The Optimized Delivery of Triterpenes by Liposomal Nanoformulations: Overcoming the Challenges
Abstract
:1. Introduction
2. Nanotechnology and Nano-Therapy
2.1. Classification of Nanocarriers
2.2. Biomedical Applications of Nanocarriers
3. Lipidic Vesicular Systems
3.1. Ethosomes
3.2. Niosomes (Non-Ionic Surfactant- Based Vesicles)
- (a)
- Elastic niosomes are composed of cholesterol, surfactants, water, and ethanol. They are flexible and can infiltrate into pores that are significantly smaller than their size, without altering their structure, and hence, are prone to be used in topical or transdermal drug delivery [108].
- (b)
- Discomes are large vesicular thermosensitive systems (their structure changes with temperatures above 37 °C) that are generally used as ocular delivery systems [109].
- (c)
- Transferosomes are highly deformable lipid vesicles constructed with an interior aqueous cavity that is encircled by a lipid bilayer that exhibits adaptive properties due to the presence of surfactants such as tween 80, Span 80, and sodium cholate in the vesicular membrane. These elastic properties ensure a rapid penetration through the skin of transferosomes loaded with considerable amounts of therapeutic agents [110,111].
- (d)
- Aspasomes are prepared using cholesterol, a negatively charged lipid (diacetyl phosphate), and ascorbyl palmitate, which is more chemically stable than ascorbic acid and whose lipophilic nature improves skin penetration [112]. Moreover, due to the increased antioxidant potency of aspasomes they can be used as transdermal drug delivery systems in skin pathologies associated with increased reactive oxygen species production [112].
- (e)
- Bola niosomes are made up of a new surfactant (bola: α,ω-hexadecylbis-(1-aza-18-crown-6), Span 80, and cholesterol which facilitates the formation of colloidal structures (~200 nm) that are capable to improve skin permeation of highly hydrophobic drugs [113]. Bola niosomes have proved their effectiveness in topical applications as carriers of hydrophilic anti-tumoral drugs [113].
- (f)
- Proniosomes are dry, free-flowing formulations obtained by coating a layer of a non-ionic surfactant on a hydrophilic carrier that needs to be non-toxic and free-flowing, such as maltodextrin, sorbitol, mannitol, lactose, and glucose monohydrates [114]. Their stability is far superior as compared to noisome, while their pharmacological applications include not only transdermal deliveries but also pulmonary delivery for dry powder inhalers [115,116].
3.3. Exosomes
3.4. Invasomes
3.5. Archaeosomes
3.6. Phytosomes
3.7. Pharmacosomes
4. Liposomes as Targeted Delivery Systems
4.1. Advantages and Disadvantages of Liposomes
- (i)
- they provide high solubility to the lipophilic drugs that they encapsulate, that usually possess a low solubility; therefore a low bioavailability [184];
- (ii)
- they can both entrap hydrophilic and lipophilic drugs, and release the drug at specific targets; moreover, their chemical versatility offers them the possibility to be modified to obtain a better selectivity and reduce their degradation during administration and storing [185];
- (iii)
4.2. Classification of Liposomes
4.2.1. Unilamellar and Multilamellar Liposomes
4.2.2. Conventional Liposomes
4.2.3. Temperature-Sensitive Liposomes (TSLs)
4.2.4. pH-Sensitive Liposomes (PSLs)
4.2.5. Ligand-Conjugated Liposomes
4.2.6. Antibody-Targeted Liposomes (Immunoliposomes)
4.2.7. Sterically Stabilized (Stealth) Liposomes
4.2.8. Magnetoliposomes (MLs)
5. Liposomal Formulations of Triterpenoids Used in Drug Delivery
5.1. Tetracyclic Triterpenes Liposomal Formulations
5.2. Pentacyclic Triterpenes Liposomal Formulations
5.2.1. Betulinic Acid
5.2.2. Oleanolic Acid
5.2.3. Glycyrrhetinic Acid
5.2.4. Ursolic Acid
5.2.5. Lupeol
5.2.6. Boswellic Acid
6. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Surowiak, A.; Balcerzak, L.; Lochyński, S.; Strub, D. Biological Activity of Selected Natural and Synthetic Terpenoid Lactones. Int. J. Mol. Sci. 2021, 22, 5036. [Google Scholar] [CrossRef]
- Mahizan, N.A.; Yang, S.-K.; Moo, C.L.; Song, A.A.-L.; Chong, C.-M.; Chong, C.-W.; Abushelaibi, A.; Lim, S.-H.E.; Lai, K.-S. Terpene Derivatives as a Potential Agent against Antimicrobial Resistance (AMR) Pathogens. Molecules 2019, 24, 2631. [Google Scholar] [CrossRef] [Green Version]
- Valdés, K.; Morales, J.; Rodríguez, L.; Gunther, G. Potential use of nanocarriers with pentacyclic triterpenes in cancer treatments. Nanomedicine 2016, 11, 3139–3156. [Google Scholar] [CrossRef]
- Soica, C.; Coricovac, D.; Dehelean, C.; Pinzaru, I.; Mioc, M.; Danciu, C.; Fulias, A.; Puiu, M.; Sitaru, C. Nanocarriers as Tools in Delivering Active Compounds for Immune System Related Pathologies. Recent Pat. Nanotechnol. 2016, 10, 128–145. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Labhasetwar, V. Nanotech approaches to drug delivery and imaging. Drug Discov. Today 2003, 8, 1112–1120. [Google Scholar] [CrossRef]
- Petrak, K. Nanotechnology and site-targeted drug delivery. J. Biomater. Sci. Polym. Ed. 2006, 17, 1209–1219. [Google Scholar] [CrossRef] [PubMed]
- Lengyel, M.; Kállai-Szabó, N.; Antal, V.; Laki, A.J.; Antal, I. Microparticles, Microspheres, and Microcapsules for Advanced Drug Delivery. Sci. Pharm. 2019, 87, 20. [Google Scholar] [CrossRef] [Green Version]
- Kohane, D.S. Microparticles and nanoparticles for drug delivery. Biotechnol. Bioeng. 2006, 96, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Gregory, G. Engineering liposomes for drug delivery: Progress and problems. Trends Biotechnol. 1995, 13, 527–537. [Google Scholar]
- Lamichhane, N.; Udayakumar, T.S.; D’Souza, W.D.; Ii, C.B.S.; Raghavan, S.R.; Polf, J.; Mahmood, J.; Lamichhane, N.; Udayakumar, T.S.; D’Souza, W.D.; et al. Liposomes: Clinical Applications and Potential for Image-Guided Drug Delivery. Molecules 2018, 23, 288. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedi, V.K.; Singh, A.; Singh, V.K.; Singh, M.P. Cancer Nanotechnology: A New Revolution for Cancer Diagnosis and Therapy. Curr. Drug Metab. 2019, 20, 416–429. [Google Scholar] [CrossRef]
- Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 2015, 93, 52–79. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.; Aftab, S.; Nisar, J.; Ashiq, M.N.; Iftikhar, F.J. Nanocarriers for targeted drug delivery. J. Drug Deliv. Sci. Technol. 2021, 62, 102426. [Google Scholar] [CrossRef]
- Jeevanandam, J.; Chan, Y.S.; Danquah, M. Nano-formulations of drugs: Recent developments, impact and challenges. Biochimie 2016, 128–129, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Kim, B.Y.; Rutka, J.T.; Chan, W.C. Advances and challenges of nanotechnology-based drug delivery systems. Expert Opin. Drug Deliv. 2007, 4, 621–633. [Google Scholar] [CrossRef]
- Pal, S.L.; Jana, U.; Manna, P.K.; Mohanta, G.P.; Manavalan, R. Nanoparticle: An overview of preparation and characterization. J. Appl. Pharm. Sci. 2011, 1, 228–234. [Google Scholar]
- Torchilin, V.P. Nanocarriers. Pharm. Res. 2007, 24, 2333–2334. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Ukidve, A.; Kim, J.; Mitragotri, S. Targeting Strategies for Tissue-Specific Drug Delivery. Cell 2020, 181, 151–167. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, J.; Watanabe, W. Physical and chemical stability of drug nanoparticles. Adv. Drug Deliv. Rev. 2011, 63, 456–469. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.H.; Wang, M.P.; Liu, Q.H. Shape factor of nonspherical nanoparticles. J. Mater. Sci. 2005, 40, 2737–2739. [Google Scholar] [CrossRef]
- Williams, K.J.; Phillips, M.C.; Rodrígueza, W.V. Structural and metabolic consequences of liposome-lipoprotein interactions. Adv. Drug Deliv. Rev. 1998, 32, 31–43. [Google Scholar] [PubMed]
- Moreno Raja, M.; Lim, P.Q.; Wong, Y.S.; Xiong, G.M.; Zhang, Y.; Venkatraman, S.; Huang, Y. Polymeric Nanomaterials. In Nanocarriers for Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2019; pp. 557–653. [Google Scholar]
- Poon, W.; Zhang, Y.-N.; Ouyang, B.; Kingston, B.R.; Wu, J.L.Y.; Wilhelm, S.; Chan, W.C.W. Elimination Pathways of Nanoparticles. ACS Nano 2019, 13, 5785–5798. [Google Scholar] [CrossRef] [PubMed]
- Cuenca, A.G.; Jiang, H.; Hochwald, S.N.; Delano, M.; Cance, W.G.; Grobmyer, S.R. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 2006, 107, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, B.; Gupta, R.; Gulati, M.; Singh, S.; Khursheed, R.; Gupta, M. The Why, Where, Who, How, and What of the vesicular delivery systems. Adv. Colloid Interface Sci. 2019, 271, 101985. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Bütün, V.; Sönmez, S.; Yarligan, S.; Taktak, F.F.; Atay, A.; Bütün, S. Micelles and ‘reverse micelles’ with a novel water-soluble diblock copolymer. Polymer 2008, 49, 4057–4065. [Google Scholar] [CrossRef]
- Record, M.; Carayon, K.; Poirot, M.; Silvente-Poirot, S. Exosomes as new vesicular lipid transporters involved in cell–cell communication and various pathophysiologies. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2014, 1841, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Elsabahy, M.; Heo, G.S.; Lim, S.-M.; Sun, G.; Wooley, K.L. Polymeric Nanostructures for Imaging and Therapy. Chem. Rev. 2015, 115, 10967–11011. [Google Scholar] [CrossRef] [Green Version]
- Pisani, E.; Tsapis, N.; Paris, J.; Nicolas, V.; Cattel, L.; Fattal, E.; Sud, U.V.P. Polymeric Nano/Microcapsules of Liquid Perfluorocarbons for Ultrasonic Imaging: Physical Characterization. Langmuir 2006, 73, 4397–4402. [Google Scholar] [CrossRef] [PubMed]
