Metabolomic Fingerprinting for the Detection of Early-Stage Lung Cancer: From the Genome to the Metabolome
Abstract
:1. Introduction
2. Challenges and Importance of Better Screening Approaches for Early-Stage Lung Cancer
3. Molecular Approaches and Directions in Lung Cancer Detection
4. The Interrelationship between Genes, Proteins, and Metabolites
5. Metabolic Fingerprints
5.1. Variations of Metabolites
5.2. Collection, Storage, and Processing
5.3. Variations of Manufacturing Kits
5.4. Instrumentation and Data Processing
5.5. Effect of Underlying Diseases or Non-Related Metabolites
6. Potential Impact on Patients
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today. Lyon: International Agency for Research on Cancer; 2020. Available online: https://gco.iarc.fr/today (accessed on 16 November 2021).
- World Cancer Research Fund. Available online: https://www.wcrf.org/dietandcancer/lung-cancer-statistics/ (accessed on 16 November 2021).
- Chadder, J.; Dewar, R.; Shack, L.; Nishri, D.; Niu, J.; Lockwood, G. A first look at relative survival by stage for colorectal and lung cancers in Canada. Curr. Oncol. 2016, 23, 119–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Q.; Ma, R.C.W. Metabolomics in diabetes and diabetic complications: Insights from epidemiological studies. Cells 2021, 10, 2832. [Google Scholar] [CrossRef]
- Brennan, L.; Hu, F.B.; Sun, Q. Metabolomics meets nutritional epidemiology: Harnessing the potential in metabolomics data. Metabolites 2021, 11, 709. [Google Scholar] [CrossRef] [PubMed]
- Onuh, J.O.; Qiu, H. Metabolic profiling and metabolites fingerprints in human hypertension: Discovery and potential. Metabolites 2021, 11, 687. [Google Scholar] [CrossRef]
- McGranaghan, P.; Kirwan, J.A.; Garcia-Rivera, M.A.; Pieske, B.; Edelmann, F.; Blaschke, F.; Appunni, S.; Saxena, A.; Rubens, M.; Veledar, E.; et al. Lipid metabolite biomarkers in cardiovascular disease: Discovery and biomechanism translation from human studies. Metabolites 2021, 11, 621. [Google Scholar] [CrossRef] [PubMed]
- LeVatte, M.; Keshteli, A.H.; Zarei, P.; Wishart, D.S. Applications of metabolomics to precision nutrition. Lifestyle Genom. 2021, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Schultheiss, U.T.; Kosch, R.; Kotsis, F.; Altenbuchinger, M.; Zacharias, H.U. Chronic kidney disease cohort studies: A guide to metabolome analyses. Metabolites 2021, 11, 460. [Google Scholar] [CrossRef]
- Walker, A.; Schmitt-Kopplin, P. The role of fecal sulfur metabolome in inflammatory bowel diseases. Int. J. Med. Microbiol. 2021, 311, 151513. [Google Scholar] [CrossRef]
- Liang, L.; Sun, F.; Wang, H.; Hu, Z. Metabolomics, metabolic flux analysis and cancer pharmacology. Pharmacol. Ther. 2021, 224, 107827. [Google Scholar] [CrossRef]
- Alldritt, I.; Greenhaff, P.L.; Wilkinson, D.J. Metabolomics as an important tool for determining the mechanisms of human skeletal muscle deconditioning. Int. J. Mol. Sci. 2021, 22, 13575. [Google Scholar] [CrossRef] [PubMed]
- Daisley, B.A.; Koenig, D.; Engelbrecht, K.; Doney, L.; Hards, K.; Al, K.F.; Reid, G.; Burton, J.P. Emerging connections between gut microbiome bioenergetics and chronic metabolic diseases. Cell Rep. 2021, 37, 110087. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, Z.A.; Kumar, U.; Chen, D.D.Y. Review of recent developments in determining volatile organic compounds in exhaled breath as biomarkers for lung cancer diagnosis. Anal. Chim. Acta. 2017, 996, 1–9. [Google Scholar] [CrossRef]
