The Impact of Nicotine along with Oral Contraceptive Exposure on Brain Fatty Acid Metabolism in Female Rats
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leppert, M.H.; Ho, P.M.; Burke, J.; Madsen, T.E.; Kleindorfer, D.; Sillau, S.; Daugherty, S.; Bradley, C.J.; Poisson, S.N. Young Women Had More Strokes Than Young Men in a Large, United States Claims Sample. Stroke 2020, 51, 3352–3355. [Google Scholar] [CrossRef] [PubMed]
- Loraine, A.; West, S.C.; Goodkind, D.; He, W. 65+ in the United States: 2010; Current Population Reports; Washington DC 2014; pp. 23–212. Available online: https://www.ctphilanthropy.org/resources/65-united-states-2010 (accessed on 20 September 2022).
- Girijala, R.L.; Sohrabji, F.; Bush, R.L. Sex differences in stroke: Review of current knowledge and evidence. Vasc. Med. 2017, 22, 135–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Writing Group, M.; Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; Das, S.R.; de Ferranti, S.; Despres, J.P.; et al. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation 2016, 133, e38–e360. [Google Scholar] [CrossRef]
- Reddy, V.; Wurtz, M.; Patel, S.H.; McCarthy, M.; Raval, A.P. Oral contraceptives and stroke: Foes or friends. Front. Neuroendocrinol. 2022, 67, 101016. [Google Scholar] [CrossRef] [PubMed]
- Johansson, T.; Fowler, P.; Ek, W.E.; Skalkidou, A.; Karlsson, T.; Johansson, A. Oral Contraceptives, Hormone Replacement Therapy, and Stroke Risk. Stroke 2022, 53, 3107–3115. [Google Scholar] [CrossRef]
- Jentsch, V.L.; Potzl, L.; Wolf, O.T.; Merz, C.J. Hormonal contraceptive usage influences stress hormone effects on cognition and emotion. Front. Neuroendocrinol. 2022, 67, 101012. [Google Scholar] [CrossRef]
- McKetta, S.; Keyes, K.M. Oral contraceptive use and depression among adolescents. Ann. Epidemiol. 2019, 29, 46–51. [Google Scholar] [CrossRef]
- Anderl, C.; de Wit, A.E.; Giltay, E.J.; Oldehinkel, A.J.; Chen, F.S. Association between adolescent oral contraceptive use and future major depressive disorder: A prospective cohort study. J. Child. Psychol. Psychiatry 2022, 63, 333–341. [Google Scholar] [CrossRef]
- Graham, B.M.; Li, S.H.; Black, M.J.; Ost, L.G. The association between estradiol levels, hormonal contraceptive use, and responsiveness to one-session-treatment for spider phobia in women. Psychoneuroendocrinology 2018, 90, 134–140. [Google Scholar] [CrossRef]
- Siegel, J.; Patel, S.H.; Mankaliye, B.; Raval, A.P. Impact of Electronic Cigarette Vaping on Cerebral Ischemia: What We Know So Far. Transl. Stroke Res. 2022, 13, 923–938. [Google Scholar] [CrossRef]
- Benowitz, N.L.; Lessov-Schlaggar, C.N.; Swan, G.E.; Jacob, P., 3rd. Female sex and oral contraceptive use accelerate nicotine metabolism. Clin. Pharmacol. Ther. 2006, 79, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Roselli, C.E.; Liu, M.; Hurn, P.D. Brain aromatization: Classic roles and new perspectives. Semin. Reprod. Med. 2009, 27, 207–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raval, A.P.; Hirsch, N.; Dave, K.R.; Yavagal, D.R.; Bramlett, H.; Saul, I. Nicotine and estrogen synergistically exacerbate cerebral ischemic injury. Neuroscience 2011, 181, 216–225. [Google Scholar] [CrossRef]