- Key, J.; Aryal, S.; Gentile, F.; Ananta, J.S.; Zhong, M.; Landis, M.D.; Decuzzi, P. Engineering discoidal polymeric nanoconstructs with enhanced magneto-optical properties for tumor imaging. Biomaterials 2013, 34, 5402–5410. [Google Scholar] [CrossRef]
- Lodahl, P. Quantum-dot based photonic quantum networks Quantum-dot based photonic quantum networks. Quantum Sci. Technol. 2018, 3, 013001. [Google Scholar] [CrossRef]
- Moon, H.; Lee, C.; Lee, W.; Kim, J.; Chae, H. Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications. Adv. Mater. 2019, 31, e1804294. [Google Scholar] [CrossRef] [PubMed]
- Emin, S.; Singh, S.P.; Han, L.; Satoh, N.; Islam, A. Colloidal quantum dot solar cells. Sol. Energy 2011, 85, 1264–1282. [Google Scholar] [CrossRef]
- Fernando, K.A.S.; Sahu, S.; Liu, Y.; Lewis, W.K.; Guliants, E.A.; Jafariyan, A.; Wang, P.; Bunker, C.E.; Sun, Y.-P. Carbon Quantum Dots and Applications in Photocatalytic Energy Conversion. ACS Appl. Mater. Interfaces 2015, 7, 8363–8376. [Google Scholar] [CrossRef] [PubMed]
- Jun, H.; Careem, M.; Arof, A. Quantum dot-sensitized solar cells—Perspective and recent developments: A review of Cd chalcogenide quantum dots as sensitizers. Renew. Sustain. Energy Rev. 2013, 22, 148–167. [Google Scholar] [CrossRef]
- Bardhan, R.; Lal, S.; Joshi, A.; Halas, N.J. Theranostic Nanoshells: From Probe Design to Imaging and Treatment of Cancer. Acc. Chem. Res. 2011, 44, 936–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delcea, M.; Möhwald, H.; Skirtach, A.G. Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv. Drug Deliv. Rev. 2011, 63, 730–747. [Google Scholar] [CrossRef]
- Huschka, R.; Zuloaga, J.; Knight, M.W.; Brown, L.V.; Nordlander, P.; Halas, N.J. Light-Induced Release of DNA from Gold Nanoparticles: Nanoshells and Nanorods. J. Am. Chem. Soc. 2011, 133, 12247–12255. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Chen, D.; Li, L.; Liu, T.; Tan, L.; Wu, X.; Tang, F. Multifunctional Gold Nanoshells on Silica Nanorattles: A Platform for the Combination of Photothermal Therapy and Chemotherapy with Low Systemic Toxicity. Angew. Chem. Int. Ed. 2010, 50, 891–895. [Google Scholar] [CrossRef]
- Mioc, M.; Pavel, I.Z.; Ghiulai, R.; Coricovac, D.E.; Farcaş, C.; Mihali, C.-V.; Oprean, C.; Serafim, V.; Popovici, R.A.; Dehelean, C.A.; et al. The Cytotoxic Effects of Betulin-Conjugated Gold Nanoparticles as Stable Formulations in Normal and Melanoma Cells. Front. Pharmacol. 2018, 9, 429. [Google Scholar] [CrossRef] [Green Version]
- Vines, J.B.; Yoon, J.-H.; Ryu, N.-E.; Lim, D.-J.; Park, H. Gold Nanoparticles for Photothermal Cancer Therapy. Front. Chem. 2019, 7, 167. [Google Scholar] [CrossRef] [Green Version]
- Balfourier, A.; Luciani, N.; Wang, G.; Lelong, G.; Ersen, O.; Khelfa, A.; Alloyeau, D.; Gazeau, F.; Carn, F. Unexpected intracellular biodegradation and recrystallization of gold nanoparticles. Proc. Natl. Acad. Sci. USA 2019, 117, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Elahi, N.; Kamali, M.; Baghersad, M.H. Recent biomedical applications of gold nanoparticles: A review. Talanta 2018, 184, 537–556. [Google Scholar] [CrossRef]
- Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M.V. How toxic are gold nanoparticles? The state-of-the-art. Nano Res. 2015, 8, 1771–1799. [Google Scholar] [CrossRef]
- Xu, M.; Li, J.; Yan, Y.; Zhao, X.; Yan, J.; Zhang, Y.; Lai, B.; Chen, X.; Song, L. Catalytic degradation of sulfamethoxazole through peroxymonosulfate activated with expanded graphite loaded CoFe2O4 particles. Chem. Eng. J. 2019, 369, 403–413. [Google Scholar] [CrossRef]
- Lops, C.; Ancona, A.; Di Cesare, K.; Dumontel, B.; Garino, N.; Canavese, G.; Hérnandez, S.; Cauda, V. Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro- and nano-particles of ZnO. Appl. Catal. B Environ. 2018, 243, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yan, J.; Yao, G.; Zhang, Y.; Li, X.; Lai, B. Improving the degradation of atrazine in the three-dimensional (3D) electrochemical process using CuFe2O4 as both particle electrode and catalyst for persulfate activation. Chem. Eng. J. 2018, 361, 1317–1332. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, M.; Qu, R.; Liu, H.; Wang, L.; Wang, Z. Catalytic degradation of diethyl phthalate in aqueous solution by persulfate activated with nano-scaled magnetic CuFe2O4/MWCNTs. Chem. Eng. J. 2016, 301, 1–11. [Google Scholar] [CrossRef]
- Feng, W.; Ji, P. Enzymes immobilized on carbon nanotubes. Biotechnol. Adv. 2011, 29, 889–895. [Google Scholar] [CrossRef]
- Mittal, G.; Dhand, V.; Rhee, K.Y.; Park, S.-J.; Lee, W.R. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 2014, 21, 11–25. [Google Scholar] [CrossRef]
- Blackburn, J.L.; Ferguson, A.J.; Cho, C.; Grunlan, J.C. Carbon-Nanotube-Based Thermoelectric Materials and Devices. Adv. Mater. 2018, 30, 1704386. [Google Scholar] [CrossRef] [PubMed]
- Negri, V.; Pacheco, J.; Daniel, T. Carbon Nanotubes in Biomedicine. In Topics in Current Chemistry; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–41. [Google Scholar]
- Kumar, A.; Chen, F.; Mozhi, Y.; Zhang, X.; Xue, X. Inovative pharmaceutical development based on unique properties of nanoscale delivery formulation. Nanoscale 2013, 5, 8307–8325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, R.; Sponchioni, M.; Morbidelli, M.; Moscatelli, D. Polymer nanoparticles for the intravenous delivery of anticancer drugs: The checkpoints on the road from the synthesis to clinical translation. Nanoscale 2018, 10, 22701–22719. [Google Scholar] [CrossRef]
- Des Rieux, A.; Pourcelle, V.; Cani, P.; Marchand-Brynaert, J.; Préat, V. Targeted nanoparticles with novel non-peptidic ligands for oral delivery. Adv. Drug Deliv. Rev. 2013, 65, 833–844. [Google Scholar] [CrossRef]
- Singh, S.R.; Grossniklaus, H.E.; Kang, S.J.; Edelhauser, H.F.; Ambati, B.K.; Kompella, U.B. Intravenous transferrin, RGD peptide and dual-targeted nanoparticles enhance anti-VEGF intraceptor gene delivery to laser-induced CNV. Gene Ther. 2009, 16, 645–659. [Google Scholar] [CrossRef] [Green Version]
- Ak, G.; Bozkaya, F.; Yılmaz, H.; Turgut, S.; Bilgin, I.; Tomruk, C.; Uyanıkgil, Y.; Şanlıer, H. An intravenous application of magnetic nanoparticles for osteomyelitis treatment: An efficient alternative. Int. J. Pharm. 2020, 592, 119999. [Google Scholar] [CrossRef]
- Duan, Y.; Xu, J.; Lin, Y.; Yu, H.; Gong, T.; Li, Y.; Zhang, Z. A preliminary study on MeO-PEG-PLGA-PEG-OMe nanoparticles as intravenous carriers. J. Biomed. Mater. Res. Part A 2008, 87, 515–523. [Google Scholar] [CrossRef]
- Tadros, M.I.; Al-Mahallawi, A.M. Long-circulating lipoprotein-mimic nanoparticles for smart intravenous delivery of a practically-insoluble antineoplastic drug: Development, preliminary safety evaluations and preclinical pharmacokinetic studies. Int. J. Pharm. 2015, 493, 439–450. [Google Scholar] [CrossRef]
- Date, A.; Hanes, J.; Ensign, L.M. Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. J. Control. Release 2016, 240, 504–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, Y.; Cho, Y.W.; Park, K. Nanoparticles for oral delivery: Targeted nanoparticles with peptidic ligands for oral protein delivery. Adv. Drug Deliv. Rev. 2013, 65, 822–832. [Google Scholar] [CrossRef] [Green Version]
- Bakhru, S.H.; Furtado, S.; Morello, A.P.; Mathiowitz, E. Oral delivery of proteins by biodegradable nanoparticles. Adv. Drug Deliv. Rev. 2013, 65, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.-J.; Xu, S.; Wang, H.-M.; Ling, Y.; Dong, J.; Xia, R.-D.; Sun, X.-H. Nanoparticles: Oral Delivery for Protein and Peptide Drugs. AAPS PharmSciTech 2019, 20, 190. [Google Scholar] [CrossRef] [Green Version]
- Dilnawaz, F. Polymeric Biomaterial and Lipid Based Nanoparticles for Oral Drug Delivery. Curr. Med. Chem. 2017, 24, 2423–2438. [Google Scholar] [CrossRef]
- Huang, F.-Y.J.; Chen, W.-J.; Lee, W.-Y.; Lo, S.-T.; Lee, T.-W.; Lo, J.-M. In Vitro and in Vivo Evaluation of Lactoferrin-Conjugated Liposomes as a Novel Carrier to Improve the Brain Delivery. Int. J. Mol. Sci. 2013, 14, 2862–2874. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R. Beena Rai Computer-Aided Design of Nanoparticles for Transdermal Drug Delivery. Methods Mol. Biol. 2020, 2059, 225–237. [Google Scholar]
- Palmer, B.C.; De Louise, L.A. Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting. Molecules 2016, 21, 1719. [Google Scholar] [CrossRef] [PubMed]
- Ruan, R.; Chen, M.; Zou, L.; Wei, P.; Liu, J.; Ding, W.; Wen, L. Recent advances in peptides for enhancing transdermal macromolecular drug delivery. Ther. Deliv. 2016, 7, 89–100. [Google Scholar] [CrossRef]
- Peña-Juárez, M.C.; Guadarrama-Escobar, O.R.; Escobar-Chávez, J.J. Transdermal Delivery Systems for Biomolecules. J. Pharm. Innov. 2021, 1–14. [Google Scholar] [CrossRef]
- Carter, P.; Narasimhan, B.; Wang, Q. Biocompatible nanoparticles and vesicular systems in transdermal drug delivery for various skin diseases. Int. J. Pharm. 2018, 555, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Das Kurmi, B.; Tekchandani, P.; Paliwal, R.; Paliwal, S.R. Transdermal Drug Delivery: Opportunities and Challenges for Controlled Delivery of Therapeutic Agents Using Nanocarriers. Curr. Drug Metab. 2017, 18, 481–495. [Google Scholar] [CrossRef] [PubMed]
- Diblíková, D.; Kopečná, M.; Školová, B.; Krecmerova, M.; Roh, J.; Hrabálek, A.; Vávrová, K. Transdermal Delivery and Cutaneous Targeting of Antivirals using a Penetration Enhancer and Lysolipid Prodrugs. Pharm. Res. 2013, 31, 1071–1081. [Google Scholar] [CrossRef] [PubMed]
