Bioluminescent Dinoflagellates as a Bioassay for Toxicity Assessment
Abstract
:1. Introduction
2. Dinoflagellate Bioluminescence
2.1. Early Accounts
2.2. Overview of Biochemical Research
3. Bioluminescence as a Tool for Investigating Environmental Pollution
3.1. Environmental Application of Bioluminescent Dinoflagellates
3.1.1. Bioluminescence Inhibition Bioassays
3.1.2. Bioluminescence Re-Establishment Bioassays
4. Final Considerations and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Haddock, S.H.D.; Moline, M.A.; Case, J.F. Bioluminescence in the Sea. Annu. Rev. Mar. Sci. 2010, 2, 443–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herring, P.J. Bioluminescence of marine organisms. Nature 1977, 267, 788–793. [Google Scholar] [CrossRef]
- Moline, M.A.; Oliver, M.J.; Mobley, C.D.; Sundman, L.; Bensky, T.; Bergmann, T.; Bissett, W.P.; Case, J.; Raymond, E.H.; Schofield, O.M. Bioluminescence in a complex coastal environment: 1. Temporal dynamics of nighttime water-leaving radiance. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Lapota, D. Long Term Dinoflagellate Bioluminescence, Chlorophyll, and Their Environmental Correlates in Southern California Coastal Waters. Available online: www.intechopen.com (accessed on 27 January 2022).
- Morin, J.G. Coastal Bioluminescence: Patterns and Functions. Bull. Mar. Sci. 1983, 33, 787–817. [Google Scholar]
- Sweeney, B.M. Interaction of the Ciracadian Cycle with the Cell Cycle in Pyrocystis fusiformis. Plant. Physiol. 1982, 272–276. [Google Scholar] [CrossRef] [Green Version]
- Marcinko, C.L.; Painter, S.C.; Martin, A.P.; Allen, J.T. A review of the measurement and modelling of dinoflagellate bioluminescence. Prog. Oceanogr. 2013, 109, 117–129. [Google Scholar] [CrossRef]
- Valiadi, M. Bioluminescence in Dinoflagellates Diversity, Molecular Phylogeny and Field Ecology. Doctoral Thesis, University of Southampton, School of Ocean and Earth Science, Southampton, UK, 2011. [Google Scholar]
- Gomez, F. A quantitative review of the lifestyle, habitat and trophic diversity of dinoflagellates (Dinoflagellata, Alveolata). Syst. Biodivers. 2012, 10, 267–275. [Google Scholar] [CrossRef]
- Hallegraeff, G.M. A review of harmful algal blooms and their apparent global increase. Phycologia 1993, 32, 79–99. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.Y.; Liu, Y.J. Theoretical Study of Dinoflagellate Bioluminescence. Photochem. Photobiol. 2017, 93, 511–518. [Google Scholar] [CrossRef]
- Soli, G. Bioluminescent Cycle of Photosynthetic Dinoflagellates. Limnol. Oceanogr. 1966, 11, 355–363. [Google Scholar] [CrossRef]
- Seliger, H.H.; Fastie, W.G.; Taylor, W.R.; McElroy, W.D. Bioluminescence of Marine Dinoflagellates I. An underwater photometer for day and night measurements. J. Gen. Physiol. 1962, 45, 1003–1017. [Google Scholar] [CrossRef] [PubMed]
- Losee, J.; Lapota, D.; Geiger, M.; Lieberman, S. Bioluminescence in the Marine Environment. Ocean Optics VII 1984, 489. Epub ahead of print. [Google Scholar] [CrossRef]
- Lapota, D.; Galt, C.; Losee, J.R.; Huddell, H.D.; Orzech, J.K.; Nealson, K.H. Observations and measurements of planktonic bioluminescence in and around a milky sea. Mar. Biol. Ecol. 1988, 119, 55–81. [Google Scholar] [CrossRef]
- Maldonado, E.M.; Latz, M.I. Shear-Stress Dependence of Dinoflagellate Bioluminescence. Bulletin 2007, 212, 242–249. [Google Scholar] [CrossRef]