- Sher, T.; Dy, G.K.; Adjei, A.A. Small cell lung cancer. Mayo. Clin. Proc. 2008, 83, 355–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samet, J.M.; Avila-Tang, E.; Boffetta, P.; Hannan, L.M.; Olivo-Marston, S.; Thun, M.J.; Rudin, C.M. Lung cancer in never smokers: Clinical epidemiology and environmental risk factors. Clin. Cancer Res. 2009, 15, 5626–5645. [Google Scholar] [CrossRef] [Green Version]
- Hubaux, R.; Becker-Santos, D.D.; Enfield, K.S.; Lam, S.; Lam, W.L.; Martinez, V.D. Arsenic, asbestos and radon: Emerging players in lung tumorigenesis. Environ. Health 2012, 11, 89. [Google Scholar] [CrossRef] [PubMed]
- Vineis, P.; Forastiere, F.; Hoek, G.; Lipsett, M. Outdoor air pollution and lung cancer: Recent epidemiologic evidence. Int. J. Cancer. 2004, 111, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Vallières, E.; Pintos, J.; Parent, M.E.; Siemiatycki, J. Occupational exposure to wood dust and risk of lung cancer in two population-based case-control studies in Montreal, Canada. Environ. Health 2015, 14, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Öberg, M.; Jaakkola, M.S.; Woodward, A.; Peruga, A.; Prüss-Ustün, A. Worldwide burden of disease from exposure to second-hand smoke: A retrospective analysis of data from 192 countries. Lancet 2011, 377, 139–146. [Google Scholar] [CrossRef]
- Sagerup, C.M.; Småstuen, M.; Johannesen, T.B.; Helland, Å.; Brustugun, O.T. Sex-specific trends in lung cancer incidence and survival: A population study of 40,118 cases. Thorax 2011, 66, 301–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CancerControl AB, Surveillance & Reporting: 2012 Report on Cancer Statistics in Alberta. 2015. Available online: https://www.albertahealthservices.ca/cancer/Page2407.aspx (accessed on 16 November 2021).
- International Early Lung Cancer Action Program Investigators; Henschke, C.I.; Yankelevitz, D.F.; Libby, D.M.; Pasmantier, M.W.; Smith, J.P.; Miettinen, O.S. Survival of patients with stage I lung cancer detected on CT screening. N. Engl. J. Med. 2006, 355, 1763–1771. [Google Scholar]
- Ko, E.C.; Raben, D.; Formenti, S.C. The integration of radiotherapy with immunotherapy for the treatment of non-small cell lung cancer. Clin. Cancer Res. 2018, 24, 5792–5806. [Google Scholar] [CrossRef] [Green Version]
- Nooreldeen, R.; Bach, H. Current and future development in lung cancer diagnosis. Int. J. Mol. Sci. 2021, 22, 8661. [Google Scholar] [CrossRef]
- Wald, O. CXCR4 Based therapeutics for non-small cell lung cancer (NSCLC). J. Clin. Med. 2018, 7, 303. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Qiao, G.; Xu, E.; Xuan, Y.; Liao, M.; Yin, G. Biomarkers for early diagnosis, prognosis, prediction, and recurrence monitoring of non-small cell lung cancer. Onco. Targets Ther. 2017, 10, 4527–4534. [Google Scholar] [CrossRef] [Green Version]
- Gatteschi, L.; Iannopollo, M.; Gonfiotti, A. Neoadjuvant immunotherapy in resectable non-small cell lung cancer. A narrative review. Life 2021, 11, 1036. [Google Scholar] [CrossRef] [PubMed]
