Comparative Ubiquitination Proteomics Revealed the Salt Tolerance Mechanism in Sugar Beet Monomeric Additional Line M14
Abstract
:1. Introduction
2. Results
2.1. Determination of the Response Time of Ubiquitination Modifications to Salt Stress
2.2. LC-MS/MS Identification of Ubiquitinated Proteins
2.3. Functional Classification of the Differentially Expressed Ubiquitinated Proteins
2.4. Functional Analyses of the Differentially Expressed Ubiquitinated Proteins
2.4.1. Gene Ontology Enrichment
2.4.2. KEGG Pathway Enrichment
2.5. Protein–Protein Interactions of Differentially Ubiquitinated Proteins
2.6. Crosstalk between Phosphorylation and Ubiquitination
3. Discussion
3.1. Ubiquitination Affects Gene Transcription and Translation Processes
3.2. Ubiquitination Regulates Membrane Transport Processes
3.3. Ubiquitination Regulates Metabolic Pathways
3.4. Ubiquitination of UPS-Related Proteins under Salt Stress
4. Materials and Methods
4.1. Plant Material and Salt Treatment
4.2. Quantitative Real-Time PCR (qRT-PCR)
4.3. Protein Extraction and Western Blot
4.4. Trypsin Digestion and Desalination
4.5. Ubiquitinated Peptide Enrichment
4.6. LC-MS/MS
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Goldstein, S. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc. Natl. Acad. Sci. USA 1975, 72, 11–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, L.; Luo, Z.Q. Post-translational regulation of ubiquitin signaling. J. Cell Biol. 2019, 218, 1776–1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulathu, Y.; Komander, D. Atypical ubiquitylation–The unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat. Rev. Mol. Cell Biol. 2012, 13, 508–523. [Google Scholar] [CrossRef] [PubMed]
- Husnjak, K.; Dikic, I. Ubiquitin-binding proteins: Decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 2012, 81, 291–322. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lv, X. Roles of E3 Ubiquitin Ligases in Plant Responses to Abiotic Stresses. Int. J. Mol. Sci. 2022, 23, 2308. [Google Scholar] [CrossRef]
- Fan, Q.; Wang, Q. The ubiquitin system: Orchestrating cellular signals in non-small-cell lung cancer. Cell Mol. Biol. Lett. 2020, 25, 1. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Schwartz, D. A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 2003, 21, 921–926. [Google Scholar] [CrossRef]
- Hjerpe, R.; Aillet, F. Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO Rep. 2009, 10, 1250–1258. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Zhang, X. Current methodologies in protein ubiquitination characterization: From ubiquitinated protein to ubiquitin chain architecture. Cell Biosci. 2022, 12, 126. [Google Scholar] [CrossRef]
- Xie, X.; Kang, H. Comprehensive profiling of the rice ubiquitome reveals the significance of lysine ubiquitination in young leaves. J. Proteome Res. 2015, 14, 2017–2025. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, L. Comprehensive profiling of lysine ubiquitome reveals diverse functions of lysine ubiquitination in common wheat. Sci. Rep. 2017, 7, 13601. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Xu, Y. Proteome and Ubiquitome Changes during Rose Petal Senescence. Int. J. Mol. Sci 2019, 20, 6108. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Shi, X. Author Correction: Proteome-wide identification and functional analysis of ubiquitinated proteins in peach leaves. Sci. Rep. 2020, 10, 13107. [Google Scholar] [CrossRef]
- Aguilar-Hernández, V.; Kim, D.Y. Mass Spectrometric Analyses Reveal a Central Role for Ubiquitylation in Remodeling the Arabidopsis Proteome during Photomorphogenesis. Mol. Plant 2017, 10, 846–865. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.F.; Chao, Q. Large-scale Identification and Time-course Quantification of Ubiquitylation Events During Maize Seedling De-etiolation. Genom. Proteom. Bioinform. 2019, 17, 603–622. [Google Scholar] [CrossRef]