- Latz, M.I.; Bovard, M.; VanDelinder, V.; Segre, E.; Rohr, J.; Groisman, A. Bioluminescent response of individual dinoflagellate cells to hydrodynamic stress measured with millisecond resolution in a microfluidic device. J. Exp. Biol. 2008, 211, 2865–2875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girotti, S.; Ferri, E.N.; Fumo, M.G.; Maiolini, E. Monitoring of environmental pollutants by bioluminescent bacteria. Anal. Chim. Acta 2008, 608, 2–29. [Google Scholar] [CrossRef]
- Syed, A.J.; Anderson, J.C. Applications of bioluminescence in biotechnology and beyond. Chem. Soc. Rev. 2021, 50, 5668–5705. [Google Scholar] [CrossRef]
- Johnson, B.T. Microtox® Acute Toxicity Test. In Small-Scale Freshwater Toxicity Investigations; Springer-Verlag: Berlin/Heidelberg, Germany, 2005; pp. 69–105. [Google Scholar]
- Lapota, D.; Moskowitz, G.J.; Rosenberger, D.E.; Grovhoug, J.G. The use of stimulable bioluminescence from marine dinoflagellates as a means of detecting toxicity in the marine environment. Environ. Toxicol. Risk Assess. Phila. Am. Soc. Test. Mater. 1993, 2, 3–18. [Google Scholar]
- Lapota, D.; Duckworth, D.; Rosenberger, D.E.; Copeland, H.D.; Mastny, G.F. The QWIKLITE Bioluminescence Bioassay System to Assess Toxic Effects in the Biosphere. In Environmental Quality Technology: Advancing the Pillars Toward the 21st Century; Proc department defense Environ Technol Work 1995; Department of Defense Environmental Technology Workshop: Washington, DC, USA, 1995; pp. 153–167. [Google Scholar]
- Craig, J.M.; Klerks, P.L.; Heimann, K.; Waits, J.L. Effects of salinity, pH and temperature on the re-establishment of bioluminescence and copper or SDS toxicity in the marine dinoflagellate Pyrocystis lunula using bioluminescence as an endpoint. Environ. Pollut. 2003, 125, 267–275. [Google Scholar] [CrossRef]
- Rosen, G.; Osorio-Robayo, A.; Rivera-Duarte, I.; Lapota, D. Comparison of bioluminescent dinoflagellate (Qwiklite) and bacterial (Microtox) rapid bioassays for the detection of metal and ammonia toxicity. Arch. Environ. Contam. Toxicol. 2008, 54, 606–611. [Google Scholar] [CrossRef]
- Hildenbrand, Z.L.; Osorio, A.; Carlton, D.D.; Fontenot, B.E.; Walton, J.L.; Hunt, L.R.; Oka, H.; Hopkins, D.; Bjorndal, B.; Schug, K.A. Rapid analysis of eukaryotic bioluminescence to assess potential groundwater contamination events. J. Chem. 2015. Epub ahead of print. [Google Scholar] [CrossRef] [Green Version]
- Hannan, P.J.; Stiffey, A.V.; Jarvist, B.B. Bioluminescence as the Basis for the Detection of Trichothecenes; NRL Memorandum Report 5738; Naval Research Laboratory: Washington, DC, USA, 1986; p. 25. [Google Scholar]
- Heimann, K.; Matuszewski, J.M.; Klerks, P.L. Effects of metals and organic contaminants on the recovery of luminescence in the marine dinoflagellate Pyrocystis lunula (Dinophyceae). J. Phycol. 2002, 38, 482–492. [Google Scholar] [CrossRef]
- Taylor, F.J.R. The Biology of Dinoflagellates, 1st ed.; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Shimomura, O. Bioluminescence in the sea: Photoprotein systems. Symp. Soc. Exp. Biol. 1985, 39, 351–372. [Google Scholar] [PubMed]
- Steidinger, K.A.; Tangen, K. Dinoflagellates. In Identifying Marine Diatoms and Dinoflagellates; Elsevier: Amsterdam, The Netherlands, 1996; pp. 387–584. [Google Scholar]
- Taylor, F. Dinoflagellates. In eLS; Wiley: Vancouver, BC, Canada, 2006. [Google Scholar] [CrossRef]
- Bi, Y.; Wang, F.; Zhang, W. Omics analysis for dinoflagellates biology research. Microorganisms 2019, 7, 288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, A.; Robbins, I.; Moline, M.A.; Iglesias-Rodríguez, M.D. Oligonucleotide primers for the detection of bioluminescent dinoflagellates reveal novel luciferase sequences and information on the molecular evolution of this gene. J. Phycol. 2008, 44, 419–428. [Google Scholar] [CrossRef] [Green Version]
