Multi-Omics Uncover the Mechanism of Wheat under Heavy Metal Stress
Abstract
:1. Introduction
2. Epigenomics and Heavy Metal Stress in Wheat
3. Transcriptomics and Heavy Metal Stress in Wheat
4. Proteomics Advances in Wheat under Heavy Metal Stress
5. Metabolomics Uncovering Global Metabolic Changes in Wheat with Heavy Metal Stress
6. Ionomics for Wheat under Heavy Metal Stress
7. Functional Genes and Heavy Metal Stress in Wheat
Gene | Function | References |
---|---|---|
TaZIP14-B | Transport Zn and Fe | [111] |
TaZIP13-B | Transport Zn and Fe | [111] |
TpIRT1 | Enhance the concentration of Fe, Mn, Co and Cd | [117] |
TaIRT2-A | Transport Zn and Fe | [111] |
TaVIT2 | Promote the transport of Fe and Mn | [118] |
TpNRAMP5 | Increase the accumulation of Cd, Mn and Co, but not Fe and Z | [119] |
TuMTP1 | Sequester excess cytosolic Zn2+ and Co2+ | [123] |
TaHMA2 | Transport Cd2+ and Zn2+ across membranes and increase root–shoot Zn/Cd translocation | [54,127] |
TaHMA2b-7A | Modulate long-distance Cd translocation in wheat | [110] |
OsHMA3 | Limit root-to-shoot Cd translocation and Cd accumulation in wheat | [128] |
TaHMA3 and TaVP1 | Increase Cd tolerance in wheat and decrease Cd translocation to aboveground parts | [37] |
TaCNR2 | Increase Cd, Zn and Mn tolerance and enhance Cd, Zn and Mn translocation from roots to shoots | [129] |
TaCNR5 | Increase Cd translocation from roots to shoots | [130] |
TuCNR10 | Enhance Cd, Mn, and Zn tolerance | [131] |
TdSHN1 | Confer Cd tolerances by increasing activities of superoxide dismutase and catalases | [132] |
TuCAX1a and TuCAX1b | Increase Ca2+, Zn2+ translocation | [133] |
TaCOPT3D | Reduce root, shoot and grain Cd accumulation | [134] |
TaHsfA4a | Confer Cd tolerance by upregulating metallothionein gene expression | [135] |
TaEXPA2 | Improve Cd tolerance by enhancing activities of H+-ATPase, V-ATPase and PPase | [136] |
AetSRG1 | Reduce Cd accumulation | [137] |
8. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Chen, Y.; Yang, Y.; Zhang, Q.; Fu, B.; Cai, J.; Guo, W.; Shi, L.; Wu, J.; Chen, Y. A thorough screening based on QTLs controlling zinc and copper accumulation in the grain of different wheat genotypes. Environ. Sci. Pollut. Res. Int. 2021, 28, 15043–15054. [Google Scholar] [CrossRef] [PubMed]
- Nriagu, J.O.; Pacyna, J.M. Quantitative assessment of worldwide contamination of air, water and soils by trace-metals. Nature 1988, 333, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Tanhuanpaa, P.; Kalendar, R.; Schulman, A.H.; Kiviharju, E. A major gene for grain cadmium accumulation in oat (Avena sativa L.). Genome 2007, 50, 588–594. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Tu, J.; Liu, H.; Hua, M.; Liao, Q.; Feng, J.; Weng, Z.; Huang, G. Multivariate analysis of trace element concentrations in atmospheric deposition in the Yangtze River Delta, East China. Atmos. Environ. 2009, 43, 5781–5790. [Google Scholar] [CrossRef]
- Charbonnier, M.; Gonzalez-Espinoza, G.; Kehl-Fie, T.E.; Lalaouna, D. Battle for metals: Regulatory RNAs at the front line. Front. Cell. Infect. Microbiol. 2022, 12, 923. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.H.; Qiao, K.; Wang, H.H.; Wang, H.; Chai, T.Y. MTP8 from Triticum urartu is primarily responsible for manganese tolerance. Int. J. Mol. Sci. 2022, 23, 5683. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Wang, N.Q.; Xiong, H.C.; Qiu, W.; Nakanishi, H.; Kobayashi, T.; Nishizawa, N.K.; Zuo, Y.M. The yellow stripe-like (YSL) gene functions in internal copper transport in peanut. Genes 2018, 9, 635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, S.U.; Qi, X.B.; Kamran, M.; Yasin, G.; Cheng, H.F.; Rehim, A.; Riaz, L.; Rizwan, M.; Ali, S.; Alsahli, A.A.; et al. Silicon elevated cadmium tolerance in wheat (Triticum aestivum L.) by endorsing nutrients uptake and antioxidative defense mechanisms in the leaves. Plant Physiol. Biochem. 2021, 166, 148–159. [Google Scholar] [CrossRef]
- Zeng, J.; Tang, J.; Zhang, F.; Wang, Y.; Kang, H.; Chen, G.; Zhang, Z.; Yuan, S.; Zhou, Y. Ammonium regulates redox homeostasis and photosynthetic ability to mitigate copper toxicity in wheat seedlings. Ecotoxicol. Environ. Saf. 2021, 226, 112825. [Google Scholar] [CrossRef]
- Sricoth, T.; Meeinkuirt, W.; Saengwilai, P.; Pichtel, J.; Taeprayoon, P. Aquatic plants for phytostabilization of cadmium and zinc in hydroponic experiments. Environ. Sci. Pollut. Res. Int. 2018, 25, 14964–14976. [Google Scholar] [CrossRef]
- Bálint, A.F.; Röder, M.S.; Hell, R.; Galiba, G.; Börner, A. Mapping of QTLs affecting copper tolerance and the Cu, Fe, Mn and Zn contents in the shoots of wheat seedlings. Biol. Plant. 2007, 51, 129–134. [Google Scholar] [CrossRef]