- Guo, J.; Liu, J. Proteomes and Ubiquitylomes Analysis Reveals the Involvement of Ubiquitination in Protein Degradation in Petunias. Plant Physiol. 2017, 173, 668–687. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Wang, Y. Global Ubiquitome Profiling Revealed the Roles of Ubiquitinated Proteins in Metabolic Pathways of Tea Leaves in Responding to Drought Stress. Sci. Rep. 2019, 9, 4286. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.L.; Xie, X. Proteomic Analysis of Ubiquitinated Proteins in Rice (Oryza sativa) After Treatment with Pathogen-Associated Molecular Pattern (PAMP) Elicitors. Front. Plant Sci. 2018, 9, 1064. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Cao, H. Proteomic analysis of sugar beet apomictic monosomic addition line M14. J. Proteom. 2009, 73, 297–308. [Google Scholar] [CrossRef]
- Liu, H.; Du, X. Quantitative redox proteomics revealed molecular mechanisms of salt tolerance in the roots of sugar beet monomeric addition line M14. Bot. Stud. 2022, 63, 5. [Google Scholar] [CrossRef]
- Li, J.; Wang, K. Cys-SH based quantitative redox proteomics of salt induced response in sugar beet monosomic addition line M14. Bot. Stud. 2021, 62, 16. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Li, J. Quantitative proteomics and phosphoproteomics of sugar beet monosomic addition line M14 in response to salt stress. J. Proteom. 2016, 143, 286–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Zhang, Y. Proteomic analysis of salt tolerance in sugar beet monosomic addition line M14. J. Proteome Res. 2013, 12, 4931–4950. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Silva-Sanchez, C. Phosphoproteomics technologies and applications in plant biology research. Front. Plant Sci 2015, 6, 430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Nan, J. OMICS Technologies and Applications in Sugar Beet. Front. Plant Sci. 2016, 7, 900. [Google Scholar] [CrossRef] [Green Version]
- Filipčík, P.; Curry, J.R. When World.ds Collide-Mechanisms at the Interface between Phosphorylation and Ubiquitination. J. Mol. Biol. 2017, 429, 1097–1113. [Google Scholar] [CrossRef]
- Holt, L.J. Regulatory modules: Coupling protein stability to phopshoregulation during cell division. FEBS Lett. 2012, 586, 2773–2777. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, S.; Aoyama, S. Arabidopsis CBL-Interacting Protein Kinases Regulate Carbon/Nitrogen-Nutrient Response by Phosphorylating Ubiquitin Ligase ATL31. Mol. Plant 2017, 10, 605–618. [Google Scholar] [CrossRef] [Green Version]
- Plaut, Z.; Heuer, B. Adjustment, growth, photosynthesis and transpiration of sugar beet plants exposed to saline conditions. Field Crops Res. 1985, 10, 1–13. [Google Scholar] [CrossRef]
- Cheung, M.Y.; Li, M.W. The unconventional P-loop NTPase OsYchF1 and its regulator OsGAP1 play opposite roles in salinity stress tolerance. Plant Cell Environ. 2013, 36, 2008–2020. [Google Scholar] [CrossRef]
- Zhang, X.H.; Li, B. The wheat E subunit of V-type H+-ATPase is involved in the plant response to osmotic stress. Int. J. Mol. Sci. 2014, 15, 16196–16210. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Ni, H. Overexpression of an aquaporin protein from Aspergillus glaucus confers salt tolerance in transgenic soybean. Transgenic Res. 2021, 30, 727–737. [Google Scholar] [CrossRef]
- Maurel, C.; Boursiac, Y. Aquaporins in Plants. Physiol. Rev. 2015, 95, 1321–1358. [Google Scholar] [CrossRef]