- Mangal, S.; Gao, W.; Li, T.; Zhou, Q. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: Challenges and opportunities. Acta Pharmacol. Sin. 2017, 38, 782–797. [Google Scholar] [CrossRef]
- Schreier, H.; Gonzalez-rothib, R.J.; Stecenkoc, A.A. Pulmonary delivery of liposomes. J. Control. Release 1993, 24, 209–223. [Google Scholar] [CrossRef]
- Kuruba, R.; Wilson, A.; Gao, X.; Li, S. Targeted Delivery of Nucleic Acid-Based Therapeutics to the Pulmonary Circulation. AAPS J. 2009, 11, 23–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, A.; Royce, S.G.; Plebanski, M.; Selomulya, C. Glycine microparticles loaded with functionalized nanoparticles for pulmonary delivery. Int. J. Pharm. 2019, 570, 118654. [Google Scholar] [CrossRef] [PubMed]
- Kunda, N.; Somavarapu, S.; Gordon, S.; Hutcheon, G.; Saleem, I.Y. Nanocarriers Targeting Dendritic Cells for Pulmonary Vaccine Delivery. Pharm. Res. 2012, 30, 325–341. [Google Scholar] [CrossRef] [PubMed]
- Osman, N.; Kaneko, K.; Carini, V.; Saleem, I. Carriers for the targeted delivery of aerosolized macromolecules for pulmonary pathologies. Expert Opin. Drug Deliv. 2018, 15, 821–834. [Google Scholar] [CrossRef]
- Mcbride, A.A.; Price, D.N.; Muttil, P.; Laboratories, N. Pulmonary Delivery of Magnetically Targeted Nano-in Microparticles. Methods Enzymol. 2017, 1530, 369–378. [Google Scholar]
- Shen, J.; Lu, G.W.; Hughes, P. Targeted Ocular Drug Delivery with Pharmacokinetic/Pharmacodynamic Considerations. Pharm. Res. 2018, 35, 217. [Google Scholar] [CrossRef]
- Janagam, D.R.; Wu, L.; Lowe, T.L. Nanoparticles for drug delivery to the anterior segment of the eye. Adv. Drug Deliv. Rev. 2017, 122, 31–64. [Google Scholar] [CrossRef]
- Ameeduzzafar; Ali, J.; Fazil, M.; Qumbar, M.; Khan, N.; Ali, A. Colloidal drug delivery system: Amplify the ocular delivery. Drug Deliv. 2014, 23, 700–716. [Google Scholar] [CrossRef]
- Gaudana, R.; Jwala, J.; Boddu, S.H.S.; Mitra, A.K. Recent Perspectives in Ocular Drug Delivery. Pharm. Res. 2008, 26, 1197–1216. [Google Scholar] [CrossRef] [Green Version]
- De la Fuente, M.; Raviña, M.; Paolicelli, P.; Sanchez, A.; Seijo, B.; Alonso, M.J. Chitosan-based nanostructures: A delivery platform for ocular therapeutics. Adv. Drug Deliv. Rev. 2010, 62, 100–117. [Google Scholar] [CrossRef]
- Suri, R.; Beg, S.; Kohli, K. Target strategies for drug delivery bypassing ocular barriers. J. Drug Deliv. Sci. Technol. 2020, 55, 101389. [Google Scholar] [CrossRef]
- Jung, J.H.; Chiang, B.; Grossniklaus, H.E.; Prausnitz, M.R. Ocular drug delivery targeted by iontophoresis in the suprachoroidal space using a microneedle. J. Control. Release 2018, 277, 14–22. [Google Scholar] [CrossRef]
- Kim, Y.C.; Chiang, B.; Wu, X.; Prausnitz, M.R. Ocular delivery of macromolecules. J. Control. Release 2014, 190, 172–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozaria, A.; Pontillo, N.; Detsi, A. Nanoparticles for ocular drug delivery: Modified and non-modified chitosan as a promising biocompatible carrier. Nanomedicine 2019, 14, 1889–1909. [Google Scholar]
- Béduneau, A.; Saulnier, P.; Benoit, J.-P. Active targeting of brain tumors using nanocarriers. Biomaterials 2007, 28, 4947–4967. [Google Scholar] [CrossRef]
- Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 2008, 126, 187–204. [Google Scholar] [CrossRef]
- Alavi, M.; Hamidi, M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab. Pers. Ther. 2019, 34, 20180032. [Google Scholar] [CrossRef]
- Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res. 2010, 62, 90–99. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Chen, S.; Lin, Y.; Lai, H.; Chen, B.; Chen, T. Biomedical Application of Reactive Oxygen Species—Responsive Nanocarriers in Cancer, Inflammation, and Neurodegenerative Diseases. Front. Chem. 2020, 8, 1–24. [Google Scholar] [CrossRef]
- Zou, A.; Li, Y.; Chen, Y.; Angelova, A.; Garamus, V.M.; Li, N.; Drechsler, M.; Angelov, B.; Gong, Y. Self-assembled stable sponge-type nanocarries for Brucea javanica oil delivery. Colloids Surf. B Biointerfaces 2017, 153, 310–319. [Google Scholar] [CrossRef]
- Park, S.N.; Lee, H.J.; Kim, H.S.; Park, M.A.; Gu, H.A. Enhanced transdermal deposition and characterization of quercetin-loaded ethosomes. Korean J. Chem. Eng. 2012, 30, 688–692. [Google Scholar] [CrossRef]
- Nainwal, N.; Jawla, S.; Singh, R.; Saharan, V.A.S. Transdermal applications of ethosomes—A detailed review. J. Liposome Res. 2018, 29, 103–113. [Google Scholar] [CrossRef]
- Cândido, T.M.; De Oliveira, C.A.; Ariede, M.B.; Velasco, M.V.R.; Rosado, C.; Baby, A.R. Safety and Antioxidant Efficacy Profiles of Rutin-Loaded Ethosomes for Topical Application. AAPS PharmSciTech 2018, 19, 1773–1780. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-P.; Wei, Y.-H.; Zhou, Y.; Li, Y.-Q.; Wu, X.-A. Ethosomes, binary ethosomes and transfersomes of terbinafine hydrochloride: A comparative study. Arch. Pharmacal Res. 2012, 35, 109–117. [Google Scholar] [CrossRef]
- Paiva-Santos, A.C.; Silva, A.L.; Guerra, C.; Peixoto, D.; Pereira-Silva, M.; Zeinali, M.; Mascarenhas-Melo, F.; Castro, R.; Veiga, F. Ethosomes as Nanocarriers for the Development of Skin Delivery Formulations. Pharm. Res. 2021, 38, 947–970. [Google Scholar] [CrossRef] [PubMed]
- Ascenso, A.; Raposo, S.; Batista, C.; Cardoso, P.; Mendes, T.; Praça, F.G.; Bentley, M.V.; Simões, S. Development, characterization, and skin delivery studies of related ultradeformable vesicles: Transfersomes, ethosomes, and transethosomes. Int. J. Nanomed. 2015, 10, 5837–5851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, X.-Q.; Zhang, D.-P.; Bian, Q.; Feng, X.-F.; Li, H.; Rao, Y.-F.; Shen, Y.-M.; Geng, F.-N.; Yuan, A.-R.; Ying, X.-Y.; et al. Mechanism investigation of ethosomes transdermal permeation. Int. J. Pharm. X 2019, 1, 100027. [Google Scholar] [CrossRef] [PubMed]
- Pando, D.; Matos, M.; Gutiérrez, G.; Pazos, C. Formulation of resveratrol entrapped niosomes for topical use. Colloids Surf. B Biointerfaces 2015, 128, 398–404. [Google Scholar] [CrossRef]
- Uchegbu, I.F.; Vyas, S.P. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int. J. Pharm. 1998, 172, 33–70. [Google Scholar] [CrossRef]
- Pando, D.; Gutiérrez, G.; Coca, J.; Pazos, C. Preparation and characterization of niosomes containing resveratrol. J. Food Eng. 2013, 117, 227–234. [Google Scholar] [CrossRef]
- De, S.; Kundu, R.; Biswas, A. Synthesis of gold nanoparticles in niosomes. J. Colloid Interface Sci. 2012, 386, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Hanning, S.; Falconer, J.; Locke, M.; Wen, J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur. J. Pharm. Biopharm. 2019, 144, 18–39. [Google Scholar] [CrossRef] [Green Version]
- Manosroi, A.; Jantrawut, P.; Akazawa, H.; Akihisa, T.; Manosroi, W.; Manosroi, J. Transdermal absorption enhancement of gel containing elastic niosomes loaded with gallic acid from Terminalia chebula galls. Pharm. Biol. 2011, 49, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Abdelkader, H.; Ismail, S.; Kamal, A.; Alany, R.G. Design and Evaluation of Controlled-Release Niosomes and Discomes for Naltrexone Hydrochloride Ocular Delivery. J. Pharm. Sci. 2011, 100, 1833–1846. [Google Scholar] [CrossRef]
- Opatha, S.A.T.; Titapiwatanakun, V.; Chutoprapat, R. Transfersomes: A Promising Nanoencapsulation Technique for Transdermal Drug Delivery. Pharmaceutics 2020, 12, 855. [Google Scholar] [CrossRef]
- Rai, S.; Pandey, V.; Rai, G. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: The state of the art. Nano Rev. Exp. 2017, 8, 1325708. [Google Scholar] [CrossRef]
- Gopinath, D.; Ravi, D.; Rao, B.; Apte, S.; Renuka, D.; Rambhau, D. Ascorbyl palmitate vesicles (Aspasomes): Formation, characterization and applications. Int. J. Pharm. 2004, 271, 95–113. [Google Scholar] [CrossRef] [PubMed]
- Cosco, D.; Paolino, D.; Muzzalupo, R.; Celia, C.; Citraro, R.; Caponio, D.; Picci, N.; Fresta, M. Novel PEG-coated niosomes based on bola-surfactant as drug carriers for 5-fluorouracil. Biomed. Microdevices 2009, 11, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Yasam, V.R.; Jakki, S.L.; Natarajan, J.; Kuppusamy, G. A review on novel vesicular drug delivery: Proniosomes. Drug Deliv. 2013, 21, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Gamal, A.; Saeed, H.; Sayed, O.M.; Kharshoum, R.M.; Salem, H.F. Proniosomal Microcarriers: Impact of Constituents on the Physicochemical Properties of Proniosomes as a New Approach to Enhance Inhalation Efficiency of Dry Powder Inhalers. AAPS PharmSciTech 2020, 21, 156. [Google Scholar] [CrossRef]
- Song, S.; Tian, B.; Chen, F.; Zhang, W.; Pan, Y.; Zhang, Q.; Yang, X.; Pan, W. Potentials of proniosomes for improving the oral bioavailability of poorly water-soluble drugs. Drug Dev. Ind. Pharm. 2013, 41, 51–62. [Google Scholar] [CrossRef]
- Viaud, S.; Ullrich, E.; Zitvogel, L.; Chaput, N. Exosomes for the Treatment of Human Malignancies. Horm. Metab. Res. 2008, 40, 82–88. [Google Scholar] [CrossRef]
- Soung, Y.H.; Ford, S.; Zhang, V.; Chung, J. Exosomes in Cancer Diagnostics. Cancers 2017, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Bi, J.; Huang, J.; Tang, Y.; Du, S.; Li, P. Exosome: A Review of Its Classification, Isolation Techniques, Storage, Diagnostic and Targeted Therapy Applications. Int. J. Nanomed. 2020, 15, 6917–6934. [Google Scholar] [CrossRef] [PubMed]
- Hough, K.; Deshane, J.S. Exosomes in Allergic Airway Diseases. Curr. Allergy Asthma Rep. 2019, 19, 26. [Google Scholar] [CrossRef]