- Manna, I.; Sahoo, S.; Bandyopadhyay, M. Effect of engineered nickel oxide nanoparticle on reactive oxygen species-nitric oxide interplay in the roots of Allium cepa L. Front. Plant Sci. 2021, 12, 586509. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.H.; Li, C.M.; Dai, C.L.; Qin, R.L.; Liang, X.L.; Li, Y.; Yu, F.M. A novel role of sulfate in promoting Mn phytoextraction efficiency and alleviating Mn stress in Polygonum lapathifolium Linn. Ecotoxicol. Environ. Saf. 2021, 213, 112036. [Google Scholar] [CrossRef] [PubMed]
- Kopittke, P.M.; Menzies, N.W. Effect of Cu toxicity on growth of cowpea (Vigna unguiculata). Plant Soil 2006, 279, 287–296. [Google Scholar] [CrossRef] [Green Version]
- Irshad, M.A.; Rehman MZ, U.; Anwar-Ul-Haq, M.; Rizwan, M.; Nawaz, R.; Shakoor, M.B.; Wijaya, L.; Alyemeni, M.N.; Ahmad, P.; Ali, S. Effect of green and chemically synthesized titanium dioxide nanoparticles on cadmium accumulation in wheat grains and potential dietary health risk: A field investigation. J. Hazard. Mater. 2021, 415, 125585. [Google Scholar] [CrossRef]
- Meng, Y.; Jing, H.; Huang, J.; Shen, R.; Zhu, X. The role of nitric oxide signaling in plant responses to cadmium stress. Int. J. Mol. Sci. 2022, 23, 6901. [Google Scholar] [CrossRef]
- Gao, Y.N.; Wu, P.; Jeyakumar, P.; Bolan, N.; Wang, H.L.; Gao, B.; Wang, S.S.; Wang, B. Biochar as a potential strategy for remediation of contaminated mining soils: Mechanisms, applications, and future perspectives. J. Environ. Manag. 2022, 313, 114973. [Google Scholar] [CrossRef]
- Cui, Z.; Xu, G.; Ormeci, B.; Liu, H.; Zhang, Z. Transformation and stabilization of heavy metals during pyrolysis of organic and inorganic-dominated sewage sludges and their mechanisms. Waste Manag. 2022, 150, 57–65. [Google Scholar] [CrossRef]
- Wang, G.; Su, M.Y.; Chen, Y.H.; Lin, F.F.; Luo, D.; Gao, S.F. Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China. Environ. Pollut. 2006, 144, 127–135. [Google Scholar] [CrossRef]
- Ghaderi, A.A.; Abduli, M.A.; Karbassi, A.R.; Nasrabadi, T.; Khajeh, M. Evaluating the effects of fertilizers on bioavailable metallic pollution of soils, case study of Sistan farms, Iran. Int. J. Environ. Res. 2012, 6, 565–570. [Google Scholar]
- Li, G.; Peng, X.; Xuan, H.; Wei, L.; Yang, Y.; Guo, T.; Kang, G. Proteomic analysis of leaves and roots of common wheat (Triticum aestivum L.) under copper-stress conditions. J. Proteome Res. 2013, 12, 4846–4861. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.; Yang, L.; Gong, H.; Wang, L.; Li, H.; Yu, J.; Li, Y.; Deji, Y.; Nima, C.; Zhao, S.; et al. Bioaccumulation characteristics, transfer model of heavy metals in soil-crop system and health assessment in plateau region, China. Ecotoxicol. Environ. Saf. 2022, 241, 113733. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Cruz, E.Y.; Amador-Martinez, I.; Aranda-Rivera, A.K.; Cruz-Gregorio, A.; Pedraza Chaverri, J. Renal damage induced by cadmium and its possible therapy by mitochondrial transplantation. Chem.-Biol. Interact. 2022, 361, 109961. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, X.; Zeng, Z.; Lin, X.; Qin, Q.; Huo, X. Blood lead and cadmium levels associated with hematological and hepatic functions in patients from an e-waste-polluted area. Chemosphere 2019, 220, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Zhou, B.; Liu, H.; Cai, L. Comprehensive review of cadmium toxicity mechanisms in male reproduction and therapeutic strategies. Rev. Environ. Contam. Toxicol. 2021, 258, 151–193. [Google Scholar] [PubMed]
- Ma, Y.; Ran, D.; Shi, X.; Zhao, H.; Liu, Z. Cadmium toxicity: A role in bone cell function and teeth development. Sci. Total Environ. 2021, 769, 144646. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.F.; Lowe, M.; Chan, H.M. Mercury exposure, cardiovascular disease, and mortality: A systematic review and dose-response meta-analysis. Environ. Res. 2021, 193, 110538. [Google Scholar] [CrossRef]
- Guedes, F.; Maia, C.F.; Silva, B.; Batista, B.L.; Alyemeni, M.N.; Ahmad, P.; Lobato, A. Exogenous 24-Epibrassinolide stimulates root protection, and leaf antioxidant enzymes in lead stressed rice plants: Central roles to minimize Pb content and oxidative stress. Environ. Pollut. 2021, 280, 116992. [Google Scholar] [CrossRef]
- Heikal, Y.M.; El-Esawi, M.A.; Naidu, R.; Elshamy, M.M. Eco-biochemical responses, phytoremediation potential and molecular genetic analysis of Alhagi maurorum grown in metal-contaminated soils. BMC Plant Biol. 2022, 22, 383. [Google Scholar] [CrossRef]
