From Basic Radiobiology to Translational Radiotherapy
Challenges of Radiotherapy | Actual Problems | Potential Strategies |
---|---|---|
Radioresistant tumors | Radioresistant hypoxia | Hypoxia cell sensitizer [7], High-LET radiation [16] |
Radioresistant cancer cells | Modulating DDR for radiosensitization [9] | |
Cancer stem cells | Reducing stemness by modulating responsive genes [10] | |
Combination with chemotherapeutic agents | Efficient drug delivery system [12] | |
Normal tissue damage | Intestine damage | Modulation of microbiota to reduce toxicity [5] |
Brain injury | Modulating exosomes [4], Modulation of activated microglia [14], Combination with high-dose microbeam [15] |
Author Contributions
Funding
Conflicts of Interest
References
- Nickoloff, J.A.; Taylor, L.; Sharma, N.; Kato, T.A. Exploiting DNA repair pathways for tumor sensitization, mitigation of resistance, and normal tissue protection in radiotherapy. Cancer Drug Resist. 2021, 4, 244–263. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, H.; Sunada, S.; Hirakawa, H.; Fujimori, A.; Elmegerhi, S.; Leary, D.; Kato, T.A. Radiobiological Characterization of Canine Malignant Melanoma Cell Lines with Different Types of Ionizing Radiation and Efficacy Evaluation with Cytotoxic Agents. Int. J. Mol. Sci. 2019, 20, 841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cartwright, I.M.; Su, C.; Haskins, J.S.; Salinas, V.A.; Sunada, S.; Yu, H.; Uesaka, M.; Hirakawa, H.; Chen, D.J.; Fujimori, A.; et al. DNA Repair Deficient Chinese Hamster Ovary Cells Exhibiting Differential Sensitivity to Charged Particle Radiation under Aerobic and Hypoxic Conditions. Int. J. Mol. Sci. 2018, 19, 2228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pazzaglia, S.; Tanno, B.; De Stefano, I.; Giardullo, P.; Leonardi, S.; Merla, C.; Babini, G.; Tuncay Cagatay, S.; Mayah, A.; Kadhim, M.; et al. Micro-RNA and Proteomic Profiles of Plasma-Derived Exosomes from Irradiated Mice Reveal Molecular Changes Preventing Apoptosis in Neonatal Cerebellum. Int. J. Mol. Sci. 2022, 23, 2169. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Liu, Z.; Dong, Y.; Zhao, J.; Wang, B.; Xiao, H.; Li, Y.; Chen, Z.; Liu, X.; Liu, J.; et al. Social Hierarchy Dictates Intestinal Radiation Injury in a Gut Microbiota-Dependent Manner. Int. J. Mol. Sci. 2022, 23, 13189. [Google Scholar] [CrossRef] [PubMed]
- Fujii, Y.; Genet, M.D.; Roybal, E.J.; Kubota, N.; Okayasu, R.; Miyagawa, K.; Fujimori, A.; Kato, T.A. Comparison of the bromodeoxyuridine-mediated sensitization effects between low-LET and high-LET ionizing radiation on DNA double-strand breaks. Oncol. Rep. 2013, 29, 2133–2139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busato, F.; Khouzai, B.E.; Mognato, M. Biological Mechanisms to Reduce Radioresistance and Increase the Efficacy of Radiotherapy: State of the Art. Int. J. Mol. Sci. 2022, 23, 10211. [Google Scholar] [CrossRef] [PubMed]
- Jeggo, P.A.; Kemp, L.M. X-ray-sensitive mutants of Chinese hamster ovary cell line. Isolation and cross-sensitivity to other DNA-damaging agents. Mutat. Res. 1983, 112, 313–327. [Google Scholar] [CrossRef] [PubMed]
- Tamaddondoust, R.N.; Wong, A.; Chandrashekhar, M.; Azzam, E.I.; Alain, T.; Wang, Y. Identification of Novel Regulators of Radiosensitivity Using High-Throughput Genetic Screening. Int. J. Mol. Sci. 2022, 23, 8774. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, X.; Hu, S.; Pan, Y.; Zhang, J.; Tai, G.; Shao, C. GDF15 Contributes to Radioresistance by Mediating the EMT and Stemness of Breast Cancer Cells. Int. J. Mol. Sci. 2022, 23, 10911. [Google Scholar] [CrossRef] [PubMed]
- Rich, J.N. Cancer stem cells in radiation resistance. Cancer Res. 2007, 67, 8980–8984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faqihi, F.; Stoodley, M.A.; McRobb, L.S. Externalization of Mitochondrial PDCE2 on Irradiated Endothelium as a Target for Radiation-Guided Drug Delivery and Precision Thrombosis of Pathological Vasculature. Int. J. Mol. Sci. 2022, 23, 8908. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.Q.; Yin, G.; Huang, J.R.; Xi, S.J.; Qian, F.; Lee, R.X.; Peng, X.C.; Tang, F.R. Ionizing Radiation-Induced Brain Cell Aging and the Potential Underlying Molecular Mechanisms. Cells 2021, 10, 3570. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Huang, Y.; Duan, M.; Yang, Q.; Ren, B.; Tang, F. Microglia as Therapeutic Target for Radiation-Induced Brain Injury. Int. J. Mol. Sci. 2022, 23, 8286. [Google Scholar] [CrossRef] [PubMed]
- Jaekel, F.; Brauer-Krisch, E.; Bartzsch, S.; Laissue, J.; Blattmann, H.; Scholz, M.; Soloviova, J.; Hildebrandt, G.; Schultke, E. Microbeam Irradiation as a Simultaneously Integrated Boost in a Conventional Whole-Brain Radiotherapy Protocol. Int. J. Mol. Sci. 2022, 23, 8319. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Zhou, G.; Hu, W. Research Progress of Heavy Ion Radiotherapy for Non-Small-Cell Lung Cancer. Int. J. Mol. Sci. 2022, 23, 2316. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chailapakul, P.; Kato, T.A. From Basic Radiobiology to Translational Radiotherapy. Int. J. Mol. Sci. 2022, 23, 15902. https://doi.org/10.3390/ijms232415902
Chailapakul P, Kato TA. From Basic Radiobiology to Translational Radiotherapy. International Journal of Molecular Sciences. 2022; 23(24):15902. https://doi.org/10.3390/ijms232415902
Chicago/Turabian StyleChailapakul, Piyawan, and Takamitsu A. Kato. 2022. "From Basic Radiobiology to Translational Radiotherapy" International Journal of Molecular Sciences 23, no. 24: 15902. https://doi.org/10.3390/ijms232415902
APA StyleChailapakul, P., & Kato, T. A. (2022). From Basic Radiobiology to Translational Radiotherapy. International Journal of Molecular Sciences, 23(24), 15902. https://doi.org/10.3390/ijms232415902