- Macartney, J.X.V. Observations upon luminous animals. Philos. Trans. R Soc. Lond. 1810, 100, 258–293. [Google Scholar]
- Newton, H. A History of Luminescence from the Earliest Times until 1900; The American Philosophical Society: Philadelphia, PA, USA, 1957. [Google Scholar]
- Valiadi, M.; Iglesias-Rodriguez, D. Understanding bioluminescence in dinoflagellates—How far have we come? Microorganisms 2013, 1, 3–25. [Google Scholar] [CrossRef] [Green Version]
- Harvey, E.N. Bioluminescence; Academic Press: New York, NY, USA, 1952. [Google Scholar]
- Wilson, T.; Hastings, W. Bioluminescence: Living Lights, Lights for Living; Harvard University Press: London, UK, 2013. [Google Scholar]
- Lee, J. Bioluminescence: The First 3000 Years (Review). J. Sib. Fed. Univ. Biol. 2008, 1, 194–205. [Google Scholar] [CrossRef]
- Shimomura, O. Bioluminescence—Chemical Principles and Methods; World Scientific Publishing Company: Singapore, 2006. [Google Scholar] [CrossRef]
- Hastings, J.W.; Sweeney, B.M. A Persistent Diurnal Rhythm of Luminescence in Gonyaulax polyedra. Bulletin 1958, 115, 440–458. [Google Scholar] [CrossRef]
- Bode, V.C.; Hastings, J.W. The Purification and Properties of the Bioluminescent System Gonyaulax polyedra. Arch. Biochem. Biophys. 1963, 103, 488–499. [Google Scholar] [CrossRef]
- De Sa, R.; Hastings, J.W.; Vatter, A.E. Luminescent “Crystalline” Particles: An Organized Subcellular Bioluminescent System. Science 1963, 141, 1269–1270. [Google Scholar] [CrossRef] [PubMed]
- Desa, A.R.D.; Hastings, J.W. The Characterization of Scintillons Bioluminescent particles from the marine dinoflagellate, Gonyaulax polyedra The Journal of General Physiology. J. Gen. Physiol. 1968, 51, 105–122. [Google Scholar] [CrossRef] [PubMed]
- Fogel, M.; Hastings, J.W. A Substrate-Binding Protein in the Gonyaulax Bioluminescence Reaction. Arch. Biochem. Biophys. 1971, 142, 310–321. [Google Scholar] [CrossRef]
- Hastings, J.W. Biological Diversity, Chemical Mechanisms, and the Evolutionary Origins of Bioluminescent Systems*. J. Mol. Evol. 1983, 19, 309–321. [Google Scholar] [CrossRef]
- Nakamura, H.; Kishi, Y.; Shimomura, O.; Morse, D.; Hastings, J.W. Structure of Dinoflagellate Luciferin and its Enzymatic and Nonenzymatic Air-Oxidation Products. J. Am. Chem. Soc. 1989, 111, 7607–7611. [Google Scholar] [CrossRef]
- Schultz, L.W.; Liu, L.; Cegielski, M.; Hastings, J.W. Crystal structure of a pH-regulated luciferase catalyzing the bioluminescent oxidation of an open tetrapyrrole. Proc. Natl. Acad. Sci. USA 2005, 102, 1378–1383. [Google Scholar] [CrossRef] [Green Version]
- Fajardo, C.; De Donato, M.; Rodulfo, H.; Martinez-Rodriguez, G.; Costas, B.; Mancera, J.M.; Fernandez-Acero, F.J. New perspectives related to the bioluminescent system in dinoflagellates: Pyrocystis lunula, a case study. Int. J. Mol. Sci. 2020, 21, 1784. [Google Scholar] [CrossRef] [Green Version]
- Topalov, G.; Kishi, Y.; Gaede, H.C. Chlorophyll Catabolism Leading to the Skeleton of Dinoflagellate and Krill Luciferins: Hypothesis and Model Studies. Angew. Chem. Int. Ed. 2001, 40, 25–28. [Google Scholar] [CrossRef]
- Lau, E.S.; Oakley, T.H. Multi-level convergence of complex traits and the evolution of bioluminescence. Biol. Rev. 2021, 96, 673–691. [Google Scholar] [CrossRef]