- Jain, S.; Tripathi, S.; Tripathi, P.K. Invasomes: Potential vesicular systems for transdermal delivery of drug molecules. J. Drug Deliv. Sci. Technol. 2020, 61, 102166. [Google Scholar] [CrossRef]
- Matusz, P.; Miclăuş, G.D.; Banciu, C.D.; Sas, I.; Joseph, S.C.; Pirtea, L.C.; Tubbs, R.S.; Loukas, M. Congenital solitary kidney with multiple renal arteries: Case report using MDCT angiography. Rom. J. Morphol. Embryol. 2015, 56, 823–826. [Google Scholar]
- Shah, S.; Ashtikar, M.; Jain, A.S.; Makhija, D.T.; Nikam, Y.; Gude, R.P.; Steiniger, F.; Jagtap, A.A.; Nagarsenker, M.S.; Fahr, A. LeciPlex, invasomes, and liposomes: A skin penetration study. Int. J. Pharm. 2015, 490, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Patel, G.B.; Sprott, G.D. Archaeobacterial Ether Lipid Liposomes (Archaeosomes) as Novel Vaccine and Drug Delivery Systems. Crit. Rev. Biotechnol. 1999, 19, 317–357. [Google Scholar] [CrossRef] [PubMed]
- Haq, K.; Jia, Y.; Krishnan, L. Archaeal lipid vaccine adjuvants for induction of cell-mediated immunity. Expert Rev. Vaccines 2016, 15, 1557–1566. [Google Scholar] [CrossRef]
- Patel, G.B.; Chen, G.B.P.A.W. Archaeosome Immunostimulatory Vaccine Delivery System. Curr. Drug Deliv. 2005, 2, 407–421. [Google Scholar] [CrossRef]
- Lu, M.; Qiu, Q.; Luo, X.; Liu, X.; Sun, J.; Wang, C.; Lin, X.; Deng, Y.; Song, Y. Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents. Asian J. Pharm. Sci. 2018, 14, 265–274. [Google Scholar] [CrossRef]
- Alharbi, W.S.; Almughem, F.A.; Almehmady, A.M.; Jarallah, S.J.; Alsharif, W.K.; Alzahrani, N.M.; Alshehri, A.A. Phytosomes as an Emerging Nanotechnology Platform for the Topical Delivery of Bioactive Phytochemicals. Pharmaceutics 2021, 13, 1475. [Google Scholar] [CrossRef] [PubMed]
- Semalty, A.; Semalty, M.; Rawat, B.S.; Singh, D.; Rawat, M. Pharmacosomes: The lipid-based new drug delivery system. Expert Opin. Drug Deliv. 2009, 6, 599–612. [Google Scholar] [CrossRef]
- Singh, D.; Pradhan, M.; Nag, M.; Singh, M.R. Vesicular system: Versatile carrier for transdermal delivery of bioactives. Artif. Cells Nanomed. Biotechnol. 2013, 43, 282–290. [Google Scholar] [CrossRef]
- Bangham, A. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J. Mol. Biol. 1964, 8, 660–668. [Google Scholar] [CrossRef]
- Shalu, S.; Gang, R.; Jessica, W.; Schmidt, C.E. Microparticles and Nanoparticles. In Classes of Materials Used in Medicine; Elsevier Inc.: Amsterdam, The Netherlands, 2013; pp. 360–388. [Google Scholar]
- Kim, J.-S. Liposomal drug delivery system. J. Pharm. Investig. 2016, 46, 387–392. [Google Scholar] [CrossRef]
- Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomed. 2015, 10, 975–999. [Google Scholar] [CrossRef] [Green Version]
- Caritá, A.C.; Eloy, J.; Chorilli, M.; Lee, R.J.; Leonardi, G. Recent Advances and Perspectives in Liposomes for Cutaneous Drug Delivery. Curr. Med. Chem. 2018, 25, 606–635. [Google Scholar] [CrossRef] [PubMed]
- Edwards, K.; Baeumner, A. Analysis of liposomes. Talanta 2006, 68, 1432–1441. [Google Scholar] [CrossRef] [PubMed]
- Ledoux, M.; Guffroy, B.; Herbrecht, R. Invasive Pulmonary Aspergillosis. Semin. Respir. Crit. Care Med. 2020, 1, 80–98. [Google Scholar] [CrossRef] [PubMed]
- Spectrum Pharmaceuticals, Inc. Available online: https://investor.sppirx.com/node/19271/html (accessed on 10 November 2021).
- Study of Single and Multiple Doses of Inhaled AeroLEF (Liposome-Encapsulated Fentanyl) in Healthy Subjects (Clinical Trial). NCT00709254. Available online: https://clinicaltrials.gov/ct2/show/NCT00709254 (accessed on 8 November 2021).
- Wagner, V.; Dullaart, A.; Bock, A.-K.; Zweck, A. The emerging nanomedicine landscape. Nat. Biotechnol. 2006, 24, 1211–1217. [Google Scholar] [CrossRef] [PubMed]
- Van Griensven, J.; Diro, E. Visceral Leishmaniasis: Recent Advances in Diagnostics and Treatment Regimens. Infect. Dis. Clin. N. Am. 2019, 33, 79–99. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Lin, W.; Liu, D.; He, C. Application of liposomal technologies for delivery of platinum analogs in oncology. Int. J. Nanomed. 2013, 8, 3309–3319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manconi, M.; Sinico, C.; Valenti, D.; Loy, G.; Fadda, A.M. Niosomes as carriers for tretinoin. I. Preparation and properties. Int. J. Pharm. 2001, 234, 237–248. [Google Scholar] [CrossRef]
- Titze-De-Almeida, R.; David, C.; Titze-De-Almeida, S.S. The Race of 10 Synthetic RNAi-Based Drugs to the Pharmaceutical Market. Pharm. Res. 2017, 34, 1339–1363. [Google Scholar] [CrossRef]
- Topotecan Liposomes Injection for Small Cell Lung Cancer (SCLC), Ovarian Cancer and Other Advanced Solid Tumors (Clinical Trial). NCT00765973. Available online: https://clinicaltrials.gov/ct2/show/NCT04047251 (accessed on 8 November 2021).
- Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics 2017, 9, 12. [Google Scholar] [CrossRef]
- Cytarabine, E.S.; Murry, D.J.; Blaney, S.M. Clinical Pharmacology of Encapsulated Sustained-Release Cytarabine. Oncology 2000, 34, 1173–1178. [Google Scholar]
- Cafardi, A.J.; Elmets, A.C. T4 endonuclease V: Review and application to dermatology. Expert Opin. Biol. Ther. 2008, 8, 829–838. [Google Scholar] [CrossRef]
- Taiwan Liposome Company, Ltd. Available online: https://www.tlcbio.com/en-global (accessed on 3 November 2021).
- Bovier, A.P. Epaxal®: A virosomal vaccine to prevent hepatitis A infection. Expert Rev. Vaccines 2008, 7, 1141–1150. [Google Scholar] [CrossRef] [PubMed]
- Pignata, S.; Cecere, S.C.; Du Bois, A.; Harter, P.; Heitz, F. Treatment of recurrent ovarian cancer. Ann. Oncol. 2017, 28, viii51–viii56. [Google Scholar] [CrossRef] [PubMed]
- Evaluation, D. Clinical overview on Lipoplatin TM: A successful liposomal formulation of cisplatin. Expert Opin. Investig. Drugs 2009, 18, 1197–1218. [Google Scholar]
- Gutman, D.; Golomb, G. Liposomal alendronate for the treatment of restenosis. J. Control. Release 2012, 161, 619–627. [Google Scholar] [CrossRef]
- Prostaglandin E1 (Liprostin) Treatment with Lower Limb Angioplasty for Peripheral Arterial Occlusive Disease (Clinical Trial) Title. NoNCT00053716. Available online: https://clinicaltrials.gov/ct2/show/NCT00053716 (accessed on 3 November 2021).
- Apostolidou, E.; Swords, R.; Alvarado, Y.; Giles, F.J. Treatment of Acute A New Era. Drugs 2007, 67, 2153–2171. [Google Scholar] [CrossRef]
- Silverman, J.A.; Deitcher, S.R. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother. Pharmacol. 2012, 71, 555–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frampton, J.E. Mifamurtide A Review of its Use in the Treatment of Osteosarcoma. Paediatr. Drugs 2010, 12, 141–153. [Google Scholar] [CrossRef]
- Nanocort in Acute Exacerbation of Relapsing-Remitting Multiple Sclerosis (MS). (Clinical Trial). NCT01039103. Available online: https://clinicaltrials.gov/ct2/show/NCT01039103 (accessed on 10 November 2021).
- Chow, T.-H.; Lin, Y.-Y.; Hwang, J.-J.; Tseng, Y.-L.; Pang, V.F.; Liu, R.-S.; Lin, W.-J.; Yang, C.-S.; Ting, G. Therapeutic Efficacy Evaluation of 111In-Labeled PEGylated Liposomal Vinorelbine in Murine Colon Carcinoma with Multimodalities of Molecular Imaging. J. Nucl. Med. 2009, 50, 2073–2081. [Google Scholar] [CrossRef] [Green Version]
- Ricci-Junior, E.; Ortiz, G.M.D.; Dos Santos, E.P.; Mota, A.D.C.V.; Ozzetti, R.A.; Vergnanini, A.L.; Santos-Oliveira, R.; Silva, R.S.; Ribeiro, V.L.; De Freitas, Z.M.F. In vivo and in vitro evaluation of octyl methoxycinnamate liposomes. Int. J. Nanomed. 2013, 8, 4689–4701. [Google Scholar] [CrossRef] [Green Version]
- Topical Formulations of Liposomal Local Anesthetics (Clinical Trial). NCT01054547. Available online: https://clinicaltrials.gov/ct2/show/NCT01054547 (accessed on 13 November 2021).
- Bradbury, P.A.; Shepherd, F.A. Immunotherapy for Lung Cancer. J. Thorac. Oncol. 2008, 3, S164–S170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwendener, R.A. Liposomes as vaccine delivery systems: A review of the recent advances. Ther. Adv. Vaccines 2014, 2, 159–182. [Google Scholar] [CrossRef]
- Xuan, T.; Zhang, J.A.; Ahmad, I. HPLC method for determination of SN-38 content and SN-38 entrapment efficiency in a novel liposome-based formulation, LE-SN38. J. Pharm. Biomed. Anal. 2006, 41, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Clinical Trial of BP1001 (L-Grb-2 Antisense Oligonucleotide) in CML, AML, ALL & MDS. Available online: https://clinicaltrials.gov/ct2/show/NCT01159028 (accessed on 10 November 2021).
- Phase I/II Study to Evaluate the Safety and Tolerability of LiPlaCis in Patients with Advanced or Refractory Tumours (LiPlaCis). Available online: https://clinicaltrials.gov/ct2/show/NCT01861496 (accessed on 8 November 2021).
- Strieth, S.; Dunau, C.; Kolbow, K.; Knuechel, R.; Michaelis, U.; Ledderose, H.; Eichhorn, M.E.; Strelczyk, D.; Tschiesner, U.; Wollenberg, B.; et al. Phase I clinical study of vascular targeting fluorescent cationic liposomes in head and neck cancer. Eur. Arch. Oto-Rhino-Laryngol. 2012, 270, 1481–1487. [Google Scholar] [CrossRef] [PubMed]
- Aleku, M.; Schulz, P.; Keil, O.; Santel, A.; Schaeper, U.; Dieckhoff, B.; Janke, O.; Endruschat, J.; Durieux, B.; Röder, N.; et al. Atu027, a Liposomal Small Interfering RNA Formulation Targeting Protein Kinase N3, Inhibits Cancer Progression. Cancer Res. 2008, 68, 9788–9798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liposome Entrapped Paclitaxel Easy to Use (LEP-ETU) in Patients with Advanced Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT00080418 (accessed on 10 November 2021).