- Raval, A.P.; Saul, I.; Dave, K.R.; DeFazio, R.A.; Perez-Pinzon, M.A.; Bramlett, H. Pretreatment with a single estradiol-17beta bolus activates cyclic-AMP response element binding protein and protects CA1 neurons against global cerebral ischemia. Neuroscience 2009, 160, 307–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raval, A.P.; Dave, K.R.; Saul, I.; Gonzalez, G.J.; Diaz, F. Synergistic inhibitory effect of nicotine plus oral contraceptive on mitochondrial complex-IV is mediated by estrogen receptor-beta in female rats. J. Neurochem. 2012, 121, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Diaz, F.; Raval, A.P. Simultaneous nicotine and oral contraceptive exposure alters brain energy metabolism and exacerbates ischemic stroke injury in female rats. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2021, 41, 793–804. [Google Scholar] [CrossRef]
- Hall, K.S.; Trussell, J. Types of combined oral contraceptives used by US women. Contraception 2012, 86, 659–665. [Google Scholar] [CrossRef] [Green Version]
- Ford, L.; Kennedy, A.D.; Goodman, K.D.; Pappan, K.L.; Evans, A.M.; Miller, L.A.D.; Wulff, J.E.; Wiggs, B.R.; Lennon, J.J.; Elsea, S.; et al. Precision of a Clinical Metabolomics Profiling Platform for Use in the Identification of Inborn Errors of Metabolism. J. Appl. Lab. Med. 2020, 5, 342–356. [Google Scholar] [CrossRef]
- Mashek, D.G.; Bornfeldt, K.E.; Coleman, R.A.; Berger, J.; Bernlohr, D.A.; Black, P.; DiRusso, C.C.; Farber, S.A.; Guo, W.; Hashimoto, N.; et al. Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family. J. Lipid Res. 2004, 45, 1958–1961. [Google Scholar] [CrossRef] [Green Version]
- Gunenc, A.N.; Graf, B.; Stark, H.; Chari, A. Fatty Acid Synthase: Structure, Function, and Regulation. Subcell. Biochem. 2022, 99, 1–33. [Google Scholar] [CrossRef]
- Chilton, J.K. Molecular mechanisms of axon guidance. Dev. Biol. 2006, 292, 13–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadowaki, H.; Grant, M.A. Relationship of membrane phospholipid composition, lactosylceramide molecular species, and the specificity of CMP-N-acetylneuraminate:lactosylceramide alpha 2,3-sialyltransferase to the molecular species composition of GM3 ganglioside. J. Lipid Res. 1995, 36, 1274–1282. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Morales, V.; Montero, F.; Gonzalez-Forero, D.; Rodriguez-Bey, G.; Gomez-Perez, L.; Medialdea-Wandossell, M.J.; Dominguez-Vias, G.; Garcia-Verdugo, J.M.; Moreno-Lopez, B. Membrane-derived phospholipids control synaptic neurotransmission and plasticity. PLoS Biol. 2015, 13, e1002153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karim, M.; Jackson, P.; Jackowski, S. Gene structure, expression and identification of a new CTP:phosphocholine cytidylyltransferase beta isoform. Biochim. Et Biophys. Acta 2003, 1633, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, L.; Elena, C.; Domizi, P.; Banchio, C. Role of phosphatidylcholine during neuronal differentiation. IUBMB Life 2011, 63, 714–720. [Google Scholar] [CrossRef] [PubMed]
- McClave, A.K.; Hogue, C.J.; Brunner Huber, L.R.; Ehrlich, A.C. Cigarette smoking women of reproductive age who use oral contraceptives: Results from the 2002 and 2004 behavioral risk factor surveillance systems. Womens Health Issues 2010, 20, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Davis, P.H. Use of oral contraceptives and postmenopausal hormone replacement: Evidence on risk of stroke. Curr. Treat. Options Neurol. 2008, 10, 468–474. [Google Scholar] [CrossRef]
- Knepper, L.E.; Giuliani, M.J. Cerebrovascular disease in women. Cardiology 1995, 86, 339–348. [Google Scholar] [CrossRef]
- Fisher, M.; Feuerstein, G.; Howells, D.W.; Hurn, P.D.; Kent, T.A.; Savitz, S.I.; Lo, E.H.; Group, S. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 2009, 40, 2244–2250. [Google Scholar] [CrossRef]