- Yang, L.; Ma, C. Salt stress induced proteome and transcriptome changes in sugar beet monosomic addition line M14. J. Plant Physiol. 2012, 169, 839–850. [Google Scholar] [CrossRef]
- Mattiroli, F.; Penengo, L. Histone Ubiquitination: An Integrative Signaling Platform in Genome Stability. Trends Genet. 2021, 37, 566–581. [Google Scholar] [CrossRef]
- Huen, M.S.; Grant, R. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 2007, 131, 901–914. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Shukla, A. Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS. Cell 2007, 131, 1084–1096. [Google Scholar] [CrossRef] [Green Version]
- Wood, A.; Schneider, J. The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. J. Biol. Chem. 2003, 278, 34739–34742. [Google Scholar] [CrossRef] [Green Version]
- Tufegdžić Vidaković, A.; Mitter, R. Regulation of the RNAPII Pool Is Integral to the DNA Damage Response. Cell 2020, 180, 1245–1261.e1221. [Google Scholar] [CrossRef]
- Ream, T.S.; Haag, J.R. Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II. Mol. Cell 2009, 33, 192–203. [Google Scholar] [CrossRef]
- Xiao, R.; Chen, J.Y. Pervasive Chromatin-RNA Binding Protein Interactions Enable RNA-Based Regulation of Transcription. Cell 2019, 178, 107–121.e118. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Jung, H.J. Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J. 2008, 55, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Mufarrege, E.F.; Gonzalez, D.H. Functional interconnections of Arabidopsis exon junction complex proteins and genes at multiple steps of gene expression. J. Exp. Bot. 2011, 62, 5025–5036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, L.H.; Song, P. The m(6)A Reader ECT2 Controls Trichome Morphology by Affecting mRNA Stability in Arabidopsis. Plant Cell 2018, 30, 968–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, H.H.; Feng, Q. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev. 2002, 16, 1518–1527. [Google Scholar] [CrossRef] [Green Version]
- Karlson, D.; Imai, R. Conservation of the cold shock domain protein family in plants. Plant Physiol. 2003, 131, 12–15. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Park, S.J. Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids Res. 2007, 35, 506–516. [Google Scholar] [CrossRef] [Green Version]
- Saracco, S.A.; Hansson, M. Tandem affinity purification and mass spectrometric analysis of ubiquitylated proteins in Arabidopsis. Plant J. 2009, 59, 344–358. [Google Scholar] [CrossRef] [Green Version]
- Spence, J.; Gali, R.R. Cell cycle-regulated modification of the ribosome by a variant multiubiquitin chain. Cell 2000, 102, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Pengyan, Z.; Fuli, L. Comparative Ubiquitome Analysis under Heat Stress Reveals Diverse Functions of Ubiquitination in Saccharina japonica. Int. J. Mol. Sci 2020, 21, 8210. [Google Scholar] [CrossRef]
- Kraft, C.; Deplazes, A. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat. Cell Biol. 2008, 10, 602–610. [Google Scholar] [CrossRef]
- Laskowska, E.; Matuszewska, E. Small heat shock proteins and protein-misfolding diseases. Curr. Pharm. Biotechnol. 2010, 11, 146–157. [Google Scholar] [CrossRef]
- Matsuoka, K.; Higuchi, T. A Vacuolar-Type H+-ATPase in a Nonvacuolar Organelle Is Required for the Sorting of Soluble Vacuolar Protein Precursors in Tobacco Cells. Plant Cell 1997, 9, 533–546. [Google Scholar] [CrossRef]
- Arata, Y.; Nishi, T. Structure, subunit function and regulation of the coated vesicle and yeast vacuolar (H(+))-ATPases. Biochim. Biophys. Acta 2002, 1555, 71–74. [Google Scholar] [CrossRef] [Green Version]
- Seol, J.H.; Shevchenko, A. Skp1 forms multiple protein complexes, including RAVE, a regulator of V-ATPase assembly. Nat. Cell Biol. 2001, 3, 384–391. [Google Scholar] [CrossRef]