- Duffaud, F.; Borner, M.; Chollet, P.; Vermorken, J.; Bloch, J.; Degardin, M.; Rolland, F.; Dittrich, C.; Baron, B.; Lacombe, D.; et al. Phase II study of OSI-211 (liposomal lurtotecan) in patients with metastatic or loco-regional recurrent squamous cell carcinoma of the head and neck: An EORTC New Drug Development Group Study. Eur. J. Cancer 2004, 40, 2748–2752. [Google Scholar] [CrossRef]
- Zamboni, W.C.; Ramalingam, S.; Friedland, D.M.; Edwards, R.P.; Stoller, R.G.; Strychor, S.; Maruca, L.; Zamboni, B.A.; Chandra, P. CKD-602 (S-CKD602) in Patients with Advanced Malignancies. Clin. Cancer Res. 2009, 15, 1466–1472. [Google Scholar] [CrossRef] [Green Version]
- Jopling, C. Liver-specific microRNA-122: Biogenesis and function. RNA Biol. 2012, 9, 137–142. [Google Scholar] [CrossRef] [Green Version]
- S9912 Combination Chemo in Stage III Ovarian Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT00003896 (accessed on 10 November 2021).
- Bioequivalence Study of Irinotecan Liposome Injection in Chinese Advanced Pancreatic Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT04482257 (accessed on 10 November 2021).
- A Study of Mitoxantrone Hydrochloride Liposome Injection in Patients with Advanced HER2 Negative Breast Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT04927481 (accessed on 10 November 2021).
- Albumin-Bound Paclitaxel Combined with Liposomal Doxorubicin in the Treatment of Advanced or Unresectable Angiosarcoma. Available online: https://clinicaltrials.gov/ct2/show/NCT04859465 (accessed on 8 November 2021).
- Ueno, M.; Nakamori, S.; Sugimori, K.; Kanai, M.; Ikeda, M.; Ozaka, M.; Furukawa, M.; Okusaka, T.; Kawabe, K.; Furuse, J.; et al. nal-IRI+5-FU/LV versus 5-FU/LV in post-gemcitabine metastatic pancreatic cancer: Randomized phase 2 trial in Japanese patients. Cancer Med. 2020, 9, 9396–9408. [Google Scholar] [CrossRef]
- Zhang, B.; Qi, L.; Wang, X.; Xu, J.; Liu, Y.; Mu, L.; Wang, X.; Bai, L.; Huang, J. Phase II clinical trial using camrelizumab combined with apatinib and chemotherapy as the first-line treatment of advanced esophageal squamous cell carcinoma. Cancer Commun. 2020, 40, 711–720. [Google Scholar] [CrossRef]
- Winthrop, K.L.; Flume, P.A.; Thomson, R.; Mange, K.C.; Yuen, D.W.; Ciesielska, M.; Morimoto, K.; Ruoss, S.J.; Codecasa, L.R.; Yim, J.-J.; et al. Amikacin Liposome Inhalation Suspension for Mycobacterium avium Complex Lung Disease: A 12-Month Open-Label Extension Clinical Trial. Ann. Am. Thorac. Soc. 2021, 18, 1147–1157. [Google Scholar] [CrossRef]
- Pignata, S.; Scambia, G.; Villanucci, A.; Naglieri, E.; Ibarbia, M.A.; Brusa, F.; Bourgeois, H.; Sorio, R.; Casado, A.; Reichert, D.; et al. A European, Observational, Prospective Trial of Trabectedin Plus Pegylated Liposomal Doxorubicin in Patients with Platinum-Sensitive Ovarian Cancer. Oncologist 2020, 26, e658–e668. [Google Scholar] [CrossRef] [PubMed]
- Alprostadil Liposomes for Injection for Lower Extremity Arteriosclerosis Obliteran. Available online: https://clinicaltrials.gov/ct2/show/NCT04197323 (accessed on 10 November 2021).
- Irinotecan Hydrochloride Liposome Injection (LY01610) for Small Cell Lung Cancer. Available online: https://www.clinicaltrials.gov/ct2/show/NCT04381910 (accessed on 10 November 2021).
- Issa, G.C.; Kantarjian, H.M.; Xiao, L.; Ning, J.; Alvarado, Y.; Borthakur, G.; Daver, N.; Dinardo, C.D.; Jabbour, E.; Bose, P.; et al. Phase II trial of CPX-351 in patients with acute myeloid leukemia at high risk for induction mortality. Leukemia 2020, 34, 2914–2924. [Google Scholar] [CrossRef] [PubMed]
- Mazur, F.; Bally, M.; Städler, B.; Chandrawati, R. Liposomes and lipid bilayers in biosensors. Adv. Colloid Interface Sci. 2017, 249, 88–99. [Google Scholar] [CrossRef]
- Pattni, B.S.; Chupin, V.V.; Torchilin, V.P. New Developments in Liposomal Drug Delivery. Chem. Rev. 2015, 115, 10938–10966. [Google Scholar] [CrossRef]
- Shah, S.; Dhawan, V.; Holm, R.; Nagarsenker, M.S.; Perrie, Y. Liposomes: Advancements and innovation in the manufacturing process. Adv. Drug Deliv. Rev. 2020, 154–155, 102–122. [Google Scholar] [CrossRef] [PubMed]
- Beltrán-Gracia, E.; López-Camacho, A.; Higuera-Ciapara, I.; Velázquez-Fernández, J.B.; Vallejo-Cardona, A.A. Nanomedicine Review: Clinical Developments in Liposomal Applications; Springer: Vienna, Austria, 2019; Volume 10, ISBN 1264501900. [Google Scholar]
- Aryasomayajula, B.; Salzano, G.; Torchilin, P.T. Multifunctional liposomes. Cancer Nanotechnol. 2016, 1530, 41–195. [Google Scholar]
- Akbarzadeh, A.; Rezaei-sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef] [Green Version]
- Le, N.T.T.; Du Cao, V.; Nguyen, T.N.Q.; Le, T.T.H.; Tran, T.T.; Thi, T.T.H. Soy Lecithin-Derived Liposomal Delivery Systems: Surface Modification and Current Applications. Int. J. Mol. Sci. 2019, 20, 4706. [Google Scholar] [CrossRef] [Green Version]
- Has, C.; Sunthar, P. A comprehensive review on recent preparation techniques of liposomes. J. Liposome Res. 2019, 30, 336–365. [Google Scholar] [CrossRef] [PubMed]
- Kusuma, P.M.D.; Vinod, K.; Damini, V.K.; Eswar, K.; Kadiri, R.R.; Britto, R.; Suchartitha, P. Somes: A Review On Composition, Formulation Methods And Evaluations Of Different Types Of “Somes” Drug Delivery System. Int. J. Appl. Pharm. 2020, 12, 7–18. [Google Scholar] [CrossRef]
- Sofou, S. Surface-active liposomes for targeted cancer therapy. Nanomedicine 2007, 2, 711–724. [Google Scholar] [CrossRef] [PubMed]
- Lindner, L.H.; Eichhorn, M.E.; Eibl, H.; Teichert, N.; Schmitt-Sody, M.; Issels, R.; Dellian, M. Novel temperature-sensitive liposomes with prolonged circulation time. Clin. Cancer Res. 2004, 10, 2168–2178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxena, V.; Johnson, C.G.; Negussie, A.H.; Sharma, K.V.; Dreher, M.R.; Wood, B.J. Temperature-sensitive liposome-mediated delivery of thrombolytic agents. Int. J. Hyperth. 2015, 31, 67–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoki, A.; Akaboshi, H.; Ogura, T.; Aikawa, T.; Kondo, T.; Tobori, N.; Yuasa, M. Preparation of pH-sensitive Anionic Liposomes Designed for Drug Delivery System (DDS) Application. J. Oleo Sci. 2015, 64, 233–242. [Google Scholar] [CrossRef] [Green Version]
- Momekova, D.; Rangelov, S.; Lambov, N. Long-Circulating, pH-Sensitive Liposomes; Humana Press: Totowa, NJ, USA, 2017; Volume 1522, ISBN 9781493965915. [Google Scholar]
- Hazemoto, N.; Harada, M.; Suzuki, S.; Kaiho, F.; Haga, M.; Kato, Y. Effect of phosphatidylcholine and cholesterol on pH-sensitive liposomes. Chem. Pharm. Bull. 1993, 41, 1003–1006. [Google Scholar] [CrossRef] [Green Version]
- Simões, S. On the formulation of pH-sensitive liposomes with long circulation times. Adv. Drug Deliv. Rev. 2004, 56, 947–965. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, Z.; Li, W.; Liu, X.; Tang, S.; Jiang, L.; Li, M.; Peng, H.; Lian, M. Influences of different sugar ligands on targeted delivery of liposomes. J. Drug Target. 2020, 28, 789–801. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Z.; Tang, X.; Liu, X.; Na, W.; Li, W.; Liu, T. Influences of galactose ligand on the uptake of TADF liposomes by HepG2 cells. Photodiagnosis Photodyn. Ther. 2020, 32, 102014. [Google Scholar] [CrossRef]
- Davis, B.G.; Robinson, A.M. Drug delivery systems based on sugar-macromolecule conjugates. Curr. Opin. Drug Discov. Dev. 2002, 5, 279–288. [Google Scholar]
- Chen, L.; Cai, L.; Wang, X.; Qiu, N.; Wen, J.; Duan, X.; Li, X.; Yang, L.; Qian, Z.; Wei, Y.; et al. Peptide ligand and PEG-mediated long-circulating liposome targeted to FGFR overexpressing tumor in vivo. Int. J. Nanomed. 2012, 7, 4499–4510. [Google Scholar] [CrossRef] [Green Version]
- Press, D. Functional coating of liposomes using a folate—Polymer conjugate to target folate receptors. Int. J. Nanomed. 2012, 7, 3679–3688. [Google Scholar]
- Yoshimoto, M.; Takaki, N.; Yamasaki, M. Catalase-conjugated liposomes encapsulating glucose oxidase for controlled oxidation of glucose with decomposition of hydrogen peroxide produced. Colloids Surf. B Biointerfaces 2010, 79, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Torchilin, V. Antibody-modifi ed liposomes for cancer chemotherapy expected. Expert Opin. Drug Deliv. 2008, 5, 175–204. [Google Scholar] [CrossRef]
- Merino, M.; Zalba, S.; Garrido, M.J. Immunoliposomes in clinical oncology: State of the art and future perspectives. J. Control. Release 2018, 275, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; He, L.; Fan, D.; Liang, W.; Fang, J. Improving the anti-inflammatory efficacy of dexamethasone in the treatment of rheumatoid arthritis with polymerized stealth liposomes as a delivery vehicle. J. Mater. Chem. B 2020, 8, 1841–1851. [Google Scholar] [CrossRef]
- Mineart, K.P.; Venkataraman, S.; Yang, Y.Y.; Hedrick, J.L.; Prabhu, V.M. Fabrication and Characterization of Hybrid Stealth Liposomes. Macromolecules 2018, 51, 3184–3192. [Google Scholar] [CrossRef] [PubMed]
- Hirota, K.; Czogala, E.; Pedrycz, W. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomed. 2006, 1, 297–315. [Google Scholar]
- Assanhou, A.G.; Alolga, R.N.; Onoja, V.; Agbokponto, J.E. Polymers used for surface modifications in stealth liposomes preparations: A review. World J. Pharm. Res. 2015, 4, 2064–2086. [Google Scholar]
