The Role of the 145 Residue in Photochemical Properties of the Biphotochromic Protein mSAASoti: Brightness versus Photoconversion
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Construction of Mutants
4.2. Colony Screening
4.3. Spectral and Phototransformation Properties Characterization Setup
4.4. Phototransformation Kinetics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lapshin, G.; Salih, A.; Kolosov, P.; Golovkina, M.; Zavorotnyi, Y.; Ivashina, T.; Vinokurov, L.; Bagratashvili, V.; Savitsky, A. Fluorescence Color Diversity of Great Barrier Reef Corals. J. Innov. Opt. Health Sci. 2015, 8, 1550028. [Google Scholar] [CrossRef] [Green Version]
- Solovyev, I.D.; Gavshina, A.V.; Katti, A.S.; Chizhik, A.I.; Vinokurov, L.M.; Lapshin, G.D.; Ivashina, T.V.; Khrenova, M.G.; Kireev, I.I.; Gregor, I.; et al. Monomerization of the Photoconvertible Fluorescent Protein SAASoti by Rational Mutagenesis of Single Amino Acids. Sci. Rep. 2018, 8, 15542. [Google Scholar] [CrossRef] [Green Version]
- Solovyev, I.D.; Maloshenok, L.G.; Savitsky, A.P. Application of Genetically Encoded Photoconvertible Protein SAASoti for the Study of Enzyme Activity in a Single Live Cell by Fluorescence Correlation Microscopy. Materials 2022, 15, 4962. [Google Scholar] [CrossRef]
- Solovyev, I.; Gavshina, A.; Savitsky, A. Reversible Photobleaching of Photoconvertible SAASoti-FP. J. Biomed. Photonics Eng. 2017, 3, 040303. [Google Scholar] [CrossRef] [Green Version]
- Solovyev, I.D.; Gavshina, A.V.; Savitsky, A.P. Novel Phototransformable Fluorescent Protein SAASoti with Unique Photochemical Properties. Int. J. Mol. Sci. 2019, 20, 3399. [Google Scholar] [CrossRef] [Green Version]
- Betzig, E.; Patterson, G.H.; Sougrat, R.; Lindwasser, O.W.; Olenych, S.; Bonifacino, J.S.; Davidson, M.W.; Lippincott-Schwartz, J.; Hess, H.F. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science 2006, 313, 1642–1645. [Google Scholar] [CrossRef] [Green Version]
- Bossi, M.; Fölling, J.; Dyba, M.; Westphal, V.; Hell, S.W. Breaking the Diffraction Resolution Barrier in Far-Field Microscopy by Molecular Optical Bistability. New J. Phys. 2006, 8, 275. [Google Scholar] [CrossRef]
- Nienhaus, K.; Nienhaus, G.U. Genetically Encodable Fluorescent Protein Markers in Advanced Optical Imaging. Methods Appl. Fluoresc. 2022, 10, 042002. [Google Scholar] [CrossRef]
- Jensen, N.A.; Jansen, I.; Kamper, M.; Jakobs, S. Reversibly Switchable Fluorescent Proteins for RESOLFT Nanoscopy. In Topics in Applied Physics; Springer: Cham, Switzerland, 2020; pp. 241–261. [Google Scholar] [CrossRef]
- Enderlein, J. Breaking the Diffraction Limit with Dynamic Saturation Optical Microscopy. Appl. Phys. Lett. 2005, 87, 094105. [Google Scholar] [CrossRef]
- Fuchs, J.; Böhme, S.; Oswald, F.; Hedde, P.N.; Krause, M.; Wiedenmann, J.; Nienhaus, G.U. A Photoactivatable Marker Protein for Pulse-Chase Imaging with Superresolution. Nat. Methods 2010, 7, 627–630. [Google Scholar] [CrossRef]
- Adam, V.; Lelimousin, M.; Boehme, S.; Desfonds, G.; Nienhaus, K.; Field, M.J.; Wiedenmann, J.; McSweeney, S.; Nienhaus, G.U.; Bourgeois, D. Structural Characterization of IrisFP, an Optical Highlighter Undergoing Multiple Photo-Induced Transformations. Proc. Natl. Acad. Sci. USA 2008, 105, 18343–18348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stiel, A.C.; Trowitzsch, S.; Weber, G.; Andresen, M.; Eggeling, C.; Hell, S.W.; Jakobs, S.; Wahl, M.C. 1.8 Å Bright-State Structure of the Reversibly Switchable Fluorescent Protein Dronpa Guides the Generation of Fast Switching Variants. Biochem. J. 2007, 402, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavshina, A.V.; Marynich, N.K.; Khrenova, M.G.; Solovyev, I.D.; Savitsky, A.P. The Role of Cysteine Residues in the Allosteric Modulation of the Chromophore Phototransformations of Biphotochromic Fluorescent Protein SAASoti. Sci. Rep. 2021, 11, 24314. [Google Scholar] [CrossRef] [PubMed]