- Janeeshma, E.; Puthur, J.T. Physiological and metabolic dynamism in mycorrhizal and non-mycorrhizal Oryza sativa (var. Varsha) subjected to Zn and Cd toxicity: A comparative study. Environ. Sci. Pollut. Res. Int. 2022. ahead of print. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, X.; Fang, M.Y.; Ye, Q.J.; Li, Z.M.; Ahammed, G.J. Systemic H2O2 signaling mediates epigallocatechin-3-gallate-induced cadmium tolerance in tomato. J. Hazard. Mater. 2022, 438, 129511. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.P.; Zhao, F.L.; Judy, J.D.; He, Z.L. Copper stress alleviation in corn (Zea mays L.): Comparative efficiency of carbon nanotubes and carbon nanoparticles. Nanoimpact 2022, 25, 100381. [Google Scholar] [CrossRef] [PubMed]
- Ci, D.W.; Jiang, D.; Dai, T.B.; Jing, Q.; Cao, W.X. Effects of cadmium on plant growth and physiological traits in contrast wheat recombinant inbred lines differing in cadmium tolerance. Chemosphere 2009, 77, 1620–1625. [Google Scholar] [CrossRef] [PubMed]
- Mei, S.N.; Lin, K.N.; Williams, D.V.; Liu, Y.; Dai, H.X.; Cao, F.B. Cadmium accumulation in cereal crops and tobacco: A review. Agron.-Basel 2022, 12, 1952. [Google Scholar] [CrossRef]
- Shah, T.; Xu, J.; Zou, X.; Cheng, Y.; Nasir, M.; Zhang, X. Omics approaches for engineering wheat production under abiotic stresses. Int. J. Mol. Sci. 2018, 19, 2390. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Li, Z. Recent advances in minimizing cadmium accumulation in wheat. Toxics 2022, 10, 187. [Google Scholar] [CrossRef]
- Zhang, D.Z.; Zhou, H.; Shao, L.L.; Wang, H.R.; Zhang, Y.B.; Zhu, T.; Ma, L.T.; Ding, Q.; Ma, L.J. Root characteristics critical for cadmium tolerance and reduced accumulation in wheat (Triticum aestivum L.). J. Environ. Manag. 2022, 305, 114365. [Google Scholar] [CrossRef]
- Xiao, R.; Wang, S.; Li, R.; Wang, J.J.; Zhang, Z. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicol. Environ. Saf. 2017, 141, 17–24. [Google Scholar] [CrossRef]
- Wang, S.; Wu, W.; Liu, F.; Liao, R.; Hu, Y. Accumulation of heavy metals in soil-crop systems: A review for wheat and corn. Environ. Sci. Pollut. Res. Int. 2017, 24, 15209–15225. [Google Scholar] [CrossRef]
- Aprile, A.; Sabella, E.; Francia, E.; Milc, J.; Ronga, D.; Pecchioni, N.; Ferrari, E.; Luvisi, A.; Vergine, M.; De Bellis, L. Combined effect of cadmium and lead on durum wheat. Int. J. Mol. Sci. 2019, 20, 5891. [Google Scholar] [CrossRef] [Green Version]
- Shafiq, S.; Zeb, Q.; Ali, A.; Sajjad, Y.; Nazir, R.; Widemann, E.; Liu, L.Y. Lead, cadmium and zinc phytotoxicity alter DNA Methylation levels to confer heavy metal tolerance in wheat. Int. J. Mol. Sci. 2019, 20, 4676. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Ali, S.; Abbas, T.; Zia-Ur-Rehman, M.; Hannan, F.; Keller, C.; Al-Wabel, M.I.; Ok, Y.S. Cadmium minimization in wheat: A critical review. Ecotoxicol. Environ. Saf. 2016, 130, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Murtaza, B.; Naeem, F.; Shahid, M.; Abbas, G.; Shah, N.S.; Amjad, M.; Bakhat, H.F.; Imran, M.; Niazi, N.K.; Murtaza, G. A multivariate analysis of physiological and antioxidant responses and health hazards of wheat under cadmium and lead stress. Environ. Sci. Pollut. Res. Int. 2019, 26, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kaur, G.; Kumar, A.; Meena, V.; Kaur, J.; Pandey, A.K. Overlapping transcriptional expression response of wheat zinc-induced facilitator-like transporters emphasize important role during Fe and Zn stress. BMC Mol. Biol. 2019, 20, 22. [Google Scholar] [CrossRef] [Green Version]
- Iskil, R.; Surgun-Acar, Y.; Catav, S.S.; Zemheri-Navruz, F.; Erden, Y. Mercury toxicity affects oxidative metabolism and induces stress responsive mechanisms in wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants Int. J. Funct. Plant Biol. 2022, 28, 911–920. [Google Scholar] [CrossRef]
- Li, G.; Wang, Y.; Liu, H.; Qin, S.; Sui, F.; Fu, H.; Duan, R.; Li, C.; Zhao, P. A comparison study of physiological response and TaZIPs expression in seedlings of two wheat (Triticum aestivum L.) cultivars with contrasting grain zinc accumulation. Plant Sci. 2022, 318, 111237. [Google Scholar] [CrossRef]
- Pandey, B.; Suthar, S.; Chand, N. Effect of biochar amendment on metal mobility, phytotoxicity, soil enzymes, and metal-uptakes by wheat (Triticum aestivum) in contaminated soils. Chemosphere 2022, 307, 135889. [Google Scholar] [CrossRef]
- Rizvi, A.; Zaidi, A.; Ameen, F.; Ahmed, B.; AlKahtani, M.D.F.; Khan, M.S. Heavy metal induced stress on wheat: Phytotoxicity and microbiological management. RSC Adv. 2020, 10, 38379–38403. [Google Scholar] [CrossRef]