- Hoxhaj, G.; Caddye, E. The E3 ubiquitin ligase ZNRF2 is a substrate of mTORC1 and regulates its activation by amino acids. Elife 2016, 5, e12278. [Google Scholar] [CrossRef] [Green Version]
- Domgall, I.; Venzke, D. Three-dime…e.e.en.nsional map of a plant V-ATPase based on electron microscopy. J. Biol. Chem. 2002, 277, 13115–13121. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yang, H. Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 2005, 310, 121–125. [Google Scholar] [CrossRef] [Green Version]
- Gaxiola, R.A.; Li, J. Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc. Natl. Acad. Sci. USA 2001, 98, 11444–11449. [Google Scholar] [CrossRef] [Green Version]
- Morsomme, P.; Boutry, M. The plant plasma membrane H(+)-ATPase: Structure, function and regulation. Biochim. Biophys. Acta 2000, 1465, 1–16. [Google Scholar] [CrossRef]
- Buch-Pedersen, M.J.; Palmgren, M.G. Mechanism of proton transport by plant plasma membrane proton ATPases. J. Plant Res. 2003, 116, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Veshaguri, S.; Christensen, S.M. Direct observation of proton pumping by a eukaryotic P-type ATPase. Science 2016, 351, 1469–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, X.; Bressan, R.A. Ion Homeostasis in NaCl Stress Environments. Plant. Physiol. 1995, 109, 735–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano, R. Salt tolerance in plants and microorganisms: Toxicity targets and defense responses. Int. Rev. Cytol. 1996, 165, 1–52. [Google Scholar] [PubMed]
- Smardon, A.M.; Kane, P.M. Loss of vacuolar H+-ATPase activity in organelles signals ubiquitination and endocytosis of the yeast plasma membrane proton pump Pma1p. J. Biol. Chem. 2014, 289, 32316–32326. [Google Scholar] [CrossRef] [Green Version]
- Pizzirusso, M.; Chang, A. Ubiquitin-mediated targeting of a mutant plasma membrane ATPase, Pma1-7, to the endosomal/vacuolar system in yeast. Mol. Biol. Cell 2004, 15, 2401–2409. [Google Scholar] [CrossRef] [Green Version]
- Sreedharan, S.; Shekhawat, U.K. Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1;2 display high tolerance levels to different abiotic stresses. Plant Biotechnol. J. 2013, 11, 942–952. [Google Scholar] [CrossRef]
- Liu, C.; Fukumoto, T. Aquaporin OsPIP1;1 promotes rice salt resistance and seed germination. Plant Physiol. Biochem. 2013, 63, 151–158. [Google Scholar] [CrossRef]
- Kapilan, R.; Vaziri, M. Regulation of aquaporins in plants under stress. Biol. Res. 2018, 51, 4. [Google Scholar] [CrossRef]
- Aharon, R.; Shahak, Y. Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 2003, 15, 439–447. [Google Scholar] [CrossRef]
- Lee, H.K.; Cho, S.K. Drought stress-induced Rma1H1, a RING membrane-anchor E3 ubiquitin ligase homolog, regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants. Plant Cell 2009, 21, 622–641. [Google Scholar] [CrossRef] [Green Version]
- Quiles-Pando, C.; Navarro-Gochicoa, M.T. Boron Deficiency Increases Cytosolic Ca(2+) Levels Mainly via Ca(2+) Influx from the Apoplast in Arabidopsis thaliana Roots. Int. J. Mol. Sci. 2019, 20, 2297. [Google Scholar] [CrossRef] [Green Version]
- Mäser, P.; Thomine, S. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol. 2001, 126, 1646–1667. [Google Scholar] [CrossRef] [Green Version]
- Nieves-Cordones, M.; Alemán, F. The Arabidopsis thaliana HAK5 K+ transporter is required for plant growth and K+ acquisition from low K+ solutions under saline conditions. Mol. Plant 2010, 3, 326–333. [Google Scholar] [CrossRef]