- Knight, S.B.; Crosbie, P.A.; Balata, H.; Chudziak, J.; Hussell, T.; Dive, C. Progress and prospects of early detection in lung cancer. Open Biol. 2017, 7, 170070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gobbini, E.; Levra, M.G. Is there a room for immune checkpoint inhibitors in early stage non-small cell lung cancer? J. Thorac. Dis. 2018, 10, S1427–S1437. [Google Scholar] [CrossRef]
- Arbour, K.C.; Riely, G.J. Systemic therapy for locally advanced and metastatic non-small cell lung cancer: A review. JAMA. 2019, 322, 764–774. [Google Scholar] [CrossRef]
- Dominioni, L.; Strauss, G.M.; Imperatori, A.; Rovera, F.; Dionigi, G. Screening for lung cancer. Chest Surg Clin. N. Am. 2000, 10, 729–736. [Google Scholar] [PubMed]
- Canadian-Task-Force-on-Preventive-Health-Care. Recommendations on screening for lung cancer. CMAJ 2016, 188, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Labbé, C.; Beaudoin, S.; Martel, S.; Delage, A.; Joubert, P.; Drapeau, C.; Provencher, S. Diagnostic yield of non-guided flexible bronchoscopy for peripheral pulmonary neoplasia. Thorac. Cancer 2015, 6, 517–523. [Google Scholar] [CrossRef] [Green Version]
- Rivera, M.P.; Mehta, A.C.; Wahidi, M.M. Establishing the diagnosis of lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013, 143, e142S–e165S. [Google Scholar] [CrossRef] [PubMed]
- Shirakawa, T.; Imamura, F.; Hamamoto, J.; Honda, I.; Fukushima, K.; Sugimoto, M.; Shirkakusa, T. Usefulness of endobronchial ultrasonography for transbronchial lung biopsies of peripheral lung lesions. Respiration 2004, 71, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, G.; McCrory, D.C. Performance characteristics of different modalities for diagnosis of suspected lung cancer: Summary of published evidence. Chest 2003, 123, 115s–128s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera, M.P.; Detterbeck, F.; Mehta, A.C. Diagnosis of lung cancer: The guidelines. Chest 2003, 123, 129s–136s. [Google Scholar] [CrossRef]
- Aberle, D.R.; Abtin, F.; Brown, K. Computed tomography screening for lung cancer: Has it finally arrived? Implications of the national lung screening trial. J. Clin. Oncol. 2013, 31, 1002–1008. [Google Scholar] [CrossRef] [Green Version]
- Patz, E.F., Jr.; Pinsky, P.; Gatsonis, C.; Sicks, J.D.; Kramer, B.S.; Tammemägi, M.C.; Chiles, C.; Black, W.C.; Aberle, D.R.; NLST Overdiagnosis Manuscript Writing Team. Overdiagnosis in low-dose computed tomography screening for lung cancer. JAMA Intern. Med. 2014, 174, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Newman, T.G.; Aronow, W.S. Lung cancer screening: History, current perspectives, and future directions. Arch. Med. Sci. 2015, 11, 1033–1043. [Google Scholar] [PubMed]
- Griffey, R.T.; Sodickson, A. Cumulative radiation exposure and cancer risk estimates in emergency department patients undergoing repeat or multiple CT. AJR Am. J. Roentgenol. 2009, 192, 887–892. [Google Scholar] [CrossRef] [PubMed]
- Mascalchi, M.; Sali, L. Lung cancer screening with low dose CT and radiation harm-from prediction models to cancer incidence data. Ann. Transl. Med. 2017, 5, 360. [Google Scholar] [CrossRef] [Green Version]
- Rampinelli, C.; De Marco, P.; Origgi, D.; Maisonneuve, P.; Casiraghi, M.; Veronesi, G.; Spaggiari, L.; Bellomi, M. Exposure to low dose computed tomography for lung cancer screening and risk of cancer: Secondary analysis of trial data and risk-benefit analysis. BMJ 2017, 356, j347. [Google Scholar] [CrossRef] [Green Version]
- Berg, C.D. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 2011, 365, 395–409. [Google Scholar]