- Andresen, M.; Stiel, A.C.; Fölling, J.; Wenzel, D.; Schönle, A.; Egner, A.; Eggeling, C.; Hell, S.W.; Jakobs, S. Photoswitchable Fluorescent Proteins Enable Monochromatic Multilabel Imaging and Dual Color Fluorescence Nanoscopy. Nat. Biotechnol. 2008, 26, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
- Brakemann, T.; Weber, G.; Andresen, M.; Groenhof, G.; Stiel, A.C.; Trowitzsch, S.; Eggeling, C.; Grubmüller, H.; Hell, S.W.; Wahl, M.C.; et al. Molecular Basis of the Light-Driven Switching of the Photochromic Fluorescent Protein Padron. J. Biol. Chem. 2010, 285, 14603–14609. [Google Scholar] [CrossRef] [Green Version]
- Andresen, M.; Stiel, A.C.; Trowitzsch, S.; Weber, G.; Eggeling, C.; Wahl, M.C.; Hell, S.W.; Jakobs, S. Structural Basis for Reversible Photoswitching in Dronpa. Proc. Natl. Acad. Sci. USA 2007, 104, 13005–13009. [Google Scholar] [CrossRef] [Green Version]
- Smyrnova, D.; Moeyaert, B.; Michielssens, S.; Hofkens, J.; Dedecker, P.; Ceulemans, A. Molecular Dynamic Indicators of the Photoswitching Properties of Green Fluorescent Proteins. J. Phys. Chem. B 2015, 119, 12007–12016. [Google Scholar] [CrossRef]
- Chang, J.; Romei, M.G.; Boxer, S.G. Structural Evidence of Photoisomerization Pathways in Fluorescent Proteins. J. Am. Chem. Soc. 2019, 141, 15504–15508. [Google Scholar] [CrossRef]
- Duan, C.; Adam, V.; Byrdin, M.; Ridard, J.; Kieffer-Jaquinod, S.; Morlot, C.; Arcizet, D.; Demachy, I.; Bourgeois, D. Structural Evidence for a Two-Regime Photobleaching Mechanism in a Reversibly Switchable Fluorescent Protein. J. Am. Chem. Soc. 2013, 135, 15841–15850. [Google Scholar] [CrossRef]
- Adam, V.; Moeyaert, B.; David, C.C.; Mizuno, H.; Lelimousin, M.; Dedecker, P.; Ando, R.; Miyawaki, A.; Michiels, J.; Engelborghs, Y.; et al. Rational Design of Photoconvertible and Biphotochromic Fluorescent Proteins for Advanced Microscopy Applications. Chem. Biol. 2011, 18, 1241–1251. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Chen, X.; Zeng, Z.; Zhang, M.; Sun, Y.; Xi, P.; Peng, J.; Xu, P. Development of a Reversibly Switchable Fluorescent Protein for Super-Resolution Optical Fluctuation Imaging (SOFI). ACS Nano 2015, 9, 2659–2667. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, M.; Li, D.; He, W.; Peng, J.; Betzig, E.; Xu, P. Highly Photostable, Reversibly Photoswitchable Fluorescent Protein with High Contrast Ratio for Live-Cell Superresolution Microscopy. Proc. Natl. Acad. Sci. USA 2016, 113, 10364–10369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.; Zhang, M.; Ji, W.; Chen, J.; Zhang, Y.; Liu, B.; Lu, J.; Zhang, J.; Xu, P.; Xu, T. A Unique Series of Reversibly Switchable Fluorescent Proteins with Beneficial Properties for Various Applications. Proc. Natl. Acad. Sci. USA 2012, 109, 4455–4460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flors, C.; Hotta, J.; Uji-i, H.; Dedecker, P.; Ando, R.; Mizuno, H.; Miyawaki, A.; Hofkens, J. A Stroboscopic Approach for Fast Photoactivation−Localization Microscopy with Dronpa Mutants. J. Am. Chem. Soc. 2007, 129, 13970–13977. [Google Scholar] [CrossRef]
- Dedecker, P.; Mo, G.C.H.; Dertinger, T.; Zhang, J. Widely Accessible Method for Superresolution Fluorescence Imaging of Living Systems. Proc. Natl. Acad. Sci. USA 2012, 109, 10909–10914. [Google Scholar] [CrossRef] [Green Version]