- Liu, Y.; Li, J.; Lu, Y. Enzyme therapeutics for systemic detoxification. Adv. Drug Deliv. Rev. 2015, 90, 24–39. [Google Scholar] [CrossRef]
- Barreto, G.R.; Kawai, C.; Tofanello, A.; Neves, A.; Araujo-Chaves, J.C.; Belleti, E.; Lanfredi, A.J.C.; Crespilho, F.N.; Nantes-Cardoso, I.L. Magnetoliposomes as model for signal transmission. R. Soc. Open Sci. 2019, 6, 181108. [Google Scholar] [CrossRef] [Green Version]
- Choi, W.I.; Sahu, A.; Wurm, F.R.; Jo, S.-M. Magnetoliposomes with size controllable insertion of magnetic nanoparticles for efficient targeting of cancer cells. RSC Adv. 2019, 9, 15053–15060. [Google Scholar] [CrossRef] [Green Version]
- Caizer, C.; Dehelean, C.; Coricovac, D.E.; Caizer, I.S.; Şoica, C.M. Nanoformulations in Human Health; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Laszczyk, M.N. Pentacyclic Triterpenes of the Lupane, Oleanane and Ursane Group as Tools in Cancer Therapy. Planta Med. 2009, 75, 1549–1560. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Chen, X.; Xiuling, Y.; Guo, S.; Wang, Z.; Yu, X. Advances in Pharmacological Activities of Terpenoids. Nat. Prod. Commun. 2020, 15. [Google Scholar] [CrossRef] [Green Version]
- Paduch, R.; Kandefer-Szerszeń, M. Antitumor and Antiviral Activity of Pentacyclic Triterpenes. Mini-Rev. Org. Chem. 2014, 11, 262–268. [Google Scholar] [CrossRef]
- Sharma, H.; Kumar, P.; Deshmukh, R.R.; Bishayee, A.; Kumar, S. Pentacyclic triterpenes: New tools to fight metabolic syndrome. Phytomedicine 2018, 50, 166–177. [Google Scholar] [CrossRef]
- Ghiulai, R.; Roşca, O.; Antal, D.; Mioc, M.; Mioc, A.; Racoviceanu, R.; Macaşoi, I.; Olariu, T.; Dehelean, C.; Creţu, O.; et al. Tetracyclic and Pentacyclic Triterpenes with High Therapeutic Efficiency in Wound Healing Approaches. Molecules 2020, 25, 5557. [Google Scholar] [CrossRef]
- Şoica, C.; Voicu, M.; Ghiulai, R.; Dehelean, C.; Racoviceanu, R.; Trandafirescu, C.; Roșca, O.-J.; Nistor, G.; Mioc, M.; Mioc, A. Natural Compounds in Sex Hormone-Dependent Cancers: The Role of Triterpenes as Therapeutic Agents. Front. Endocrinol. 2021, 11, 1042. [Google Scholar] [CrossRef] [PubMed]
- Furtado, N.A.J.C.; Pirson, L.; Edelberg, H.; Miranda, L.M.; Loira-Pastoriza, C.; Preat, V.; Larondelle, Y.; André, C.M. Pentacyclic Triterpene Bioavailability: An Overview of In Vitro and In Vivo Studies. Molecules 2017, 22, 400. [Google Scholar] [CrossRef] [Green Version]
- Habib, L.; Khreich, N.; Jraij, A.; Abbas, S.; Magdalou, J.; Charcosset, C.; Greige-Gerges, H. Preparation and characterization of liposomes incorporating cucurbitacin E, a natural cytotoxic triterpene. Int. J. Pharm. 2013, 448, 313–319. [Google Scholar] [CrossRef]
- Wang, X.; Lu, X.; Zhu, R.; Zhang, K.; Li, S.; Chen, Z.; Li, L. Betulinic Acid Induces Apoptosis in Differentiated PC12 Cells Via ROS-Mediated Mitochondrial Pathway. Neurochem. Res. 2017, 42, 1130–1140. [Google Scholar] [CrossRef] [PubMed]
- Saneja, A.; Arora, D.; Kumar, R.; Dubey, R.D.; Panda, A.K.; Gupta, P.N. Therapeutic applications of betulinic acid nanoformulations. Ann. N. Y. Acad. Sci. 2018, 1421, 5–18. [Google Scholar] [CrossRef]
- Ríos, J.L.; Máñez, S. New Pharmacological Opportunities for Betulinic Acid Authors Antidiabetic Properties. Planta Med. 2017, 84, 8–19. [Google Scholar] [PubMed] [Green Version]
- Ajala-Lawal, R.A.; Aliyu, N.; Ajiboye, T.O. Betulinic acid improves insulin sensitivity, hyperglycemia, inflammation and oxidative stress in metabolic syndrome rats via PI3K/Akt pathways. Arch. Physiol. Biochem. 2018, 126, 107–115. [Google Scholar] [CrossRef]
- An, T.; Zha, W.; Zi, J. Biotechnological production of betulinic acid and derivatives and their applications. Appl. Microbiol. Biotechnol. 2020, 104, 3339–3348. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, D.; Zhang, X.; Liu, Z.; Dai, K.; Ji, B.; Wang, Q.; Luo, L. Antitumor drug effect of betulinic acid mediated by polyethylene glycol modified liposomes. Mater. Sci. Eng. C 2016, 64, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Yang, Q.; Cai, N.; Zhang, Z. A cocktail of betulinic acid, parthenolide, honokiol and ginsenoside Rh2 in liposome systems for lung cancer treatment. Nanomedicine 2020, 15, 41–54. [Google Scholar] [CrossRef]
- Guo, B.; Xu, D.; Liu, X.; Yi, J. Enzymatic synthesis and in vitro evaluation of folate-functionalized liposomes. Drug Des. Dev. Ther. 2017, 11, 1839–1847. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, X.; Liu, Z.; Wang, L.; Luo, L.; Wang, M.; Wang, Q.; Gao, D. Gold nanoshell-based betulinic acid liposomes for synergistic chemo-photothermal therapy. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 1891–1900. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Luo, L.; Li, L.; He, Y.; An, J.; Gao, D. Self-Assembly of Stimuli-Responsive Au-Pd Bimetallic Nanoflowers Based on Betulinic Acid Liposomes for Synergistic Chemo-Photothermal Cancer Therapy. ACS Biomater. Sci. Eng. 2018, 4, 2911–2921. [Google Scholar] [CrossRef]
- Shu, Q.; Wu, J.; Chen, Q. Synthesis, Characterization of Liposomes Modified with Biosurfactant MEL-A Loading Betulinic Acid and Its Anticancer Effect in HepG2 Cell. Molecules 2019, 24, 3939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullauer, F.B.; Van Bloois, L.; Daalhuisen, J.B.; Brink, M.S.T.; Storm, G.; Medema, J.P.; Schiffelers, R.M.; Kessler, J.H. Betulinic acid delivered in liposomes reduces growth of human lung and colon cancers in mice without causing systemic toxicity. Anti-Cancer Drugs 2011, 22, 223–233. [Google Scholar] [CrossRef]
- Farcas, C.G.; Dehelean, C.; Pinzaru, I.A.; Mioc, M.; Socoliuc, V.; Moaca, E.-A.; Avram, S.; Ghiulai, R.; Coricovac, D.; Pavel, I.; et al. Thermosensitive Betulinic Acid-Loaded Magnetoliposomes: A Promising Antitumor Potential for Highly Aggressive Human Breast Adenocarcinoma Cells Under Hyperthermic Conditions. Int. J. Nanomed. 2020, 15, 8175–8200. [Google Scholar] [CrossRef]
- Ayeleso, T.B.; Matumba, M.G.; Mukwevho, E. Oleanolic Acid and Its Derivatives: Biological Activities and Therapeutic Potential in Chronic Diseases. Molecules 2017, 22, 1915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Žiberna, L.; Šamec, D.; Mocan, A.; Nabavi, S.; Bishayee, A.; Farooqi, A.A.; Sureda, A. Oleanolic Acid Alters Multiple Cell Signaling Pathways: Implication in Cancer Prevention and Therapy. Int. J. Mol. Sci. 2017, 18, 643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baer-Dubowska, W.; Narożna, M.; Krajka-Kuźniak, V. Anti-Cancer Potential of Synthetic Oleanolic Acid Derivatives and Their Conjugates with NSAIDs. Molecules 2021, 26, 4957. [Google Scholar] [CrossRef]
- Feng, A.; Yang, S.; Sun, Y.; Zhang, L.; Bo, F.; Li, L. Development and Evaluation of Oleanolic Acid Dosage Forms and Its Derivatives. BioMed Res. Int. 2020, 2020, 1308749. [Google Scholar] [CrossRef]
- Sultana, N.; Ata, A. Oleanolic acid and related derivatives as medicinally important compounds. J. Enzym. Inhib. Med. Chem. 2008, 23, 739–756. [Google Scholar] [CrossRef]
- Medina-O’Donnell, M.; Rivas, F.; Reyes-Zurita, F.J.; Cano-Muñoz, M.; Martinez, A.; Lupiañez, J.A.; Parra, A. Oleanolic Acid Derivatives as Potential Inhibitors of HIV-1 Protease. J. Nat. Prod. 2019, 82, 2886–2896. [Google Scholar] [CrossRef]
- Gao, D.; Tang, S.; Tong, Q. Oleanolic acid liposomes with polyethylene glycol modification: Promising antitumor drug delivery. Int. J. Nanomed. 2012, 7, 3517–3526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, S.; Gao, D.; Zhao, T.; Zhou, J.; Zhao, X. An evaluation of the anti-tumor efficacy of oleanolic acid-loaded PEGylated liposomes. Nanotechnology 2013, 24, 235102. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Bian, Y.; Liu, Y.; Zhang, X.; Wang, M.; Xing, S.; Li, L.; Gao, D. Combined Near Infrared Photothermal Therapy and Chemotherapy Using Gold Nanoshells Coated Liposomes to Enhance Antitumor Effect. Small 2016, 12, 4103–4112. [Google Scholar] [CrossRef]
- Sarfraz, M.; Afzal, A.; Raza, S.M.; Bashir, S.; Madni, A.; Khan, M.W.; Ma, X.; Xiang, G. Liposomal co-delivered oleanolic acid attenuates doxorubicin-induced multi-organ toxicity in hepatocellular carcinoma. Oncotarget 2017, 8, 47136–47153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarfraz, M.; Afzal, A.; Yang, T.; Gai, Y.; Raza, S.M.; Khan, M.W.; Cheng, Y.; Ma, X.; Xiang, G. Development of Dual Drug Loaded Nanosized Liposomal Formulation by A Reengineered Ethanolic Injection Method and Its Pre-Clinical Pharmacokinetic Studies. Pharmaceutics 2018, 10, 151. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Z.; Liu, Z.; Zhang, X.; Huang, J.; Yu, X.; Li, J.; Xiong, D.; Sun, X.; Luo, Y. Effect of a controlled-release drug delivery system made of oleanolic acid formulated into multivesicular liposomes on hepatocellular carcinoma in vitro and in vivo. Int. J. Nanomed. 2016, 11, 3111–3129. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Luo, Y.; Li, C.; Zhang, X.; Pi, C.; Yu, L.; Wang, S.; Zhong, Z. Optimized formulation of multivesicular liposomes loaded with oleanolic acid enhanced anticancer effect in vitro. Drug Des. Dev. Ther. 2017, 11, 955–968. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Luo, X.; Xu, X.; Gao, N.; Liu, X. Preparation, characterization and in vivo pharmacokinetic study of PVP-modified oleanolic acid liposomes. Int. J. Pharm. 2017, 517, 1–7. [Google Scholar] [CrossRef]
