Deep Learning-Based Artificial Intelligence to Investigate Targeted Nanoparticles’ Uptake in TNBC Cells
Abstract
:1. Introduction
2. Results
2.1. Model Performance
2.2. Comparison Using Manual Intensity Evaluation and Predictions from AI
3. Discussion
4. Materials and Methods
4.1. Data Pre-Processing
4.1.1. Patch Generation
4.1.2. Image Classification
4.1.3. Data Augmentation Rotation
4.2. Prediction Using Pretrained and Scratch Convolutional Neural Network (CNN) Algorithms
4.2.1. Convolutional Layer
4.2.2. Pooling Layer
4.2.3. Fully Connected Layer
4.3. Training Regime with Model Specifications
4.3.1. Training Small Convnets from Scratch
4.3.2. Using Pre-Trained Models
4.4. Model 5-Fold Cross-Validation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, L.; Duan, J.J.; Bian, X.W.; Yu, S.C. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020, 22, 61. [Google Scholar] [CrossRef] [PubMed]
- Shokooh, M.K.; Emami, F.; Jeong, J.H.; Yook, S. Bio-inspired and smart nanoparticles for triple negative breast cancer microenvironment. Pharmaceutics 2021, 13, 287. [Google Scholar] [CrossRef] [PubMed]
- Niu, M.; Valdes, S.; Naguib, Y.W.; Hursting, S.D.; Cui, Z. Tumor-Associated Macrophage-Mediated Targeted Therapy of Triple-Negative Breast Cancer. Mol. Pharm. 2016, 13, 1833–1842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahba, H.A.; El-Hadaad, H.A. Current approaches in treatment of triple-negative breast cancer. Cancer Biol. Med. 2015, 12, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front. Mol. Biosci. 2020, 7, 193. [Google Scholar] [CrossRef]
- Mu, Q.; Wang, H.; Zhang, M. Nanoparticles for imaging and treatment of metastatic breast cancer. Expert Opin. Drug Deliv. 2017, 14, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Truffi, M.; Mazzucchelli, S.; Bonizzi, A.; Sorrentino, L.; Allevi, R.; Vanna, R.; Morasso, C.; Corsi, F. Nano-strategies to target breast cancer-associated fibroblasts: Rearranging the tumor microenvironment to achieve antitumor efficacy. Int. J. Mol. Sci. 2019, 20, 1263. [Google Scholar] [CrossRef] [Green Version]
- FitzGerald, L.I.; Johnston, A.P.R. It’s what’s on the inside that counts: Techniques for investigating the uptake and recycling of nanoparticles and proteins in cells. J. Colloid. Interface Sci. 2021, 587, 64–78. [Google Scholar] [CrossRef]
- Lammertink, B.H.A.; Deckers, R.; Derieppe, M.; De Cock, I.; Lentacker, I.; Storm, G.; Moonen, C.T.W.; Bos, C. Dynamic Fluorescence Microscopy of Cellular Uptake of Intercalating Model Drugs by Ultrasound-Activated Microbubbles. Mol. Imaging Biol. 2017, 19, 683–693. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, A.; Kambhampati, C.; Monson, J.R.; Drew, P. Artificial intelligence in medicine. Ann. R. Coll. Surg. Engl. 2004, 86, 334. [Google Scholar] [CrossRef]
- Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today 2021, 26, 80–93. [Google Scholar] [CrossRef]
- Ma, M.; Gan, L.; Jiang, Y.; Qin, N.; Li, C.; Zhang, Y.; Wang, X. Radiomics Analysis Based on Automatic Image Segmentation of DCE-MRI for Predicting Triple-Negative and Nontriple-Negative Breast Cancer. Comput. Math. Methods Med. 2021, 2021, 2140465. [Google Scholar] [CrossRef]
- Education, I.C. Deep Learning. Available online: https://www.ibm.com/cloud/learn/deep-learning (accessed on 13 September 2021).