- Liu, L.; Hastings, J.W. Two different domains of the luciferase gene in the heterotrophic dinoflagellate Noctiluca scintillans occur as two separate genes in photosynthetic species. Proc. Natl. Acad. Sci. USA 2007, 104, 696–701. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, A.; Horiguchi, T. Culture of the heterotrophic dinoflagellate Protoperidinium crassipes (Dinophyceae) with noncellular food items. J. Phycol. 2008, 44, 1090–1092. [Google Scholar] [CrossRef] [PubMed]
- Akimoto, H.; Wu, C.; Kinumi, T.; Ohmiya, Y. Biological rhythmicity in expressed proteins of the marine dinoflagellate Lingulodinium polyedrum demonstrated by chronological proteomics. Biochem. Biophys. Res. Commun. 2004, 315, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, M.T.; Nicolas, G.; Johnson, C.H.; Bassot, J.M.; Hastings, J.W. Characterization of the bioluminescent organelles in Gonyaulax polyedra (dinoflagellates) after fast-freeze fixation and antiluciferase immunogold staining. J. Cell Biol. 1987, 105, 723–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Dassow, P.; Latz, M.I. The role of Ca2+ in stimulated bioluminescence of the dinoflagellate Lingulodinium polyedrum. J. Exp. Biol. 2002, 205, 2971–2986. [Google Scholar] [CrossRef]
- Rodriguez, J.D.; Haq, S.; Bachvaroff, T.; Nowak, K.F.; Nowak, S.J.; Morgan, D.; Cherny, V.V.; Sapp, M.M.; Bernstein, S.; Bolt, A.; et al. Identification of a vacuolar proton channel that triggers the bioluminescent flash in dinoflagellates. PLoS ONE 2017, 12, e0171594. [Google Scholar] [CrossRef] [Green Version]
- Hastings, J.W. Bioluminescence in bacteria and dinoflagellates. In Light Emission by Plants and Bacteria; Academic Press: New York, NY, USA, 1986; pp. 363–398. [Google Scholar]
- Bae, Y.M.; Hastings, W. Cloning, sequencing and expression of dinoflagellate luciferase DNA from a marine alga, Gonyaulax polyedra. Biochim. Et Biophys. Acta 1994, 1219, 449–456. [Google Scholar] [CrossRef]
- Liu, L.; Wilson, T.; Hastings, J.W. Molecular evolution of dinoflagellate luciferases, enzymes with three catalytic domains in a single polypeptide. PNAS Novemb. 2004, 101, 16555–16560. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.H.; Inoué, S.; Flint, A.; Hastings, J.W. Compartmentalization of algal bioluminescence: Autofluorescence of bioluminescent particles in the dinoflagellate Gonyaulax as studied with image-intensified video microscopy and flow cytometry. J. Cell Biol. 1985, 100, 1435–1446. [Google Scholar] [CrossRef] [Green Version]
- Schmitter, R.E.; Njus, D.; Sulzman, F.M.; Gooch, V.D.; Hastings, J.W. Dinoflagellate Bioluminescence: A Comparative Study of JnVitro Components. J. Cell Phtysiol 1976, 87, 123–134. [Google Scholar] [CrossRef]
- Knaust, R.; Urbig, T.; Li, L.; Taylor, W.; Hastings, J.W. The circadian rythm of bioluminescence in Pyrocystis is not due to differences in the amount of luciferase: A comparative study of three bioluminescent marine dinoflagellates. J. Phycol. 1998, 34, 167–172. [Google Scholar] [CrossRef]
- Machabee, S.; Wall, L.; Morse, D. Expression and genomic organization of a dinoflagellate gene family. Plant. Mol. Biol. 1994, 25, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Tanikawa, N.; Akimoto, H.; Ogoh, K.; Chun, W.; Ohmiya, Y. Expressed Sequence Tag Analysis of the Dinof lagellate Lingulodinium polyedrum During Dark PhaseT. Photochem. Photobiol. 2004, 80, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Hastings, J.W. Novel and rapidly diverging intergenic sequences between tandem repeats of the luciferase genes in seven dinoflagellate species. J. Phycol. 2005, 42, 96–103. [Google Scholar] [CrossRef]