- Bian, Y.; Gao, D.; Liu, Y.; Li, N.; Zhang, X.; Zheng, R.Y.; Wang, Q.; Luo, L.; Dai, K. Preparation and study on anti-tumor effect of chitosan-coated oleanolic acid liposomes. RSC Adv. 2015, 5, 18725–18732. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, R.; Wang, M.; Xing, S.; Li, L.; He, Y.; Cao, W.; Gao, D. Targeted therapy of octreotide-modified oleanolic acid liposomes to somatostatin receptor overexpressing tumor cells. Nanomedicine 2017, 12, 927–940. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, A.; Kalinowska-Lis, U. 18 β-Glycyrrhetinic acid: Its core biological properties and dermatological applications. Int. J. Cosmet. Sci. 2019, 41, 325–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, B.; Wu, G.-R.; Zhang, Q.-W.; Yan, M.-M.; Zhao, R.; Xue, N.-N.; Fang, K.; Wang, H.; Chen, M.; Guo, W.-B.; et al. An Overview of Structurally Modified Glycyrrhetinic Acid Derivatives as Antitumor Agents. Molecules 2017, 22, 924. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Xu, Y.; Chan, H.F.; Fang, X.; He, C.; Chen, M. Glycyrrhetinic Acid Mediated Drug Delivery Carriers for Hepatocellular Carcinoma Therapy. Mol. Pharm. 2016, 13, 699–709. [Google Scholar] [CrossRef] [PubMed]
- Bian, M.; Zhen, D.; Shen, Q.-K.; Du, H.-H.; Ma, Q.-Q.; Quan, Z.-S. Structurally modified glycyrrhetinic acid derivatives as anti-inflammatory agents. Bioorg. Chem. 2020, 107, 104598. [Google Scholar] [CrossRef]
- Sun, Y.; Dai, C.; Yin, M.; Lu, J.; Hu, H.; Chen, D. Hepatocellular carcinoma-targeted effect of configurations and groups of glycyrrhetinic acid by evaluation of its derivative-modified liposomes. Int. J. Nanomed. 2018, 13, 1621–1632. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Chen, J.; Jiang, H.; Wu, Y.; Li, Y. A novel glycyrrhetinic acid-modified oxaliplatin liposome for liver-targeting and in vitro/vivo evaluation. Drug Des. Dev. Ther. 2015, 9, 2265–2275. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Xu, H.; Ke, X.; Tian, J. The anti-tumor performance of docetaxel liposomes surface-modified with glycyrrhetinic acid. J. Drug Target. 2012, 20, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Huang, S.; Li, L.; Wang, S.; Chen, J.; Guan, Y.; Wang, B.; Jia, Y. Glycyrrhetinic acid-decorated and docetaxel-loaded thermosensitive liposomes for combination therapy against hepatocellular carcinoma. J. Nanopart. Res. 2021, 23, 1–16. [Google Scholar] [CrossRef]
- Tian, J.; Wang, L.; Wang, L.; Ke, X. A wogonin-loaded glycyrrhetinic acid-modified liposome for hepatic targeting with anti-tumor effects. Drug Deliv. 2013, 21, 553–559. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.; Wu, M.; Li, H. Antitumor activities of novel glycyrrhetinic acid-modified curcumin-loaded cationic liposomes in vitro and in H22 tumor-bearing mice. Drug Deliv. 2018, 25, 1984–1995. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.-H.; Cheng, Y.; Lin, L.-P.; Lin, D.-H.; Wu, W. Preparation and characterization of galactose-modified liposomes by a nonaqueous enzymatic reaction. J. Liposome Res. 2010, 21, 255–260. [Google Scholar] [CrossRef]
- He, Z.Y.; Zheng, X.; Wu, X.H.; Song, X.R.; He, G.; Wu, W.F.; Yu, S.; Mao, S.J.; Wei, Y.Q. Development of glycyrrhetinic acid-modified stealth cationic liposomes for gene delivery. Int. J. Pharm. 2010, 397, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Wang, X.; Wu, Q.; Dai, J.; Guan, H.; Cao, W.; He, L.; Wang, Y. Development of Salvianolic acid B–Tanshinone II A–Glycyrrhetinic acid compound liposomes: Formulation optimization and its effects on proliferation of hepatic stellate cells. Int. J. Pharm. 2013, 462, 11–18. [Google Scholar] [CrossRef]
- Lu, Y.; Li, J.; Wang, G. In vitro and in vivo evaluation of mPEG-PLA modified liposomes loaded glycyrrhetinic acid. Int. J. Pharm. 2008, 356, 274–281. [Google Scholar] [CrossRef]
- Ge, B.; Yang, D.; Wu, X.; Zhu, J.; Wei, W.; Yang, B. Cytoprotective effects of glycyrrhetinic acid liposome against cyclophosphamide-induced cystitis through inhibiting inflammatory stress. Int. Immunopharmacol. 2018, 54, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Jia, F.; Zhu, B.; Zhang, W. Preparation and characterization of glycyrrhetinic-acid loaded PEG-modified liposome based on PEG-7 glyceryl cocoate. Eur. J. Lipid Sci. Technol. 2017, 119, 1600010. [Google Scholar] [CrossRef]
- Abruzzo, A.; Cappadone, C.; Farruggia, G.; Luppi, B.; Bigucci, F.; Cerchiara, T. Glycyrrhetinic Acid Liposomes and Hyalurosomes on Spanish Broom, Flax, and Hemp Dressings to Heal Skin Wounds. Molecules 2020, 25, 2558. [Google Scholar] [CrossRef]
- Liu, T.; Zhu, W.; Han, C.; Sui, X.; Liu, C.; Ma, X.; Dong, Y. Preparation of Glycyrrhetinic Acid Liposomes Using Lyophilization Monophase Solution Method: Preformulation, Optimization, and In Vitro Evaluation. Nanoscale Res. Lett. 2018, 13, 324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, E.W.C.; Soon, C.Y.; Tan, J.B.L.; Wong, S.K.; Hui, Y.W. Ursolic acid: An overview on its cytotoxic activities against breast and colorectal cancer cells. J. Integr. Med. 2019, 17, 155–160. [Google Scholar] [CrossRef]
- Iqbal, J.; Abbasi, B.A.; Ahmad, R.; Mahmood, T.; Kanwal, S.; Ali, B.; Khalil, A.T.; Shah, A.; Alam, M.M.; Badshah, H. Ursolic acid a promising candidate in the therapeutics of breast cancer: Current status and future implications. Biomed. Pharmacother. 2018, 108, 752–756. [Google Scholar] [CrossRef]
- Jinhua, W. Ursolic acid: Pharmacokinetics processin vitroandin vivo, a mini review. Arch. Pharm. 2019, 352, e1800222. [Google Scholar] [CrossRef] [PubMed]
- Mlala, S.; Oyedeji, A.O.; Gondwe, M.; Oyedeji, O.O. Ursolic Acid and Its Derivatives as Bioactive Agents. Molecules 2019, 24, 2751. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Liu, S.; Shi, S.; Chen, Y.; Xu, F.; Wei, X.; Xu, Y. Solubilization and delivery of Ursolic-acid for modulating tumor microenvironment and regulatory T cell activities in cancer immunotherapy. J. Control. Release 2020, 320, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhao, T.; Liu, Y.; Wang, Q.; Xing, S.; Li, L.; Wang, L.; Liu, L.; Gao, D. Ursolic acid liposomes with chitosan modification: Promising antitumor drug delivery and efficacy. Mater. Sci. Eng. C 2017, 71, 1231–1240. [Google Scholar] [CrossRef]
- Rocha, T.G.R.; Lopes, S.C.D.A.; Cassali, G.D.; Ferreira, E.; Veloso, E.S.; Leite, E.A.; Braga, F.; Ferreira, L.; Balvay, D.; Garofalakis, A.; et al. Evaluation of Antitumor Activity of Long-Circulating and pH-Sensitive Liposomes Containing Ursolic Acid in Animal Models of Breast Tumor and Gliosarcoma. Integr. Cancer Ther. 2016, 15, 512–524. [Google Scholar] [CrossRef] [Green Version]
- Ying, X.; Wang, Y.; Xu, H.; Li, X.; Yan, H.; Tang, H.; Wen, C.; Li, Y. The construction of the multifunctional targeting ursolic acids liposomes and its apoptosis effects to C6 glioma stem cells. Oncotarget 2017, 8, 64129–64142. [Google Scholar] [CrossRef] [Green Version]
- Lv, B.-H.; Tan, W.; Shang, X.; Zhang, L. Evaluation of clinical effectiveness of paclitaxel and ursolic acid co-loaded liposomes as enhanced treatment for head and neck squamous cell carcinoma. Trop. J. Pharm. Res. 2019, 17, 2115. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, J.; Wang, Y.; Wu, B. Preparation and evaluation of liposome-encapsulated codrug LMX. Int. J. Pharm. 2012, 438, 240–248. [Google Scholar] [CrossRef]
- Zhao, T.; Liu, Y.; Gao, Z.; Gao, D.; Li, N.; Bian, Y.; Dai, K.; Liu, Z. Self-assembly and cytotoxicity study of PEG-modified ursolic acid liposomes. Mater. Sci. Eng. C 2015, 53, 196–203. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, T.; Liu, Y.; Xing, S.; Li, L.; Gao, D. An evaluation of anti-tumor effect and toxicity of PEGylated ursolic acid liposomes. J. Nanopart. Res. 2016, 18, 34. [Google Scholar] [CrossRef]
- Yang, G.; Yang, T.; Zhang, W.; Lu, M.; Ma, X.; Xiang, G. In Vitro and in Vivo Antitumor Effects of Folate-Targeted Ursolic Acid Stealth Liposome. J. Agric. Food Chem. 2014, 62, 2207–2215. [Google Scholar] [CrossRef]
- Tsai, F.; Lin, L.; Wu, C. Lupeol and Its Role in Chronic Diseases. Adv. Exp. Med. Biol. 2016, 929, 145–175. [Google Scholar]
- Ahmad, R.; Khan, A.; Lee, H.J.; Rehman, I.U.; Khan, I.; Alam, S.I.; Kim, M.O. Lupeol, a Plant-Derived Triterpenoid, Protects Mice Brains against Aβ-Induced Oxidative Stress and Neurodegeneration. Biomedicines 2020, 8, 380. [Google Scholar] [CrossRef]
- Correa, R.; Coelho, C.P.; Dos Santos, M.; Ellena, J.; Doriguetto, A.C. Lupeol. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2009, 65, 97–99. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, X.; Xie, L.; Deng, M.; Chen, H.; Song, J.; Long, J.; Li, X.; Luo, J. Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacy. Pharmacol. Res. 2020, 164, 105373. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liang, H.; Yao, H.; Qiu, Z.; Chen, X.; Hu, X.; Hu, J.; Zheng, G. The preparation, characterization of Lupeol PEGylated liposome and its functional evaluation in vitro as well as pharmacokinetics in rats. Drug Dev. Ind. Pharm. 2019, 45, 1052–1060. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hu, X.; Zheng, G.; Yao, H.; Liang, H. In vitro and in vivo antitumor effects of lupeol-loaded galactosylated liposomes. Drug Deliv. 2021, 28, 709–718. [Google Scholar] [CrossRef]
