15850. https://doi.org/10.3390/ijms232415850
APA StyleXie, Y., Zhong, Z., Wang, W., Huang, Y., Wu, C., Pan, X., & Huang, Z. (2022). Three Different Interaction Patterns between MCM-41 and Proteins. International Journal of Molecular Sciences, 23(24), 15850. https://doi.org/10.3390/ijms232415850