- Horeweg, N.; van der Aalst, C.M.; Thunnissen, E.; Nackaerts, K.; Weenink, C.; Groen, H.J.; Lammers, J.W.; Aerts, J.G.; Scholten, E.T.; van Rosmalen, J.; et al. Characteristics of lung cancers detected by computer tomography screening in the randomized NELSON trial. Am. J. Respir. Crit. Care Med. 2013, 187, 848–854. [Google Scholar] [CrossRef]
- Duquenne, J.B.; Paulus, A.; Sibille, A.; Corhay, J.L.; Louis, R.; Duysinx, B. Pre-cancerous lung lesions and lung cancer screening. Rev. Med. Liege. 2021, 76, 440–445. [Google Scholar]
- Nardi-Agmon, I.; Peled, N. Exhaled breath analysis for the early detection of lung cancer: Recent developments and future prospects. Lung Cancer 2017, 8, 31–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Leng, W.; Sun, C.; Lu, T.; Chen, Z.; Men, X.; Wang, Y.; Wang, G.; Zhen, B.; Qin, J. Urine Proteome profiling predicts lung cancer from control cases and other tumors. EBioMedicine 2018, 30, 120–128. [Google Scholar] [CrossRef] [Green Version]
- Hubers, A.J.; Prinsen, C.F.; Sozzi, G.; Witte, B.I.; Thunnissen, E. Molecular sputum analysis for the diagnosis of lung cancer. Br. J. Cancer 2013, 109, 530–537. [Google Scholar] [CrossRef]
- Mehta, A.; Cordero, J.; Dobersch, S.; Romero-Olmedo, A.J.; Savai, R.; Bodner, J.; Chao, C.M.; Fink, L.; Guzmán-Díaz, E.; Singh, I.; et al. Non-invasive lung cancer diagnosis by detection of GATA6 and NKX2-1 isoforms in exhaled breath condensate. EMBO Mol. Med. 2016, 8, 1380–1389. [Google Scholar] [CrossRef]
- Mamdani, H.; Ahmed, S.; Armstrong, S.; Mok, T.; Jalal, S.I. Blood-based tumor biomarkers in lung cancer for detection and treatment. Transl. Lung Cancer Res. 2017, 6, 648–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paci, M.; Rapicetta, C.; Maramotti, S. New biomarkers for lung cancer. Expert Opin Med. Diagn. 2010, 4, 201–224. [Google Scholar] [CrossRef] [PubMed]
- Zamay, T.N.; Zamay, G.S.; Kolovskaya, O.S.; Zukov, R.A.; Petrova, M.M.; Gargaun, A.; Berezovski, M.V.; Kichkailo, A.S. Current and prospective protein biomarkers of lung cancer. Cancers 2017, 9, 155. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Coe, S.P.; Stromberg, A.J.; Khattar, N.H.; Jett, J.R.; Hirschowitz, E.A. Profiling tumor-associated antibodies for early detection of non-small cell lung cancer. J. Thorac. Oncol. 2006, 1, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Heitzer, E.; Ulz, P.; Geigl, J.B. Circulating tumor DNA as a liquid biopsy for cancer. Clin. Chem. 2015, 61, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.H.; Huertas, C.S.; Mitchell, A.; Deman, A.L.; Laurenceau, E. Biosensors for circulating tumor cells (CTCs)-biomarker detection in lung and prostate cancer: Trends and prospects. Biosens. Bioelectron. 2021, 197, 113770. [Google Scholar] [CrossRef]
- Rabinowits, G.; Gerçel-Taylor, C.; Day, J.M.; Taylor, D.D.; Kloecker, G.H. Exosomal microRNA: A diagnostic marker for lung cancer. Clin. Lung Cancer 2009, 10, 42–46. [Google Scholar] [CrossRef]
- Ostrow, K.L.; Hoque, M.O.; Loyo, M.; Brait, M.; Greenberg, A.; Siegfried, J.M.; Grandis, J.R.; Davis, A.G.; Bigbee, W.L.; Rom, W.; et al. Molecular analysis of plasma DNA for the early detection of lung cancer by quantitative methylation-specific PCR. Clin. Cancer Res. 2010, 16, 3463–3472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duarte, I.F.; Rocha, C.M.; Gil, A.M. Metabolic profiling of biofluids: Potential in lung cancer screening and diagnosis. Expert Rev. Mol. Diagn. 2013, 13, 737–748. [Google Scholar] [CrossRef]