- Erdner, D.L.; Anderson, D.M. Global transcriptional profiling of the toxic dinoflagellate Alexandrium fundyense using massively parallel signature sequencing. BMC Genom. 2006, 7, 88. [Google Scholar] [CrossRef] [Green Version]
- Uribe, P.; Fuentes, D.; Valdés, J.; Shmaryahu, A.; Zúñiga, A.; Holmes, D.; Valenzuela, P.D. Preparation and analysis of an expressed sequence tag library from the toxic dinoflagellate Alexandrium catenella. Mar. Biotechnol. 2008, 10, 692–700. [Google Scholar] [CrossRef]
- Valiadi, M.; Iglesias-Rodriguez, M.D. Diversity of the luciferin binding protein gene in bioluminescent dinoflagellates—Insights from a new gene in noctiluca scintillans and sequences from gonyaulacoid genera. J. Eukaryot. Microbiol. 2014, 61, 134–145. [Google Scholar] [CrossRef] [Green Version]
- Morse, J.M.; Black, C.; Oberle, K.; Donahue, P. A Prospective study to Identify the Fall-Prone Patient. Sm. Sri. Med. 1989, 28, 81–86. [Google Scholar] [CrossRef]
- Lee, D.H.; Mittag, M.; Sczekan, S.; Morse, D.; Hastings, J.W. Molecular cloning and genomic organization of a gene for luciferin-binding protein from the dinoflagellate Gonyaulax polyedra. J. Biol. Chem. 1993, 268, 8842–8850. [Google Scholar] [CrossRef]
- Chen, A.K.; Latz, M.I.; Sobolewski, P.; Frangos, J.A. Evidence for the role of G-proteins in flow stimulation of dinoflagellate bioluminescence. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, 2020–2027. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.M.; Kulis, D.M.; Keafer, B.A.; Gribble, K.E.; Marin, R.; Scholin, C.A. Identification and enumeration of Alexandrium spp. from the Gulf of Maine using molecular probes. Deep Sea Res. 2 Top Stud. Oceanogr. 2005, 52, 2467–2490. [Google Scholar] [CrossRef]
- Jaeckisch, N.; Yang, I.; Wohlrab, S.; Glöckner, G.; Kroymann, J.; Vogel, H.; Cembella, A.; John, U. Comparative genomic and transcriptomic characterization of the toxigenic marine dinoflagellate Alexandrium ostenfeldii. PLoS ONE 2011, 6, e28012. [Google Scholar] [CrossRef]
- Latz, M.I.; Lee, A.O. Spontaneous and Stimulated Bioluminescence of The Dinoflagellate Ceratocorys Horrida (Peridiniales)1. J. Phycol. 1995, 31, 120–132. [Google Scholar] [CrossRef]
- Burns, D.A.; Mitchell, J.S. New zealand coastal dinoflagellates with gonyaulax affinities. N. Z. J. Mar. Freshw. Res. 1983, 17, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Sharifian, S.; Homaei, A.; Hemmati, R.; Khajeh, K. Light emission miracle in the sea and preeminent applications of bioluminescence in recent new biotechnology. J. Photochem. Photobiol. B 2017, 172, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, O.K.; Liu, L.; Robertson, D.L.; Woodland Hastings, J. Members of a dinoflagellate luciferase gene family differ in synonymous substitution rates. Biochemistry 2001, 40, 15862–15868. [Google Scholar] [CrossRef] [Green Version]
- Dodge, J.D. The Chromosomes of Dinoflagellates; Academic Press: Cambridge, MA, USA, 1985; pp. 5–19. [Google Scholar]
- Ollevier, A.; Mortelmans, J.; Aubert, A.; Deneudt, K.; Vandegehuchte, M. Noctiluca scintillans: Dynamics, Size Measurements and Relationships with Small Soft-Bodied Plankton in the Belgian Part of the North Sea. Front. Mar. Sci. 2021, 8, 777999. [Google Scholar] [CrossRef]
- Hansen, P.J.; Calado, A.J. Phagotrophic Mechanisms and Prey Selection in Free-living Dinoflagellates. J. Eukaryot. Microbiol. 1999, 46, 382–389. [Google Scholar] [CrossRef]
- Mohammed, S.S.; Bot, P.J.; Gul, S. Some Rarely Reported Athecate Dinoflagellates from North Arabian Sea. (2009). Available online: https://www.researchgate.net/publication/258991178 (accessed on 12 February 2022).