- d’Adesky, N.; Diaz, F.; Zhao, W.; Bramlett, H.M.; Perez-Pinzon, M.A.; Dave, K.R.; Raval, A.P. Nicotine Exposure Along with Oral Contraceptive Treatment in Female Rats Exacerbates Post-cerebral Ischemic Hypoperfusion Potentially via Altered Histamine Metabolism. Transl. Stroke Res. 2021, 12, 817–828. [Google Scholar] [CrossRef]
- Raval, A.P.; Sick, J.T.; Gonzalez, G.J.; Defazio, R.A.; Dong, C.; Sick, T.J. Chronic nicotine exposure inhibits estrogen-mediated synaptic functions in hippocampus of female rats. Neurosci. Lett. 2012, 517, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.L.; Bhagat, B.; Taylor, J.J. Effect of chronic administration of nicotine on acetylcholinesterase activity in the hypothalamus and medulla oblongata of the rat brain. An ultrastructural study. Brain Res. 1973, 54, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Puchalska, P.; Crawford, P.A. Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metab. 2017, 25, 262–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, A.A. Cerebral ketone body metabolism. J. Inherit. Metab. Dis. 2005, 28, 109–121. [Google Scholar] [CrossRef]
- Schonfeld, P.; Wojtczak, L. Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radic. Biol. Med. 2008, 45, 231–241. [Google Scholar] [CrossRef]
- Galea, E.; Launay, N.; Portero-Otin, M.; Ruiz, M.; Pamplona, R.; Aubourg, P.; Ferrer, I.; Pujol, A. Oxidative stress underlying axonal degeneration in adrenoleukodystrophy: A paradigm for multifactorial neurodegenerative diseases? Biochim. Et Biophys. Acta 2012, 1822, 1475–1488. [Google Scholar] [CrossRef] [Green Version]
- Spitzer, J.J. CNS and fatty acid metabolism. Physiologist 1973, 16, 55–68. [Google Scholar]
- Binotti, B.; Jahn, R.; Perez-Lara, A. An overview of the synaptic vesicle lipid composition. Arch. Biochem. Biophys. 2021, 709, 108966. [Google Scholar] [CrossRef]
- Hayashi, T.; Thomas, G.M.; Huganir, R.L. Dual palmitoylation of NR2 subunits regulates NMDA receptor trafficking. Neuron 2009, 64, 213–226. [Google Scholar] [CrossRef] [Green Version]
- Meitzen, J.; Luoma, J.I.; Boulware, M.I.; Hedges, V.L.; Peterson, B.M.; Tuomela, K.; Britson, K.A.; Mermelstein, P.G. Palmitoylation of estrogen receptors is essential for neuronal membrane signaling. Endocrinology 2013, 154, 4293–4304. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, M.; Fusco, S.; Mainardi, M.; Scala, F.; Natale, F.; Lapenta, R.; Mattera, A.; Rinaudo, M.; Li Puma, D.D.; Ripoli, C.; et al. Brain insulin resistance impairs hippocampal synaptic plasticity and memory by increasing GluA1 palmitoylation through FoxO3a. Nat. Commun. 2017, 8, 2009. [Google Scholar] [CrossRef] [PubMed]
- Qu, M.; Zhou, X.; Wang, X.; Li, H. Lipid-induced S-palmitoylation as a Vital Regulator of Cell Signaling and Disease Development. Int. J. Biol. Sci. 2021, 17, 4223–4237. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.M.; Ragan, M.A. Palmitoylation: A protein S-acylation with implications for breast cancer. NPJ Breast Cancer 2016, 2, 16028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matt, L.; Kim, K.; Chowdhury, D.; Hell, J.W. Role of Palmitoylation of Postsynaptic Proteins in Promoting Synaptic Plasticity. Front. Mol. Neurosci. 2019, 12, 8. [Google Scholar] [CrossRef]
- Chamberlain, L.H.; Lemonidis, K.; Sanchez-Perez, M.; Werno, M.W.; Gorleku, O.A.; Greaves, J. Palmitoylation and the trafficking of peripheral membrane proteins. Biochem. Soc. Trans. 2013, 41, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Iwanaga, T.; Tsutsumi, R.; Noritake, J.; Fukata, Y.; Fukata, M. Dynamic protein palmitoylation in cellular signaling. Prog. Lipid Res. 2009, 48, 117–127. [Google Scholar] [CrossRef]
- Marino, M.; Ascenzi, P. Steroid hormone rapid signaling: The pivotal role of S-palmitoylation. IUBMB Life 2006, 58, 716–719. [Google Scholar] [CrossRef]