- Roy, N.; Parama, D.; Banik, K.; Bordoloi, D.; Devi, A.K.; Thakur, K.K.; Padmavathi, G.; Shakibaei, M.; Fan, L.; Sethi, G.; et al. An Update on Pharmacological Potential of Boswellic Acids against Chronic Diseases. Int. J. Mol. Sci. 2019, 20, 4101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Bahlani, S.; Burney, I.A.; Al-Dhahli, B.; Al-Kharusi, S.; Al-Kharousi, F.; Al-Kalbani, A.; Ahmed, I. Boswellic acid sensitizes gastric cancer cells to Cisplatin-induced apoptosis via p53-mediated pathway. BMC Pharmacol. Toxicol. 2020, 21, 64. [Google Scholar] [CrossRef]
- Vijayarani, K.R.; Govindarajulu, M.; Ramesh, S.; Alturki, M.; Majrashi, M.; Fujihashi, A.; Almaghrabi, M.; Kirubakaran, N.; Ren, J.; Babu, R.J.; et al. Enhanced Bioavailability of Boswellic Acid by Piper longum: A Computational and Pharmacokinetic Study. Front. Pharmacol. 2020, 11, 551911. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Gupta, N.K.; Dixit, V.K. Complexation with phosphatidyl choline as a strategy for absorption enhancement of boswellic acid. Drug Deliv. 2010, 17, 587–595. [Google Scholar] [CrossRef] [PubMed]
Category | Advantages | Drawbacks | Clinical Applications | References |
---|---|---|---|---|
Vesicle-type carriers (liposomes, micelles) | Increased potency and bioavailability | Instability Rapid clearance (traditional vehicles) | Drug delivery systems Imaging | [25,26,27,28] |
Polymeric particles | Increased versatility Prolonged circulation time Improved stability | Morphology and size dependency Possible immunotoxicity | Drug delivery systems Imaging | [29,30,31] |
Quantum dots | Unique optical proprieties Can identify numerous targets Various utilizations | Body toxicity produced by heavy metals Problematic efficiency High instability | Imaging Diseases molecular fingerprinting, Personalized diagnosis | [32,33,34,35,36] |
Nanoshells | Significant reduced size Enhanced anti-tumor activity Sustained drug release proprieties | Are prone to aggregation Delicate stability balance | Imaging Drug delivery Photothermal therapy Tissue regenerations Gene screening | [37,38,39,40] |
Gold particles | Easy to synthesize Great stability Non-immunogenic Hight surface area to volume ratio Great accumulation to the tumor site Possibility to conjugate a variety of moieties | High cost of synthesis Toxicity correlated to their size | Biomarkers Tumor labels Drug delivery systems Photothermal therapy | [41,42,43,44,45] |
Paramagnetic particles | Greater magnetic susceptibility Better results in concentrating drugs in tumors Reduced treatment time | Cytotoxicity | Imaging Magnetic field targeting Diagnosis of pathologies | [46,47,48,49] |
Carbon nanotubes | A broad area of clinical applications Great cellular permeability Impressive mechanical, electrical and thermal proprieties Natural affinity for diverse enzymes | Poor hydrosolubility Conductibility dependable on diameter and tube chirality Low biodegradability Toxicity | Imaging Drug delivery systems Gene therapy | [50,51,52,53] |
Advantages | References | Drawbacks | References | |
---|---|---|---|---|
Nanoparticles for intravenous drug delivery |
| [55,56,57] |
| [58,59,60] |
Nanoparticles for oral drug delivery |
| [61,62,63] |
| [64,65,66] |
Nanoparticles for transdermal drug delivery |
| [67,68,69,70] |
| [71,72,73] |
Nanoparticles for pulmonary drug delivery |
| [74,75,76] |
| [77,78,79,80] |
Nanoparticles in ocular drug delivery |
| [81,82,83,84,85] |
| [86,87,88,89] |
Brand Name | Therapeutic Agent | Route and Form of Administration | Indications | Status | References |
---|---|---|---|---|---|
Abelcet | Amphotericin B | i.v. | Fungal infections | Approved | [137] |
Alocrest | Vinorebline | i.v. | Solid tumors | Investigational | [138] |
AeroLEF | Fentanyl | Aerosol | Pain relief | Investigational | [139] |
AmBisome | Amphotericin B | i.v. | Fungal infections | Approved | [140] |
Amphocil | Amphotericin B | i.v. | Fungal infection | Approved | [141] |
Aroplatin | Cisplatin | i.v./i.p. | Colorectal neoplasms | Investigational | [142] |
Arikace | Amikacin | Aerosol | Cystic fibrosis | Investigational | [142] |
Atragen | Tretinoin | i.v. | Solid tumors | Investigational | [143] |
Atu027 | siRNA | i.v. | Solid tumors | Investigational | [144] |
Brakiva | Topotecan | i.v. | Solid tumors | Investigational | [145] |
DepoDur | Morphine sulfate | Epidural | Pain management | Approved | [146] |
DepoCyt | Cytarabine | i.v. | Lymphomatous meningitis | Approved | [147] |
Dimericine | T4N4 | Oral | Precancerous condition | Investigational | [148] |
Doxisome | Doxorubicin | i.v. | Solid tumors | Investigational | [149] |
Epaxal | Inactivated hepatitis A virus (strain RG-SB) | i.m. | Hepatitis A | Approved | [150] |
Lipo-Dox | Doxorubicin | i.v. | Solid tumors | Approved | [151] |
Lipoplatin | Cisplatin | i.v. | Solid tumors | Investigational | [152] |
Liposomal alendronate | Alendronate | i.v. | Coronary artery stenosis | Investigational | [153] |
Liprostin | Prostaglandin | i.v. | Peripheral vascular disease | Investigational | [154] |
L-annamycin | Annamycin | i.v. | Acute lymphocytic | Investigational | [155] |
Marqibo | Vincristine | i.v. | Solid tumors | Investigational | [156] |
Mifamurtide | Mepact | i.v./injection/powder | High-grade, resectable, non-metastatic osteosarcoma in children and young adults | Approved | [157] |
Nanocort | Prednisolone | i.v. | Rheumatoid arthritis | Investigational | [158] |
NanoVNB | Vinorelbine | i.v. | Colon cancer | Investigational | [159] |
Octinoxate | Eucerin, Meijer, Sumadan Wash | Topical/emulsion | Protection against UV light | Approved, Investigational | [160] |
RVCLUV | Ropivacaine | i.v. | Anesthetic | Investigational | [161] |
Stimuvax | BLP25 vaccine | i.v. | Lung cancer | Investigational | [162] |
VaxiSome | Influenza | i.m. | Influenza | Investigational | [163] |
7-ethyl-10-hydroxycamptothecin | - | - | Colorectal cancer | Investigational | [164] |
Drug Name | Therapeutic Agent | Indications | Phase Trial | References |
---|---|---|---|---|
BP1001 | Grb2 antisense oligonucleotide | Leukemia, myelodysplastic syndrome, Ph1-positive CML | I | [165] |
LiPlaCis | Cisplatin | Solid tumors | I/II | [166] |
LDF01 | Rhodamine-labeled cationic liposomes | Head and neck squamous cell carcinomas | I | [167] |
Atu027 | siRNA | Solid tumors | I | [168] |
LEP-ETU | Paclitaxel | Ovarian cancer | II | [169] |
OSI-211 | Lurtotecan | Head and neck carcinomas | II | [170] |
S-CKD602 | TOPO I inhibitor | Solid tumors | II | [171] |
MiR-122 | MicroRNA | Hepatitis C | III | [172] |
S9912 | Paclitaxel, Cisplatin, Doxorubicin | Fallopian tube cancer, ovarian and peritoneal cavity cancer | II | [173] |
ONYVIDETM | Ironotecan, 5-FU/LV | Advanced pancreatic cancer | I | [174] |
Mitoxandrone | Mitoxandrone injection | Breast cancer | II | [175] |
Abraxane combined with liposomal doxorubicin | Paclitaxel albumin-bound, Doxorubicin | Metastatic angiosarcoma | II | [176] |
Nal-IRI + 5-FU/LV | Irinotecan + 5-fluorouracil/leucovorin | Pancreatic cancer | II | [177] |
Paclitaxel | Camrelizumab + nedaplatin + apatinib + liposomal paclitaxel | Esophageal carcinoma | II | [178] |
Amikacin liposome inhalation suspension | Amikacin | Mycobacterium avium complex lung disease | I | [179] |
Pegylated Liposomal Doxorubicin | Trabedectin + Doxorubicin | Ovarian cancer | IV | [180] |
Alprostadil injection | Alprostadil | Peripheral artery disease | II | [181] |
LY01610 | Ironotecan | Lung cancer | II | [182] |
CPX-31 | Cytarabine/daunorubicin | Acute myeloid leukemia | II | [183] |
Triterpene Types | Subtype | Chemical Structure |
---|---|---|
Lupane-type triterpenes | Betulinic acid | |
Betulin | ||
Lupeol | ||
Ursane-type triterpenes | Asiaticoside | |
Asiatic acid | ||
Madecassoside | ||
Madecassic acid | ||
Oleane-type triterpenes | Oleanolic acid | |
Glycyrrhizin | ||
Dammarane-type triterpenoids | Ginsenosides | |
Bacosides | ||
Lanostane-type triterpenes | Cycloastragenol | |
Cycloartane-type triterpenes | Astragaloside | |
Cyclocanthoside |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milan, A.; Mioc, A.; Prodea, A.; Mioc, M.; Buzatu, R.; Ghiulai, R.; Racoviceanu, R.; Caruntu, F.; Şoica, C. The Optimized Delivery of Triterpenes by Liposomal Nanoformulations: Overcoming the Challenges. Int. J. Mol. Sci. 2022, 23, 1140. https://doi.org/10.3390/ijms23031140
Milan A, Mioc A, Prodea A, Mioc M, Buzatu R, Ghiulai R, Racoviceanu R, Caruntu F, Şoica C. The Optimized Delivery of Triterpenes by Liposomal Nanoformulations: Overcoming the Challenges. International Journal of Molecular Sciences. 2022; 23(3):1140. https://doi.org/10.3390/ijms23031140
Chicago/Turabian StyleMilan, Andreea, Alexandra Mioc, Alexandra Prodea, Marius Mioc, Roxana Buzatu, Roxana Ghiulai, Roxana Racoviceanu, Florina Caruntu, and Codruţa Şoica. 2022. "The Optimized Delivery of Triterpenes by Liposomal Nanoformulations: Overcoming the Challenges" International Journal of Molecular Sciences 23, no. 3: 1140. https://doi.org/10.3390/ijms23031140
APA StyleMilan, A., Mioc, A., Prodea, A., Mioc, M., Buzatu, R., Ghiulai, R., Racoviceanu, R., Caruntu, F., & Şoica, C. (2022). The Optimized Delivery of Triterpenes by Liposomal Nanoformulations: Overcoming the Challenges. International Journal of Molecular Sciences, 23(3), 1140. https://doi.org/10.3390/ijms23031140