- Tesson, B.; Latz, M.I. Mechanosensitivity of a rapid bioluminescence reporter system assessed by atomic force microscopy. Biophys. J. 2015, 108, 1341–1351. [Google Scholar] [CrossRef] [Green Version]
- Hurowitz, E.H.; Melnyk, J.M.; Chen, Y.J.; Kouros-Mehr, H.; Simon, M.I.; Shizuya, H. Genomic Characterization of the Human Heterotrimeric G Protein α, β, and γ Subunit Genes. DNA Res. 2000, 7, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Visbeck, M. Ocean science research is key for a sustainable future. Nat. Commun. 2018, 9, 690. [Google Scholar] [CrossRef] [Green Version]
- Gobas, F.A.; de Wolf, W.; Burkhard, L.P.; Verbruggen, E.; Plotzke, K. Revisiting Bioaccumulation Criteria for POPs and PBT Assessments. Integr. Environ. Assess. Manag. 2009, 5, 624–637. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, M.; Templeton, D.M.; Andersen, O.; Duffus, J.H. Glossary of terms used in ecotoxicology (IUPAC Recommendations 2009). Pure Appl. Chem. 2009, 81, 829–970. [Google Scholar] [CrossRef]
- Okamoto, O.K.; Shao, L.; Hastings, J.W.; Colepicolo, P. Acute and chronic effects of toxic metals on viability, encystment and bioluminescence in the dinoflagellate Gonyaulax polyedra. Comp. Biochem. Physiol. Part C 1999, 123, 75–83. [Google Scholar] [CrossRef]
- Stauber, J.L.; Binet, M.T.; Bao, V.W.; Boge, J.; Zhang, A.Q.; Leung, K.M.; Adams, M.S. Comparison of the QwikLiteTM algal bioluminescence test with marine algal growth rate inhibition bioassays. Environ. Toxicol. 2008, 23, 617–625. [Google Scholar] [CrossRef]
- Kita-Tsukamoto, K.; Oyaizu, H.; Nanba, K.; Simidu, U. Phylogenetic relationships of marine bacteria, mainly members of the family Vibrionaceae, determined on the basis of 16S rRNA sequences. Int. J. Syst. Bacteriol. 1993, 43, 8–19. [Google Scholar] [CrossRef] [Green Version]
- Arnold, M.A.; Meyerhoff, M.E. Recent Advances in the Development and Analytical Applications of Biosensing Probes. Crit. Rev. Anal. Chem. 1988, 20, 149–196. [Google Scholar] [CrossRef]
- Roberto, F.F.; Barnes, J.M.; Bruhn, D.F. Evaluation of a GFP reporter gene construct for environmental arsenic detection. Talanta 2002, 58, 181–188. [Google Scholar] [CrossRef]
- Rai, L.C.; Gaurx, J.P.; Kumar, H.D. Phycology and heavy-metal pollution. Biol. Rev. 1981, 56, 99–151. [Google Scholar] [CrossRef]
- Geddie, A.W.; Hall, S.G. An introduction to copper and zinc pollution in macroalgae: For use in remediation and nutritional applications. J. Appl. Phycol. 2019, 31, 691–708. [Google Scholar] [CrossRef]
Dinoflagellate Species | Diameter | Feeding Mechanism | Luciferase Size (kDa) | Luciferin-Binding Protein |
---|---|---|---|---|
Alexandrium spp. | 30–82 μm | Photosynthetic | 137 | Present |
[73] | [36] | [66] | [74] | |
Ceratocorys horrida | ~70 μm | Photosynthetic | ---- | Present |
[75] | [75] | [69] | ||
Gonyaulax spp. | 24–75 μm | Photosynthetic | 130 | Present |
[76] | [52] | [77] | [78] | |