- Blanco-Prieto, S.; De Chiara, L.; Rodríguez-Girondo, M.; Vázquez-Iglesias, L.; Rodríguez-Berrocal, F.J.; Fernández-Villar, A.; Botana-Rial, M.I.; de la Cadena, M.P. Highly sensitive marker panel for guidance in lung cancer rapid diagnostic units. Sci. Rep. 2017, 7, 41151. [Google Scholar] [CrossRef] [PubMed]
- Boeri, M.; Verri, C.; Conte, D.; Roz, L.; Modena, P.; Facchinetti, F.; Calabrò, E.; Croce, C.M.; Pastorino, U.; Sozzi, G. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc. Natl. Acad. Sci. USA 2011, 108, 3713–3718. [Google Scholar] [CrossRef] [Green Version]
- Ostroff, R.M.; Bigbee, W.L.; Franklin, W.; Gold, L.; Mehan, M.; Miller, Y.E.; Pass, H.I.; Rom, W.N.; Siegfried, J.M.; Stewart, A.; et al. Unlocking biomarker discovery: Large scale application of aptamer proteomic technology for early detection of lung cancer. PLoS ONE 2010, 5, e15003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyle, P.; Chapman, C.J.; Holdenrieder, S.; Murray, A.; Robertson, C.; Wood, W.C.; Maddison, P.; Healey, G.; Fairley, G.H.; Barnes, A.C.; et al. Clinical validation of an autoantibody test for lung cancer. Ann. Oncol. 2011, 22, 383–389. [Google Scholar] [CrossRef]
- Jett, J.R.; Peek, L.J.; Fredericks, L.; Jewell, W.; Pingleton, W.W.; Robertson, J.F. Audit of the autoantibody test, EarlyCDT(R)-lung, in 1600 patients: An evaluation of its performance in routine clinical practice. Lung Cancer 2014, 83, 51–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canadian Cancer Statistics Advisory Committee. Canadian Cancer Statistics: A 2020 Special Report on Lung Cancer; Canadian Cancer Society: Toronto, ON, Canada, 2020. [Google Scholar]
- Dama, E.; Colangelo, T.; Fina, E.; Cremonesi, M.; Kallikourdis, M.; Veronesi, G.; Bianchi, F. Biomarkers and lung cancer early detection: State of the art. Cancers 2021, 13, 3919. [Google Scholar] [CrossRef] [PubMed]
- Freitas, C.; Sousa, C.; Machado, F.; Serino, M.; Santos, V.; Cruz-Martins, N.; Teixeira, A.; Cunha, A.; Pereira, T.; Oliveira, H.P.; et al. The role of liquid biopsy in early diagnosis of lung cancer. Front. Oncol. 2021, 11, 634316. [Google Scholar] [CrossRef]
- Kim, K.; Mall, C.; Taylor, S.L.; Hitchcock, S.; Zhang, C.; Wettersten, H.I.; Jones, A.D.; Chapman, A.; Weiss, R.H. Mealtime, temporal, and daily variability of the human urinary and plasma metabolomes in a tightly controlled environment. PLoS ONE 2014, 9, e86223. [Google Scholar] [CrossRef]
- Suhre, K.; Raffler, J.; Kastenmüller, G. Biochemical insights from population studies with genetics and metabolomics. Arch. Biochem. Biophys. 2016, 589, 168–176. [Google Scholar] [CrossRef]
- Wishart, D.S. Systems biology resources arising from the human metabolome project. In Genetics Meets Metabolomics: From Experiment to Systems Biology; Suhre, K., Ed.; Springer: New York, NY, USA, 2012; pp. 157–175. [Google Scholar]
- Wishart, D.S. Metabolomics for investigating physiological and pathophysiological processes. Physiol. Rev. 2019, 99, 1819–1875. [Google Scholar] [CrossRef]
- Fiehn, O. Metabolomics–the link between genotypes and phenotypes. Plant. Mol. Biol. 2002, 48, 155–171. [Google Scholar] [CrossRef]