- Gupta, C.; Salgotra, R.K. Epigenetics and its role in effecting agronomical traits. Front. Plant Sci. 2022, 13, 925688. [Google Scholar] [CrossRef]
- Yadav, C.B.; Pandey, G.; Muthamilarasan, M.; Prasad, M. Epigenetics and epigenomics of plants. Adv. Biochem. Eng. Biotechnol. 2018, 164, 237–261. [Google Scholar]
- Feng, S.J.; Liu, X.S.; Cao, H.W.; Yang, Z.M. Identification of a rice metallochaperone for cadmium tolerance by an epigenetic mechanism and potential use for clean up in wetland. Environ. Pollut. 2021, 288, 117837. [Google Scholar] [CrossRef]
- Sun, M.; Yang, Z.; Liu, L.; Duan, L. DNA Methylation in plant responses and adaption to abiotic stresses. Int. J. Mol. Sci. 2022, 23, 6910. [Google Scholar] [CrossRef]
- Shafiq, S.; Ali, A.; Sajjad, Y.; Zeb, Q.; Shahzad, M.; Khan, A.R.; Nazir, R.; Widemann, E. The interplay between toxic and essential metals for their uptake and translocation is likely governed by DNA methylation and histone deacetylation in Maize. Int. J. Mol. Sci. 2020, 21, 6959. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.J.; Wang, J.W.; Chai, T.Y.; Zhang, Y.X.; Feng, S.S.; Li, Y.; Zhao, H.J.; Liu, H.M.; Chai, X.P. Functional analyses of TaHMA2, a P1B-type ATPase in wheat. Plant Biotechnol. J. 2013, 11, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Ma, S.; Shen, D.; Fu, H.; Wang, Y.; Liu, Y.; Shah, K.; Yue, C.; Huang, J. Genome-wide identification of Gramineae histone modification genes and their potential roles in regulating wheat and maize growth and stress responses. BMC Plant Biol. 2021, 21, 543. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Xiao, L.; Quan, M.; Wang, Q.; El-Kassaby, Y.A.; Du, Q.; Zhang, D. Linkage-linkage disequilibrium dissection of the epigenetic quantitative trait loci (epiQTLs) underlying growth and wood properties in Populus. New Phytol. 2020, 225, 1218–1233. [Google Scholar] [CrossRef]
- Singh, D.; Chaudhary, P.; Taunk, J.; Singh, C.K.; Sharma, S.; Singh, V.J.; Singh, D.; Chinnusamy, V.; Yadav, R.; Pal, M. Plant epigenomics for extenuation of abiotic stresses: Challenges and future perspectives. J. Exp. Bot. 2021, 72, 6836–6855. [Google Scholar] [CrossRef]
- Cortijo, S.; Wardenaar, R.; Colome-Tatche, M.; Gilly, A.; Etcheverry, M.; Labadie, K.; Caillieux, E.; Hospital, F.; Aury, J.M.; Wincker, P.; et al. Mapping the epigenetic basis of complex traits. Science 2014, 343, 1145–1148. [Google Scholar] [CrossRef]
- Paixao, J.F.R.; Gillet, F.X.; Ribeiro, T.P.; Bournaud, C.; Lourenco-Tessutti, I.T.; Noriega, D.D.; de Melo, B.P.; de Almeida-Engler, J.; Grossi-de-Sa, M.F. Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a Histone AcetylTransferase. Sci. Rep. 2019, 9, 1–9. [Google Scholar]
- Gallego-Bartolome, J.; Gardiner, J.; Liu, W.L.; Papikian, A.; Ghoshal, B.; Kuo, H.Y.; Zhao, J.M.C.; Segal, D.J.; Jacobsen, S.E. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proc. Natl. Acad. Sci. USA 2018, 115, E2125–E2134. [Google Scholar] [CrossRef] [Green Version]
- Papikian, A.; Liu, W.L.; Gallego-Bartolome, J.; Jacobsen, S.E. Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, F.; Yu, Z.; Zhou, Q.; Huang, A. Multi-omics-based discovery of plant signaling molecules. Metabolites 2022, 12, 76. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.U.; Nawaz, M.F.; Gul, S.; Yasin, G.; Hussain, B.; Li, Y.; Cheng, H. State-of-the-art OMICS strategies against toxic effects of heavy metals in plants: A review. Ecotoxicol. Environ. Saf. 2022, 242, 113952. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Zhang, Y.; Xu, S.; Yue, S.; Zhang, X.; Liu, M.; Sun, L.; Jia, X.; Zhou, Y. Multi-leveled insights into the response of the eelgrass Zostera marina L to Cu than Cd exposure. Sci. Total Environ. 2022, 845, 157057. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Tao, J.; Zhao, J.; Wu, Z.; Zhang, H.; Gao, Y.; Tian, S.; Xie, R.; Xu, S.; Lu, L. Transcriptome analysis reveals candidate genes involved in multiple heavy metal tolerance in hyperaccumulator Sedum alfredii. Ecotoxicol. Environ. Saf. 2022, 241, 113795. [Google Scholar] [CrossRef]
- Meng, L.; Yang, Y.; Ma, Z.; Jiang, J.; Zhang, X.; Chen, Z.; Cui, G.; Yin, X. Integrated physiological, transcriptomic and metabolomic analysis of the response of Trifolium pratense L. to Pb toxicity. J. Hazard. Mater. 2022, 436, 129128. [Google Scholar] [CrossRef]
- Wu, F.; Fan, J.; Ye, X.; Yang, L.; Hu, R.; Ma, J.; Ma, S.; Li, D.; Zhou, J.; Nie, G.; et al. Unraveling cadmium toxicity in Trifolium repens L. seedling: Insight into regulatory mechanisms using comparative transcriptomics combined with physiological analyses. Int. J. Mol. Sci. 2022, 23, 4612. [Google Scholar] [CrossRef]