- Ashley, M.K.; Grant, M. Plant responses to potassium deficiencies: A role for potassium transport proteins. J. Exp. Bot. 2006, 57, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Chiang, C.P.; Li, C.H. Suppressor of K+ transport growth defect 1 (SKD1) interacts with RING-type ubiquitin ligase and sucrose non-fermenting 1-related protein kinase (SnRK1) in the halophyte ice plant. J. Exp. Bot. 2013, 64, 2385–2400. [Google Scholar] [CrossRef] [Green Version]
- Höper, D.; Bernhardt, J. Salt stress adaptation of Bacillus subtilis: A physiological proteomics approach. Proteomics 2006, 6, 1550–1562. [Google Scholar] [CrossRef]
- Zaffagnini, M.; Fermani, S. Plant cytoplasmic GAPDH: Redox post-translational modifications and moonlighting properties. Front. Plant Sci. 2013, 4, 450. [Google Scholar] [CrossRef] [Green Version]
- Peralta, D.A.; Araya, A. The E3 ubiquitin-ligase SEVEN IN ABSENTIA like 7 mono-ubiquitinates glyceraldehyde-3-phosphate dehydrogenase 1 isoform in vitro and is required for its nuclear localization in Arabidopsis thaliana. Int. J. Biochem. Cell Biol. 2016, 70, 48–56. [Google Scholar] [CrossRef]
- Baena, G.; Feria, A.B. Genetic and Pharmacological Inhibition of Autophagy increases the Monoubiquitination of Non-Photosynthetic Phosphoenolpyruvate Carboxylase. Plants 2020, 10, 12. [Google Scholar] [CrossRef]
- Ruiz-Ballesta, I.; Feria, A.B. In vivo monoubiquitination of anaplerotic phosphoenolpyruvate carboxylase occurs at Lys624 in germinating sorghum seeds. J. Exp. Bot. 2014, 65, 443–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doll, S.; Burlingame, A.L. Mass spectrometry-based detection and assignment of protein posttranslational modifications. ACS Chem. Biol. 2015, 10, 63–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Chen, Y. SUMOylation enhances the activity of IDH2 under oxidative stress. Biochem. Biophys. Res. Commun. 2020, 532, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Cheung, M.Y.; Zeng, N.Y. Constitutive expression of a rice GTPase-activating protein induces defense responses. New Phytol. 2008, 179, 530–545. [Google Scholar] [CrossRef] [PubMed]
- Cheung, M.Y.; Xue, Y. An ancient P-loop GTPase in rice is regulated by a higher plant-specific regulatory protein. J. Biol. Chem. 2010, 285, 37359–37369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lisenbee, C.S.; Lingard, M.J. Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Plant J. 2005, 43, 900–914. [Google Scholar] [CrossRef]
- Missihoun, T.D.; Schmitz, J. Betaine aldehyde dehydrogenase genes from Arabidopsis with different sub-cellular localization affect stress responses. Planta 2011, 233, 369–382. [Google Scholar] [CrossRef]
- Verma, P.K.; Verma, S. CC-type glutaredoxin, OsGrx_C7 plays a crucial role in enhancing protection against salt stress in rice. J. Biotechnol. 2021, 329, 192–203. [Google Scholar] [CrossRef]
- Ma, H.; Liu, C. ZmbZIP4 Contributes to Stress Resistance in Maize by Regulating ABA Synthesis and Root Development. Plant Physiol. 2018, 178, 753–770. [Google Scholar] [CrossRef] [Green Version]
- Hao, J.; Wang, D. The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice. Mol. Plant 2021, 14, 1266–1280. [Google Scholar] [CrossRef]
- Li, X.; Zhang, S.S. TaUBA, a UBA domain-containing protein in wheat (Triticum aestivum L.), is a negative regulator of salt and drought stress response in transgenic Arabidopsis. Plant Cell Rep. 2015, 34, 755–766. [Google Scholar] [CrossRef]
- Moon, J.; Parry, G. The ubiquitin-proteasome pathway and plant development. Plant Cell 2004, 16, 3181–3195. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Li, C.Y. SUGAR-INSENSITIVE3, a RING E3 ligase, is a new player in plant sugar response. Plant Physiol. 2010, 152, 1889–1900. [Google Scholar] [CrossRef]