- Grotjohann, T.; Testa, I.; Reuss, M.; Brakemann, T.; Eggeling, C.; Hell, S.W.; Jakobs, S. RsEGFP2 Enables Fast RESOLFT Nanoscopy of Living Cells. eLife 2012, 1, e00248. [Google Scholar] [CrossRef]
- Higuchi, R.; Krummel, B.; Saiki, R. A General Method ofin VitroPreparation and Specific Mutagenesis of DNA Fragments: Study of Protein and DNA Interactions. Nucleic Acids Res. 1988, 16, 7351–7367. [Google Scholar] [CrossRef]
Mutant Form | Green Form λex, nm | Red Form λem, nm | ε G/R /1000 M−1 ×cm−1 | pKa G/R | Green k_mut/ k_mean | Red k_mut/ k_mean |
---|---|---|---|---|---|---|
mSAASoti [2] | 509/519 | 578/589 | 75/24 | 6.3/6.6 | 1.0 | – |
C21N [14] | 509/519 | 579/590 | 82/25.4 | 6.4/7.5 | 1.0 | – |
K145P | 509/519 | 578/589 | 88/20.5 | 5.7/6.7 | 1.0 | – |
C21N/K145P | 509/519 | 578/589 | 87/16 | 5.8/n.a. | 1.1 | – |
C21N/K145P/M163A | 494/515 | –/– | 43/– | 6.2/– | 36.1 | – |
C21N/K145P/F177S | 501/518 | 568/584 | 47/0.3 | 6.3/n.a. | 9.8 | 1.1 |
C21N/K145P/M163A/F177S | 496/516 | 560/585 | 46/3.2 | 6.0/n.a. | 13.4 | 1.2 |
C21N/K145P/M163F | 0.73 * | |||||
C21N/K145P/M163C | 13.6 * | |||||
C21N/K145P/M163I | 15.5 * | |||||
C21N/K145P/M163V | 13.6 * | |||||
C21N/K145P/M163P | 1.1 * | |||||
C21N/K145P/F177T | 4.3 * | |||||
C21N/K145P/F177L | 1.0 * | |||||
C21N/K145P/F177C | 4.7 * | |||||
C21N/K145P/F177Q | 3.2 * | |||||
C21N/K145P/F177G | 12.8 * |
Green Form | Red Form | |||||
---|---|---|---|---|---|---|
A1 | τ, ns | A2 | τ, ns | τmean, ns | τ, ns | |
mSAASoti | 3.3 | 3.3 | 3.8 | |||
C21N/K145P | 3.4 | 3.4 | 4.3 | |||
C21N/K145P/M163A/F177S | 1600 | 3.05 | 3800 | 1.55 | 1.99 | 4.2 |
C21N/K145P/F177S | 7000 | 3.28 | 1300 | 1.75 | 3.04 | 4.0 |
C21N/K145P/M163A | 4200 | 2.9 | 1900 | 1.6 | 2.50 |
Green Form | A1 | k1 | A2 | k2 | Recovery, % | k_rel, min−1 |
---|---|---|---|---|---|---|
mSAASoti [14] | 1.25 | 0.0059 | −0.34 | 0.0135 | 0.022 | |
C21N [14] | 1.19 | 0.0056 | −0.28 | 0.016 | 0.01 | |
C21N/K145P | 1.01 | 0.0043 | −0.06 | 0.03 | 76 | 0.01 |
C21N/K145P/M163A | 0.13 | 100 | 0.022 | |||
C21N/K145P/F177S | 1.12 | 0.038 | −0.11 | 0.15 | 84 | 0.024 |
C21N/K145P/M163A/F177S | 0.048 | 97 | 0.021 | |||
Red form | A1 | k1 | A2 | k2 | ||
C21N/K145P/F177S | 275 | 0.010 | −46 | 0.09 | ||
C21N/K145P/M163A/F177S | 0.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavshina, A.V.; Solovyev, I.D.; Savitsky, A.P. The Role of the 145 Residue in Photochemical Properties of the Biphotochromic Protein mSAASoti: Brightness versus Photoconversion. Int. J. Mol. Sci. 2022, 23, 16058. https://doi.org/10.3390/ijms232416058
Gavshina AV, Solovyev ID, Savitsky AP. The Role of the 145 Residue in Photochemical Properties of the Biphotochromic Protein mSAASoti: Brightness versus Photoconversion. International Journal of Molecular Sciences. 2022; 23(24):16058. https://doi.org/10.3390/ijms232416058
Chicago/Turabian StyleGavshina, Alexandra V., Ilya D. Solovyev, and Alexander P. Savitsky. 2022. "The Role of the 145 Residue in Photochemical Properties of the Biphotochromic Protein mSAASoti: Brightness versus Photoconversion" International Journal of Molecular Sciences 23, no. 24: 16058. https://doi.org/10.3390/ijms232416058
APA StyleGavshina, A. V., Solovyev, I. D., & Savitsky, A. P. (2022). The Role of the 145 Residue in Photochemical Properties of the Biphotochromic Protein mSAASoti: Brightness versus Photoconversion. International Journal of Molecular Sciences, 23(24), 16058. https://doi.org/10.3390/ijms232416058