- Yousif, M.; van Diest, P.J.; Laurinavicius, A.; Rimm, D.; van der Laak, J.; Madabhushi, A.; Schnitt, S.; Pantanowitz, L. Artificial intelligence applied to breast pathology. Virchows Arch. 2021, 480, 191–209. [Google Scholar] [CrossRef]
- Ma, H.; Tian, R.; Li, H.; Sun, H.; Lu, G.; Liu, R.; Wang, Z. Fus2Net: A novel Convolutional Neural Network for classification of benign and malignant breast tumor in ultrasound images. BioMed. Eng. Online 2021, 20, 112. [Google Scholar] [CrossRef]
- Adnan, N.; Zand, M.; Huang, T.; Ruan, J. Construction and evaluation of robust interpretation models for breast cancer metastasis prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021, 19, 1344–1353. [Google Scholar] [CrossRef]
- Ackerman, L.V.; Mucciardi, A.N.; Gose, E.E.; Alcorn, F.S. Classification of benign and malignant breast tumors on the basis of 36 radiographic properties. Cancer 1973, 31, 342–352. [Google Scholar] [CrossRef]
- Zhang, Z.; Lin, X.; Dong, L.; Zhang, S.; Zhang, X.; Sun, D.; Yuan, K. Ultrasonic Diagnosis of Breast Nodules Using Modified Faster R-CNN. Ultrason. Imaging 2019, 41, 353–367. [Google Scholar] [CrossRef]
- Shimokawa, D.; Takahashi, K.; Kurosawa, D.; Takaya, E.; Oba, K.; Yagishita, K.; Fukuda, T.; Tsunoda, H.; Ueda, T. Deep learning model for breast cancer diagnosis based on bilateral asymmetrical detection (BilAD) in digital breast tomosynthesis images. Radiol. Phys. Technol. 2022. [Google Scholar] [CrossRef]
- Negrete, N.T.; Takhtawala, R.; Shaver, M.; Kart, T.; Zhang, Y.; Kim, M.J.; Park, V.Y.; Su, M.Y.; Chow, D.S.; Chang, P. Automated breast cancer lesion detection on breast MRI using artificial intelligence. J. Clin. Oncol. Conf. 2019, 37, e14612. [Google Scholar] [CrossRef]
- Mahmood, T.; Arsalan, M.; Owais, M.; Lee, M.B.; Park, K.R. Artificial intelligence-based mitosis detection in breast cancer histopathology images using faster R-CNN and deep CNNs. J. Clin. Med. 2020, 9, 749. [Google Scholar] [CrossRef]
- Liu, J.; Lei, J.; Ou, Y.; Zhao, Y.; Tuo, X.; Zhang, B.; Shen, M. Mammography diagnosis of breast cancer screening through machine learning: A systematic review and meta-analysis. Clin. Exp. Med. 2022. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Cui, G.; Luo, Y.; Guo, Y.; Zhao, L.; Wang, Y.; Subasi, A.; Dogan, S.; Tuncer, T. Artificial Intelligence-Based Breast Cancer Diagnosis Using Ultrasound Images and Grid-Based Deep Feature Generator. Int. J. Gen. Med. 2022, 15, 2271–2282. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, A.; Perumalla, S. Detecting breast cancer using artificial intelligence: Convolutional neural network. Technol. Health Care 2021, 29, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Aldhyani, T.H.H.; Nair, R.; Alzain, E.; Alkahtani, H.; Koundal, D. Deep Learning Model for the Detection of Real Time Breast Cancer Images Using Improved Dilation-Based Method. Diagnostics 2022, 12, 2505. [Google Scholar] [CrossRef] [PubMed]
- van de Sande, D.; Sharabiani, M.; Bluemink, H.; Kneepkens, E.; Bakx, N.; Hagelaar, E.; van der Sangen, M.; Theuws, J.; Hurkmans, C. Artificial intelligence based treatment planning of radiotherapy for locally advanced breast cancer. Phys. Imaging Radiat. Oncol. 2021, 20, 111–116. [Google Scholar] [CrossRef]
- Ji, J.M.; Shen, W.H. A Novel Machine Learning Systematic Framework and Web Tool for Breast Cancer Survival Rate Assessment. medRxiv 2022, 17. [Google Scholar] [CrossRef]
- Kim, M.; Yun, J.; Cho, Y.; Shin, K.; Jang, R.; Bae, H.-J.; Kim, N. Deep Learning in Medical Imaging. Neurospine 2019, 16, 657–668. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, W.; Winsnes, C.F.; Hjelmare, M.; Cesnik, A.J.; Åkesson, L.; Xu, H.; Sullivan, D.P.; Dai, S.; Lan, J.; Jinmo, P.; et al. Analysis of the Human Protein Atlas Image Classification competition. Nat. Methods 2019, 16, 1254–1261. [Google Scholar] [CrossRef] [Green Version]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Ker, J.; Wang, L.; Rao, J.; Lim, T. Deep Learning Applications in Medical Image Analysis. IEEE Access 2018, 6, 9375–9389. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Balodi, T. Convolutional Neural Network (CNN): Graphical Visualization with Python Code Explanation. Available online: https://www.analyticssteps.com/blogs/convolutional-neural-network-cnn-graphical-visualization-code-explanation (accessed on 9 November 2021).