- Wishart, D.S.; Mandal, R.; Stanislaus, A.; Ramirez-Gaona, M. Cancer metabolomics and the human metabolome database. Metabolites 2016, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Vanhove, K.; Graulus, G.J.; Mesotten, L.; Thomeer, M.; Derveaux, E.; Noben, J.P.; Guedens, W.; Adriaensens, P. The metabolic landscape of lung cancer: New insights in a disturbed glucose metabolism. Front. Oncol. 2019, 9, 1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anastasiou, D. Tumour microenvironment factors shaping the cancer metabolism landscape. Br. J. Cancer 2017, 116, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Pavlova, N.N.; Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab. 2016, 23, 27–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeBerardinis, R.J.; Chandel, N.S. Fundamentals of cancer metabolism. Sci. Adv. 2016, 2, e1600200. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, T.; Kisluk, J.; Pietrowska, K.; Godzien, J.; Kozlowski, M.; Reszeć, J.; Sierko, E.; Naumnik, W.; Mróz, R.; Moniuszko, M.; et al. The Ability of metabolomics to discriminate non-small-cell lung cancer subtypes depends on the stage of the disease and the type of material studied. Cancers 2021, 13, 3314. [Google Scholar] [CrossRef] [PubMed]
- Singhal, S.; Rolfo, C.; Maksymiuk, A.W.; Tappia, P.S.; Sitar, D.S.; Russo, A.; Akhtar, P.S.; Khatun, N.; Rahnuma, P.; Rashiduzzaman, A.; et al. Liquid biopsy in lung cancer screening: The contribution of metabolomics. Results of a pilot study. Cancers 2019, 11, 1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, T.; Gao, L.; Wen, Z.; Wu, C.; Tan, C.S.; Toh, W.Z.; Ong, C.N. Exploratory investigation of plasma metabolomics in human lung adenocarcinoma. Mol. Biosyst. 2013, 9, 2370–2378. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, X.; Wang, C.; Zhang, H.; Cai, Z. Non-targeted and targeted metabolomics approaches to diagnosing lung cancer and predicting patient prognosis. Oncotarget 2016, 7, 63437–63448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Zheng, J.; Ahmed, R.; Huang, G.; Reid, J.; Mandal, R.; Maksymiuk, A.; Sitar, D.S.; Tappia, P.S.; Ramjiawan, B.; et al. A high-performing plasma metabolite panel for early-stage lung cancer detection. Cancers 2020, 12, 622. [Google Scholar] [CrossRef] [Green Version]
- Callejón-Leblic, B.; García-Barrera, T.; Pereira-Vega, A.; Gómez-Ariza, J.L. Metabolomic study of serum, urine and bronchoalveolar lavage fluid based on gas chromatography mass spectrometry to delve into the pathology of lung cancer. J. Pharm. Biomed. Anal. 2019, 163, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ma, Z.; Li, A.; Li, H.; Wang, B.; Zhong, J.; Min, L.; Dai, L. Metabolomic profiling of human serum in lung cancer patients using liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry and gas chromatography/mass spectrometry. J. Cancer Res. Clin. Oncol. 2015, 141, 705–718. [Google Scholar] [CrossRef] [PubMed]
- Fahrmann, J.F.; Kim, K.; DeFelice, B.C.; Taylor, S.L.; Gandara, D.R.; Yoneda, K.Y.; Cooke, D.T.; Fiehn, O.; Kelly, K.; Miyamoto, S. Investigation of metabolomic blood biomarkers for detection of adenocarcinoma lung cancer. Cancer Epidemiol. Biomark. Prev. 2015, 24, 1716–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, Y.; Zhou, Y.; Wang, Y.; Li, W.; Zhou, L.; Lu, X.; Gao, P.; Gao, M.; Zhao, Y.; Wang, Q.; et al. Serum metabolomics study of non smoking female patients with non-small cell lung cancer using gas chromatography-mass spectrometry. J. Proteome Res. 2019, 18, 2175–2184. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Xu, L.; Li, W.; Zheng, C.; Wu, L. Targeted metabolomics for serum amino acids and acylcarnitines in patients with lung cancer. Exp. Ther. Med. 2019, 18, 188–198. [Google Scholar] [CrossRef] [Green Version]