- Trujillo, M.; Ichimura, K. Negative regulation of PAMP-triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis. Curr. Biol. 2008, 18, 1396–1401. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Molina, L.; Mongrand, S. ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J. 2002, 32, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.; Lin, Y.L. Proteasomal recognition of ubiquitylated substrates. Trends Plant Sci 2010, 15, 375–386. [Google Scholar] [CrossRef]
- Lin, Y.L.; Sung, S.C. The defective proteasome but not substrate recognition function is responsible for the null phenotypes of the Arabidopsis proteasome subunit RPN10. Plant Cell 2011, 23, 2754–2773. [Google Scholar] [CrossRef] [Green Version]
- Verma, R.; Oania, R. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 2004, 118, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.; Doelling, J.H. Structural and functional analysis of the six regulatory particle triple-A ATPase subunits from the Arabidopsis 26S proteasome. Plant J. 1999, 18, 529–539. [Google Scholar] [CrossRef]
- Glickman, M.H.; Rubin, D.M. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 1998, 94, 615–623. [Google Scholar] [CrossRef]
- Ghoulam, C.; Foursy, A.; Fares, K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars–ScienceDirect. Environ. Exp. Bot. 2002, 47, 39–50. [Google Scholar] [CrossRef]
- Yu, Z.; Xu, Q. SYBR Green real-time qPCR method: Diagnose drowning more rapidly and accurately. Forensic Sci. Int. 2021, 321, 110720. [Google Scholar] [CrossRef] [PubMed]
Accession a | Uniport b | Protein Name | Expression Change c |
---|---|---|---|
731321402 | Q9FK25 | Flavone 3′-O-methyltransferase 1 | Up |
731337691 | O65639 | Cold shock protein 1 | Up |
731318867 | Q9SRZ6 | Cytosolic isocitrate dehydrogenase | Up |
731349044 | P22953 | Heat shock 70 kDa protein 1 | Up |
731329055 | Q84VW9 | Phosphoenolpyruvate carboxylase 3 | Up |
731323478 | Q940P8 | T-complex protein 1 subunit beta | Up |
731351524 | Q9SA73 | Obg-like ATPase 1 | Up |
731311373 | Q9M156 | UDP-glycosyltransferase 72B1 | Up |
731330860 | P0CAN7 | V-type proton ATPase subunit E3 | Up |
1108806148 | O48646 | Probable phospholipid hydroperoxide Glutathione peroxidase 6 | Down |
731311844 | P53492 | Actin-7 | Down |
733215449 | Q39196 | Probable aquaporin PIP1-4 | Down |
731345323 | Q9SJQ9 | Fructose-bisphosphate aldolase 6 | Down |
731372394 | Q43127 | Glutamine synthetase | Down |
731328639 | P59232 | Ubiquitin-40S ribosomal protein S27a-2 | Down |
731368198 | Q9SHE7 | Ubiquitin-NEDD8-like protein RUB1 | Down |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Zhang, J.; Li, J.; Yu, B.; Chen, S.; Ma, C.; Li, H. Comparative Ubiquitination Proteomics Revealed the Salt Tolerance Mechanism in Sugar Beet Monomeric Additional Line M14. Int. J. Mol. Sci. 2022, 23, 16088. https://doi.org/10.3390/ijms232416088
Liu H, Zhang J, Li J, Yu B, Chen S, Ma C, Li H. Comparative Ubiquitination Proteomics Revealed the Salt Tolerance Mechanism in Sugar Beet Monomeric Additional Line M14. International Journal of Molecular Sciences. 2022; 23(24):16088. https://doi.org/10.3390/ijms232416088
Chicago/Turabian StyleLiu, He, Jialin Zhang, Jinna Li, Bing Yu, Sixue Chen, Chunquan Ma, and Haiying Li. 2022. "Comparative Ubiquitination Proteomics Revealed the Salt Tolerance Mechanism in Sugar Beet Monomeric Additional Line M14" International Journal of Molecular Sciences 23, no. 24: 16088. https://doi.org/10.3390/ijms232416088
APA StyleLiu, H., Zhang, J., Li, J., Yu, B., Chen, S., Ma, C., & Li, H. (2022). Comparative Ubiquitination Proteomics Revealed the Salt Tolerance Mechanism in Sugar Beet Monomeric Additional Line M14. International Journal of Molecular Sciences, 23(24), 16088. https://doi.org/10.3390/ijms232416088