- Yang, J.; Li, L.; Zhang, X.; Wu, S.; Han, X.; Li, X.; Xu, J. Comparative transcriptomics analysis of roots and leaves under Cd Stress in Calotropis gigantea L. Int. J. Mol. Sci. 2022, 23, 3329. [Google Scholar] [CrossRef]
- Zhou, M.; Zheng, S.G.; Liu, R.; Lu, J.; Lu, L.; Zhang, C.H.; Liu, Z.H.; Luo, C.P.; Zhang, L.; Wu, Y. Comparative analysis of root transcriptome profiles between low- and high-cadmium-accumulating genotypes of wheat in response to cadmium stress. Funct. Integr. Genom. 2019, 19, 281–294. [Google Scholar] [CrossRef]
- Zhang, T.; Xiao, J.; Zhao, Y.; Zhang, Y.; Jie, Y.; Shen, D.; Yue, C.; Huang, J.; Hua, Y.; Zhou, T. Comparative physiological and transcriptomic analyses reveal ascorbate and glutathione coregulation of cadmium toxicity resistance in wheat genotypes. BMC Plant Biol. 2021, 21, 459. [Google Scholar] [CrossRef]
- Zhou, M.; Zheng, S.; Liu, R.; Lu, L.; Zhang, C.; Zhang, L.; Yant, L.; Wu, Y. The genome-wide impact of cadmium on microRNA and mRNA expression in contrasting Cd responsive wheat genotypes. BMC Genom. 2019, 20, 615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, Y.P.; Wang, Y.; Zhou, T.; Huang, J.Y.; Yue, C.P. Combined morpho-physiological, ionomic and transcriptomic analyses reveal adaptive responses of allohexaploid wheat (Triticum aestivum L.) to iron deficiency. BMC Plant Biol. 2022, 22, 234. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Shukla, V.; Kumar, A.; Kaur, M.; Goel, P.; Singh, P.; Shukla, A.; Meena, V.; Kaur, J.; Singh, J.; et al. Integrative analysis of hexaploid wheat roots identifies signature components during iron starvation. J. Exp. Bot. 2019, 70, 6141–6161. [Google Scholar] [CrossRef] [PubMed]
- Gupta, O.P.; Pandey, V.; Saini, R.; Khandale, T.; Singh, A.; Malik, V.K.; Narwal, S.; Ram, S.; Singh, G.P. Comparative physiological, biochemical and transcriptomic analysis of hexaploid wheat (T. aestivum L.) roots and shoots identifies potential pathways and their molecular regulatory network during Fe and Zn starvation. Genomics 2021, 113, 3357–3372. [Google Scholar] [CrossRef]
- Gupta, O.P.; Pandey, V.; Saini, R.; Narwal, S.; Malik, V.K.; Khandale, T.; Ram, S.; Singh, G.P. Identifying transcripts associated with efficient transport and accumulation of Fe and Zn in hexaploid wheat (T. aestivum L.). J. Biotechnol. 2020, 316, 46–55. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Wang, C.; Peng, F.; Wang, R.J.; Xiao, X.; Zeng, J.; Kang, H.Y.; Fan, X.; Sha, L.N.; et al. Transcriptomic profiles reveal the interactions of Cd/Zn in dwarf polish Wheat (Triticum polonicum L.) roots. Front. Physiol. 2017, 8, 168. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Xu, C.; You, C.; Mo, B.; Chen, X.; Gao, L.; Liu, L. Parallel analysis of RNA ends reveals global microRNA-mediated target RNA cleavage in maize. Plant J. Cell Mol. Biol. 2022, 112, 268–283. [Google Scholar] [CrossRef]
- Marzec, M. MicroRNA: A new signal in plant-to-plant communication. Trends Plant Sci. 2022, 27, 418–419. [Google Scholar] [CrossRef]
- Zhou, M.; Zheng, S.; Li, Y.; Liu, R.; Zhang, L.; Wu, Y. Comparative profiling of roots small RNA expression and corresponding gene ontology and pathway analyses for low- and high-cadmium-accumulating genotypes of wheat in response to cadmium stress. Funct. Integr. Genom. 2020, 20, 177–190. [Google Scholar] [CrossRef]
- Qiu, Z.; Hai, B.; Guo, J.; Li, Y.; Zhang, L. Characterization of wheat miRNAs and their target genes responsive to cadmium stress. Plant Physiol. Biochem. PPB 2016, 101, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, X.; Yuan, L.; Shen, T.; Zhang, Y. Comparative small RNA profiling and functional exploration on wheat with high- and low-cadmium accumulation. Front. Genet. 2021, 12, 635599. [Google Scholar] [CrossRef] [PubMed]
- Bahmani, M.; O’Lone, C.E.; Juhasz, A.; Nye-Wood, M.; Dunn, H.; Edwards, I.B.; Colgrave, M.L. Application of mass spectrometry-based proteomics to barley research. J. Agric. Food Chem. 2021, 69, 8591–8609. [Google Scholar] [CrossRef]
- Ju, Y.H.; Roy, S.K.; Roy Choudhury, A.; Kwon, S.J.; Choi, J.Y.; Rahman, M.A.; Katsube-Tanaka, T.; Shiraiwa, T.; Lee, M.S.; Cho, K.; et al. Proteome changes reveal the protective roles of exogenous citric acid in alleviating Cu toxicity in Brassica napus L. Int. J. Mol. Sci. 2021, 22, 5879. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, S.; Kamal AH Hossain, Z. Wheat proteomics: Proteome modulation and abiotic stress acclimation. Front. Plant Sci. 2014, 5, 684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.Y.; Jung, W.J.; Bang, G.; Hwang, H.; Kim, J.Y. Transcriptome and proteome co-profiling offers an understanding of pre-harvest sprouting (PHS) molecular mechanisms in wheat (Triticum aestivum). Plants 2022, 11, 2807. [Google Scholar] [CrossRef] [PubMed]