- Saha, S. A Comprehensive Guide to Convolutional Neural Networks—The ELI5 Way. Available online: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53 (accessed on 5 November 2021).
- Deeplizard. Convolutional Neural Networks (CNNs) Explained. Available online: https://deeplizard.com/learn/video/YRhxdVk_sIs (accessed on 19 October 2021).
- Amidi, A.; Amidi, S. Convolutional Neural Networks cheatsheet. Available online: https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks (accessed on 23 October 2022).
- Nayak, S.R.; Nayak, D.R.; Sinha, U.; Arora, V.; Pachori, R.B. Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: A comprehensive study. Biomed. Signal Process. Control 2021, 64, 102365. [Google Scholar] [CrossRef]
- Toğaçar, M.; Özkurt, K.B.; Ergen, B.; Cömert, Z. BreastNet: A novel convolutional neural network model through histopathological images for the diagnosis of breast cancer. Phys. A Stat. Mech. Its Appl. 2020, 545, 123592. [Google Scholar] [CrossRef]
Model 1 | Model 2 | Model 3 (VGG16) | Model 4 (ResNet50) | Model 5 (Inception) | |
---|---|---|---|---|---|
Fold 1 | 98.37 | 97.01 | 98.64 | 99.18 | 98.91 |
Fold 2 | 98.91 | 98.91 | 98.91 | 97.83 | 99.73 |
Fold 3 | 99.18 | 99.46 | 93.48 | 95.38 | 99.73 |
Fold 4 | 95.65 | 96.20 | 95.92 | 94.29 | 99.46 |
Fold 5 | 98.37 | 99.18 | 99.46 | 100 | 98.91 |
Overall accuracy | 98.076 | 98.152 | 97.282 | 97.336 | 99.348 |
Model | Class | Precision | Sensitivity | Specificity | F-1 Score |
---|---|---|---|---|---|
Model 1 | High | 0.980 | 0.976 | 0.975 | 0.978 |
Low | 0.980 | 0.988 | 0.985 | 0.984 | |
Model 2 | High | 0.978 | 0.982 | 0.982 | 0.980 |
Low | 0.986 | 0.982 | 0.980 | 0.984 | |
VGG16 | High | 0.992 | 0.948 | 0.951 | 0.966 |
Low | 0.964 | 0.992 | 0.990 | 0.976 | |
ResNet50 | High | 0.968 | 0.970 | 0.975 | 0.970 |
Low | 0.976 | 0.978 | 0.976 | 0.976 | |
Inception-V3 | High | 0.986 | 1.00 | 1.00 | 0.994 |
Low | 1.00 | 0.99 | 0.990 | 0.996 |
Metrics | Equation |
---|---|
Precision | TP/FP + TP |
Sensitivity | TP/FN + TP |
Specificity | TN/FP + TN |
Accuracy | TP + TN/ TN + TP + FN + FP |
F-1 score | (Precision × recall/ precision + recall) × 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, R.; Balamurali, M.; Varamini, P. Deep Learning-Based Artificial Intelligence to Investigate Targeted Nanoparticles’ Uptake in TNBC Cells. Int. J. Mol. Sci. 2022, 23, 16070. https://doi.org/10.3390/ijms232416070
Ali R, Balamurali M, Varamini P. Deep Learning-Based Artificial Intelligence to Investigate Targeted Nanoparticles’ Uptake in TNBC Cells. International Journal of Molecular Sciences. 2022; 23(24):16070. https://doi.org/10.3390/ijms232416070
Chicago/Turabian StyleAli, Rafia, Mehala Balamurali, and Pegah Varamini. 2022. "Deep Learning-Based Artificial Intelligence to Investigate Targeted Nanoparticles’ Uptake in TNBC Cells" International Journal of Molecular Sciences 23, no. 24: 16070. https://doi.org/10.3390/ijms232416070
APA StyleAli, R., Balamurali, M., & Varamini, P. (2022). Deep Learning-Based Artificial Intelligence to Investigate Targeted Nanoparticles’ Uptake in TNBC Cells. International Journal of Molecular Sciences, 23(24), 16070. https://doi.org/10.3390/ijms232416070