Lingulodinium polyedrum | 37–53 μm | Photosynthetic | 137 | Present |
[79] | [36] | [78] | [78] | |
Noctiluca scintillans | 0.2–2 mm | Heterotrophic | 100 | Present |
[80] | [49] | [52] | [52] | |
Protoperidinium crassipes | 65–110 μm | Heterotrophic | ---- | Not present |
[53] | [81] | [69] | ||
Pyrocystis fusiformis | 370 μm | Photosynthetic) | ~137 | Not present |
[82] | [66] | [66] | [62] | |
Pyrocystis lunula | 100–140 μm | Photosynthetic | ~137 | Present |
[83] | [49] | [78] | [70] |
Bioluminescent Dinoflagellate Used | Tested Substances | Test Type | Test Duration | References |
---|---|---|---|---|
Pyrocystis lunula | Trichthecenes | Inhibition of bioluminescence | 2 h | [26] |
Lingulodinium polyedrum and Pyrocystis lunula | Tributyltin chloride, copper, zinc, and storm drain effluent | Inhibition of bioluminescence | 4 h to 11 days | [21] |
Lingulodinium polyedrum | Copper, storm drain effluent, and polyaromatic cyclic hydrocarbons (PAHs) | Inhibition of bioluminescence | 24 h, 48 h, 72 h and 96 h | [22] |
Lingulodinium polyedrum | Copper, cadmium, lead, and mercury | Inhibition of bioluminescence | 48 h, 96 h and 8 days | [88] |
Pyrocystis lunula | Copper, cadmium, lead, nickel, Sodium dodecyl sulfate (SDS), phenol, and phenanthrene | Bioluminescence re-establishment | 4 h | [27] |
Pyrocystis lunula | Sodium dodecyl sulfate, (SDS) and copper | Bioluminescence re-establishment | 4 h | [23] |
Lingulodinium polyedrum, Ceratocorys horrida and Pyrocystis noctiluca | Copper, cadmium, lead, mercury, silver, zinc, chrome, and non-ionized ammonia | Inhibition of bioluminescence | 24 h | [24] |
Pyrocystis lunula | Tributyltin (TBT), copper, diuron, and ammonia | Inhibition of bioluminescence | 24 h, 48 h, 96 h and 120 h | [89] |
Pyrocystis lunula | Glutaraldehyde, hydrochloric acid (HCl), arsenic, selenium, barium, and strontium | Inhibition of bioluminescence | 4 h, 6 h, 8, 12 h, 24 h, 48 h, 72 h and 98 h | [25] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perin, L.S.; Moraes, G.V.; Galeazzo, G.A.; Oliveira, A.G. Bioluminescent Dinoflagellates as a Bioassay for Toxicity Assessment. Int. J. Mol. Sci. 2022, 23, 13012. https://doi.org/10.3390/ijms232113012
Perin LS, Moraes GV, Galeazzo GA, Oliveira AG. Bioluminescent Dinoflagellates as a Bioassay for Toxicity Assessment. International Journal of Molecular Sciences. 2022; 23(21):13012. https://doi.org/10.3390/ijms232113012
Chicago/Turabian StylePerin, Luíza S., Gabriela V. Moraes, Gabriela A. Galeazzo, and Anderson G. Oliveira. 2022. "Bioluminescent Dinoflagellates as a Bioassay for Toxicity Assessment" International Journal of Molecular Sciences 23, no. 21: 13012. https://doi.org/10.3390/ijms232113012
APA StylePerin, L. S., Moraes, G. V., Galeazzo, G. A., & Oliveira, A. G. (2022). Bioluminescent Dinoflagellates as a Bioassay for Toxicity Assessment. International Journal of Molecular Sciences, 23(21), 13012. https://doi.org/10.3390/ijms232113012