- Pan, R.; He, D.L.; Xu, L.; Zhou, M.X.; Li, C.D.; Wu, C.; Xu, Y.H.; Zhang, W.Y. Proteomic analysis reveals response of differential wheat (Triticum aestivum L.) genotypes to oxygen deficiency stress. BMC Genom. 2019, 20, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Luo, F.; Zou, R.; Liu, J.X.; Yan, Y.M. Integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses. J. Proteom. 2021, 234, 104097. [Google Scholar] [CrossRef]
- Halder, T.; Choudhary, M.; Liu, H.; Chen, Y.; Yan, G.; Siddique, K.H.M. Wheat proteomics for abiotic stress tolerance and root system architecture: Current status and future prospects. Proteomes 2022, 10, 17. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, Y.R.; Hu, H.; Xu, Y.; Zhang, H.J. Comparative proteomic analysis of Cd-responsive proteins in wheat roots. Acta Physiol. Plant. 2011, 33, 349–357. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, H.; Xu, Y.; Li, X.X.; Zhang, H.J. Differential proteomic analysis of cadmium-responsive proteins in wheat leaves. Biol. Plant. 2011, 55, 586–590. [Google Scholar] [CrossRef]
- Jian, M.; Zhang, D.; Wang, X.; Wei, S.; Zhao, Y.; Ding, Q.; Han, Y.; Ma, L. Differential expression pattern of the proteome in response to cadmium stress based on proteomics analysis of wheat roots. BMC Genom. 2020, 21, 343. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Zhang, H.; Qin, S.M.; Zhang, J.; Yao, L.G.; Chen, Z.J.; Yang, J.J. Mechanisms of Enterobacter bugandensis TJ6 immobilization of heavy metals and inhibition of Cd and Pb uptake by wheat based on metabolomics and proteomics. Chemosphere 2021, 276, 130157. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Cheng, L.L.; Copie, V.; Edison, A.S.; Eghbalnia, H.R.; Hoch, J.C.; Gouveia, G.J.; Pathmasiri, W.; Powers, R.; Schock, T.B.; et al. NMR and metabolomics-a roadmap for the future. Metabolites 2022, 12, 678. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Zhan, C.; Yang, C.; Fernie, A.R.; Luo, J. Metabolomics-centered mining of plant metabolic diversity and function: Past decade and future perspectives. Mol. Plant 2022, 16, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Yu, M.; Xia, J.; Ren, Z.; Xing, J.; Li, C.; Xu, Q.; Cang, J.; Zhang, D. Cold stress triggers freezing tolerance in wheat (Triticum aestivum L.) via hormone regulation and the transcription of related genes. Plant Biol. 2022. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Correia, P.M.P.; Cairo Westergaard, J.; Bernardes da Silva, A.; Roitsch, T.; Carmo-Silva, E.; Marques da Silva, J. High-throughput phenotyping of physiological traits for wheat resilience to high temperature and drought stress. J. Exp. Bot. 2022, 73, 5235–5251. [Google Scholar] [CrossRef] [PubMed]
- Mashabela, M.D.; Piater, L.A.; Steenkamp, P.A.; Dubery, I.A.; Tugizimana, F.; Mhlongo, M.I. Comparative metabolite profiling of wheat cultivars (Triticum aestivum) reveals signatory markers for resistance and susceptibility to stripe rust and aluminium (Al3+) toxicity. Metabolites 2022, 12, 98. [Google Scholar] [CrossRef]
- Li, Z.; Lian, Y.; Gong, P.; Song, L.; Hu, J.; Pang, H.; Ren, Y.; Xin, Z.; Wang, Z.; Lin, T. Network of the transcriptome and metabolomics reveals a novel regulation of drought resistance during germination in wheat. Ann. Bot. 2022, 130, 717–735. [Google Scholar] [CrossRef]
- Gholizadeh, F.; Janda, T.; Gondor, O.K.; Pal, M.; Szalai, G.; Sadeghi, A.; Turkoglu, A. Improvement of drought tolerance by exogenous spermidine in germinating wheat (Triticum aestivum L.) plants is accompanied with changes in metabolite composition. Int. J. Mol. Sci. 2022, 23, 9047. [Google Scholar] [CrossRef]
- Lv, L.; Dong, C.; Liu, Y.; Zhao, A.; Zhang, Y.; Li, H.; Chen, X. Transcription-associated metabolomic profiling reveals the critical role of frost tolerance in wheat. BMC Plant Biol. 2022, 22, 333. [Google Scholar] [CrossRef]
- Zhou, C.; Cheng, H.; Wu, Y.; Zhang, J.; Li, D.; Pan, C. Bensulfuron-methyl, terbutylazine, and 2,4-D butylate disturb plant growth and resistance by deteriorating rhizosphere environment and plant secondary metabolism in wheat seedlings. J. Agric. Food Chem. 2022, 70, 12796–12806. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Yu, S.; Lian, J.P.; Wang, Q.; He, Z.L.; Feng, Y.; Yang, X.E. Physiological and metabolomics responses of two wheat (Triticum aestivum L.) genotypes differing in grain cadmium accumulation. Sci. Total Environ. 2021, 769, 145345. [Google Scholar] [CrossRef]