- Acconcia, F.; Ascenzi, P.; Bocedi, A.; Spisni, E.; Tomasi, V.; Trentalance, A.; Visca, P.; Marino, M. Palmitoylation-dependent estrogen receptor alpha membrane localization: Regulation by 17beta-estradiol. Mol. Biol. Cell 2005, 16, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Pedram, A.; Razandi, M.; Levin, E.R. Nature of functional estrogen receptors at the plasma membrane. Mol. Endocrinol. 2006, 20, 1996–2009. [Google Scholar] [CrossRef]
- Distler, A.M.; Kerner, J.; Hoppel, C.L. Post-translational modifications of rat liver mitochondrial outer membrane proteins identified by mass spectrometry. Biochim. Et Biophys. Acta 2007, 1774, 628–636. [Google Scholar] [CrossRef] [Green Version]
- Frahm, J.L.; Li, L.O.; Grevengoed, T.J.; Coleman, R.A. Phosphorylation and Acetylation of Acyl-CoA Synthetase- I. J. Proteom. Bioinform. 2011, 4, 129–137. [Google Scholar] [CrossRef]
- Bruce, K.D.; Zsombok, A.; Eckel, R.H. Lipid Processing in the Brain: A Key Regulator of Systemic Metabolism. Front. Endocrinol. 2017, 8, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathew, C.T.; Singh, P. Fibric Acid Antilipemic Agents. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Shipman, K.E.; Strange, R.C.; Ramachandran, S. Use of fibrates in the metabolic syndrome: A review. World J. Diabetes 2016, 7, 74–88. [Google Scholar] [CrossRef] [PubMed]
- Djouadi, F.; Aubey, F.; Schlemmer, D.; Ruiter, J.P.; Wanders, R.J.; Strauss, A.W.; Bastin, J. Bezafibrate increases very-long-chain acyl-CoA dehydrogenase protein and mRNA expression in deficient fibroblasts and is a potential therapy for fatty acid oxidation disorders. Hum. Mol. Genet. 2005, 14, 2695–2703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djouadi, F.; Bonnefont, J.P.; Thuillier, L.; Droin, V.; Khadom, N.; Munnich, A.; Bastin, J. Correction of fatty acid oxidation in carnitine palmitoyl transferase 2-deficient cultured skin fibroblasts by bezafibrate. Pediatr. Res. 2003, 54, 446–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, D.; Zeng, L.; Yao, K.; Kong, X.; Wu, G.; Yin, Y. The glutamine-alpha-ketoglutarate (AKG) metabolism and its nutritional implications. Amino. Acids 2016, 48, 2067–2080. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, S.H.; Timón-Gómez, A.; Pradhyumnan, H.; Mankaliye, B.; Dave, K.R.; Perez-Pinzon, M.A.; Raval, A.P. The Impact of Nicotine along with Oral Contraceptive Exposure on Brain Fatty Acid Metabolism in Female Rats. Int. J. Mol. Sci. 2022, 23, 16075. https://doi.org/10.3390/ijms232416075
Patel SH, Timón-Gómez A, Pradhyumnan H, Mankaliye B, Dave KR, Perez-Pinzon MA, Raval AP. The Impact of Nicotine along with Oral Contraceptive Exposure on Brain Fatty Acid Metabolism in Female Rats. International Journal of Molecular Sciences. 2022; 23(24):16075. https://doi.org/10.3390/ijms232416075
Chicago/Turabian StylePatel, Shahil H., Alba Timón-Gómez, Hari Pradhyumnan, Berk Mankaliye, Kunjan R. Dave, Miguel A. Perez-Pinzon, and Ami P. Raval. 2022. "The Impact of Nicotine along with Oral Contraceptive Exposure on Brain Fatty Acid Metabolism in Female Rats" International Journal of Molecular Sciences 23, no. 24: 16075. https://doi.org/10.3390/ijms232416075
APA StylePatel, S. H., Timón-Gómez, A., Pradhyumnan, H., Mankaliye, B., Dave, K. R., Perez-Pinzon, M. A., & Raval, A. P. (2022). The Impact of Nicotine along with Oral Contraceptive Exposure on Brain Fatty Acid Metabolism in Female Rats. International Journal of Molecular Sciences, 23(24), 16075. https://doi.org/10.3390/ijms232416075