- Qin, S.Y.; Xu, Y.F.; Nie, Z.J.; Liu, H.G.; Gao, W.; Li, C.; Zhao, P. Metabolomic and antioxidant enzyme activity changes in response to cadmium stress under boron application of wheat (Triticum aestivum). Environ. Sci. Pollut. Res. 2022, 29, 34701–34713. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.Y.; Salt, D.E. Plant ionomics: From elemental profiling to environmental adaptation. Mol. Plant 2016, 9, 787–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumari, A.; Das, P.; Parida, A.K.; Agarwal, P.K. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front. Plant Sci. 2015, 6, 537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baxter, I. Ionomics: Studying the social network of mineral nutrients. Curr. Opin. Plant Biol. 2009, 12, 381–386. [Google Scholar] [CrossRef] [Green Version]
- Chao, D.Y.; Dilkes, B.; Luo, H.; Douglas, A.; Yakubova, E.; Lahner, B.; Salt, D.E. Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science 2013, 341, 658–659. [Google Scholar] [CrossRef] [Green Version]
- Chunyan, L.; Xiangchi, Z.; Chao, L.; Cheng, L. Ionomic and metabolic responses of wheat seedlings to PEG-6000-simulated drought stress under two phosphorus levels. PLoS ONE 2022, 17, e0274915. [Google Scholar] [CrossRef]
- Salt, D.E.; Baxter, I.; Lahner, B. Ionomics and the study of the plant ionome. Ann. Rev. Plant Biol. 2008, 59, 709–733. [Google Scholar] [CrossRef] [Green Version]
- Hua, Y.P.; Chen, J.F.; Zhou, T.; Zhang, T.Y.; Shen, D.D.; Feng, Y.N.; Guan, P.F.; Huang, S.M.; Zhou, Z.F.; Huang, J.Y.; et al. Multiomics reveals an essential role of long-distance cadmium translocation in regulating plant cadmium resistance and grain cadmium accumulation in allohexaploid wheat (Triticum aestivum L.). J. Exp. Bot. 2022, 73, 7516–7537. [Google Scholar] [CrossRef]
- Li, S.; Liu, Z.; Guo, L.; Li, H.; Nie, X.; Chai, S.; Zheng, W. Genome-wide identification of wheat ZIP gene family and functional characterization of the TaZIP13-B in plants. Front. Plant Sci. 2021, 12, 748146. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kaur, G.; Kumar, A.; Meena, V.; Ram, H.; Kaur, J.; Pandey, A.K. Gene expression pattern of vacuolar-iron transporter-like (VTL) genes in hexaploid wheat during metal stress. Plants 2020, 9, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tahura, S.; Kabir, A.H. Physiological responses and genome-wide characterization of TaNRAMP1 gene in Mn-deficient wheat. Plant Physiol. Biochem. PPB 2021, 162, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Vatansever, R.; Filiz, E.; Eroglu, S. Genome-wide exploration of metal tolerance protein (MTP) genes in common wheat (Triticum aestivum): Insights into metal homeostasis and biofortification. Biometals 2017, 30, 217–235. [Google Scholar] [CrossRef]
- Ajeesh Krishna, T.P.; Maharajan, T.; Victor Roch, G.; Ignacimuthu, S.; Antony Ceasar, S. Structure, function, regulation and phylogenetic relationship of ZIP family transporters of plants. Front. Plant Sci. 2020, 11, 662. [Google Scholar] [CrossRef]
- Conte, S.S.; Walker, E.L. Transporters contributing to iron trafficking in plants. Mol. Plant 2011, 4, 464–476. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Chen, X.; Chai, S.; Sheng, H.; Sha, L.; Fan, X.; Zeng, J.; Kang, H.; Zhang, H.; Xiao, X.; et al. TpIRT1 from Polish wheat (Triticum polonicum L.) enhances the accumulation of Fe, Mn, Co, and Cd in Arabidopsis. Plant Sci. 2021, 312, 111058. [Google Scholar] [CrossRef]
- Connorton, J.M.; Jones, E.R.; Rodriguez-Ramiro, I.; Fairweather-Tait, S.; Uauy, C.; Balk, J. Wheat vacuolar iron transporter TaVIT2 transports Fe and Mn and is effective for biofortification. Plant Physiol. 2017, 174, 2434–2444. [Google Scholar] [CrossRef] [Green Version]
- Peng, F.; Wang, C.; Zhu, J.; Zeng, J.; Kang, H.; Fan, X.; Sha, L.; Zhang, H.; Zhou, Y.; Wang, Y. Expression of TpNRAMP5, a metal transporter from Polish wheat (Triticum polonicum L.), enhances the accumulation of Cd, Co and Mn in transgenic Arabidopsis plants. Planta 2018, 247, 1395–1406. [Google Scholar] [CrossRef]
- Cubillas, C.; Vinuesa, P.; Tabche, M.L.; Garcia-de los Santos, A. Phylogenomic analysis of Cation Diffusion Facilitator proteins uncovers Ni2+/Co2+ transporters. Met. Integr. Biometal Sci. 2013, 5, 1634–1643. [Google Scholar] [CrossRef]
- Peiter, E.; Montanini, B.; Gobert, A.; Pedas, P.; Husted, S.; Maathuis, F.J.M.; Blaudez, D.; Chalot, M.; Sanders, D. A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance. Proc. Natl. Acad. Sci. USA 2007, 104, 8532–8537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montanini, B.; Blaudez, D.; Jeandroz, S.; Sanders, D.; Chalot, M. Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: Improved signature and prediction of substrate specificity. BMC Genom. 2007, 8, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.H.; Qiao, K.; Liang, S.; Tian, S.Q.; Tian, Y.B.; Wang, H.; Chai, T.Y. Triticum urartu MTP1: Its ability to maintain Zn2+ and Co2+ homeostasis and metal selectivity determinants. Plant Cell Rep. 2018, 37, 1653–1666. [Google Scholar] [CrossRef] [PubMed]
- Siemianowski, O.; Mills, R.F.; Williams, L.E.; Antosiewicz, D.M. Expression of the P(₁B)-type ATPase AtHMA4 in tobacco modifies Zn and Cd root to shoot partitioning and metal tolerance. Plant Biotechnol. J. 2011, 9, 64–74. [Google Scholar] [CrossRef]
- Takahashi, R.; Ishimaru, Y.; Shimo, H.; Ogo, Y.; Senoura, T.; Nishizawa, N.K.; Nakanishi, H. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ. 2012, 35, 1948–1957. [Google Scholar] [CrossRef]
- Qiao, L.; Wheeler, J.; Wang, R.; Isham, K.; Klassen, N.; Zhao, W.D.; Su, M.; Zhang, J.L.; Zheng, J.; Chen, J.L. Novel quantitative trait loci for grain cadmium content identified in hard white spring wheat. Front. Plant Sci. 2021, 12, 756741. [Google Scholar] [CrossRef]
- Qiao, K.; Gong, L.; Tian, Y.B.; Wang, H.; Chai, T.Y. The metal-binding domain of wheat heavy metal ATPase 2 (TaHMA2) is involved in zinc/cadmium tolerance and translocation in Arabidopsis. Plant Cell Rep. 2018, 37, 1343–1352. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, C.; Chen, C.; Zhang, W.; Huang, X.Y.; Zhao, F.J. Overexpression of rice OsHMA3 in wheat greatly decreases cadmium accumulation in wheat grains. Environ. Sci. Technol. 2020, 54, 10100–10108. [Google Scholar] [CrossRef]
- Qiao, K.; Wang, F.; Liang, S.; Wang, H.; Hu, Z.; Chai, T. Improved Cd, Zn and Mn tolerance and reduced Cd accumulation in grains with wheat-based cell number regulator TaCNR2. Sci. Rep. 2019, 9, 870. [Google Scholar] [CrossRef] [Green Version]
- Qiao, K.; Wang, F.H.; Liang, S.; Wang, H.; Hu, Z.L.; Chai, T.Y. New biofortification tool: Wheat TaCNR5 enhances zinc and manganese tolerance and increases zinc and manganese accumulation in rice grains. J. Agric. Food Chem. 2019, 67, 9877–9884. [Google Scholar] [CrossRef]
- Qiao, K.; Tian, Y.; Hu, Z.; Chai, T. Wheat cell number regulator CNR10 enhances the tolerance, translocation, and accumulation of heavy metals in plants. Environ. Sci. Technol. 2019, 53, 860–867. [Google Scholar] [CrossRef]
- Djemal, R.; Khoudi, H. The ethylene-responsive transcription factor of durum wheat, TdSHN1, confers cadmium, copper, and zinc tolerance to yeast and transgenic tobacco plants. Protoplasma 2022, 259, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Qiao, K.; Wang, F.; Liang, S.; Hu, Z.; Chai, T. Heterologous expression of TuCAX1a and TuCAX1b enhances Ca2+ and Zn2+ translocation in Arabidopsis. Plant Cell Rep. 2019, 38, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.J.; Wang, H.C.; He, F.; Du, X.Y.; Ren, M.J.; Bao, Y.G. The TaWRKY22-TaCOPT3D pathway governs cadmium uptake in wheat. Int. J. Mol. Sci. 2022, 23, 10379. [Google Scholar] [CrossRef] [PubMed]
- Shim, D.; Hwang, J.U.; Lee, J.; Lee, S.; Choi, Y.; An, G.; Martinoia, E.; Lee, Y. Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell 2009, 21, 4031–4043. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.Q.; Chen, Y.H.; An, J.; Zhao, Z.X.; Zhang, G.Q.; Wang, Y.; Wang, W. Wheat expansin gene TaEXPA2 is involved in conferring plant tolerance to Cd toxicity. Plant Sci. 2018, 270, 245–256. [Google Scholar] [CrossRef]
- Wei, J.; Liao, S.; Li, M.; Zhu, B.; Wang, H.; Gu, L.; Yin, H.; Du, X. AetSRG1 contributes to the inhibition of wheat Cd accumulation by stabilizing phenylalanine ammonia lyase. J. Hazard. Mater. 2022, 428, 128226. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, M.; Zheng, S. Multi-Omics Uncover the Mechanism of Wheat under Heavy Metal Stress. Int. J. Mol. Sci. 2022, 23, 15968. https://doi.org/10.3390/ijms232415968
Zhou M, Zheng S. Multi-Omics Uncover the Mechanism of Wheat under Heavy Metal Stress. International Journal of Molecular Sciences. 2022; 23(24):15968. https://doi.org/10.3390/ijms232415968
Chicago/Turabian StyleZhou, Min, and Shigang Zheng. 2022. "Multi-Omics Uncover the Mechanism of Wheat under Heavy Metal Stress" International Journal of Molecular Sciences 23, no. 24: 15968. https://doi.org/10.3390/ijms232415968
APA StyleZhou, M., & Zheng, S. (2022). Multi-Omics Uncover the Mechanism of Wheat under Heavy Metal Stress. International Journal of Molecular Sciences, 23(24), 15968. https://doi.org/10.3390/ijms232415968