- Pamungkas, A.D.; Park, C.; Lee, S.; Jee, S.H.; Park, Y.H. High resolution metabolomics to discriminate compounds in serum of male lung cancer patients in South Korea. Respir. Res. 2016, 17, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiying, C.; Zeyun, L.; Yongliang, Y.; Zijia, Z.; Ji, Z.; Xin, T.; Xiaojian, Z. A comprehensive analysis of metabolomics and transcriptomics in non-small cell lung cancer. PLoS ONE 2020, 15, e0232272. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Zhao, W.; Wang, L.; Guo, F.; Song, D.; Zhang, Q.; Zhang, D.; Fan, Y.; Wang, J. Integration of metabolomic and transcriptomic profiles to identify biomarkers in serum of lung cancer. J. Cell. Biochem. 2019. Epub Ahead of Print. [Google Scholar] [CrossRef]
- Zheng, Y.; He, Z.; Kong, Y.; Huang, X.; Zhu, W.; Liu, Z.; Gong, L. Combined metabolomics with transcriptomics reveals important serum biomarkers correlated with lung cancer proliferation through a calcium signaling pathway. J. Proteome Res. 2021, 20, 3444–3454. [Google Scholar] [CrossRef] [PubMed]
- Cameron, S.J.; Lewis, K.E.; Beckmann, M.; Allison, G.G.; Ghosal, R.; Lewis, P.D.; Mur, L.A. The metabolomic detection of lung cancer biomarkers in sputum. Lung Cancer 2016, 94, 88–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathé, E.A.; Patterson, A.D.; Haznadar, M.; Manna, S.K.; Krausz, K.W.; Bowman, E.D.; Shields, P.G.; Idle, J.R.; Smith, P.B.; Anami, K.; et al. Noninvasive urinary metabolomic profiling identifies diagnostic and prognostic markers in lung cancer. Cancer Res. 2014, 74, 3259–3270. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Kong, X.; Han, S.; Li, X.; Wu, T.; Zhou, J.; Guo, Y.; Bu, Z.; Liu, C.; Zhang, C.; et al. Analysis of differential metabolites in lung cancer patients based on metabolomics and bioinformatics. Future Oncol. 2020, 16, 1269–1287. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Liu, Y.; Zhang, W.; Lin, L.; Zhang, J.; Xiong, Y.; Nie, L.; Liu, X.; Li, H.; Wang, W. A rapid liquid biopsy of lung cancer by separation and detection of exfoliated tumor cells from bronchoalveolar lavage fluid with a dual-layer “PERFECT” filter system. Theranostics 2020, 10, 6517–6529. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Mu, C.; Zhao, J.; Zeng, D.; Wang, C.; Ye, J.; Xu, J.; Su, J.; Han-Zhang, H.; Li, B.; et al. Cell-free DNA from bronchoalveolar lavage fluid (BALF) for the identification of lung cancer: A new medium of liquid biopsy. Cancer Res. 2020, 80, 2311. [Google Scholar]
- Pérez-Sánchez, C.; Barbarroja, N.; Pantaleão, L.C.; López-Sánchez, L.M.; Ozanne, S.E.; Jurado-Gámez, B.; Aranda, E.; Lopez-Pedrera, C.; Rodríguez-Ariza, A. Clinical Utility of microRNAs in Exhaled Breath Condensate as Biomarkers for Lung Cancer. J. Pers. Med. 2021, 11, 111. [Google Scholar] [CrossRef]
- Sampson, J.N.; Boca, S.M.; Shu, X.O.; Stolzenberg-Solomon, R.Z.; Matthews, C.E.; Hsing, A.W.; Tan, Y.T.; Ji, B.T.; Chow, W.H.; Cai, Q.; et al. Metabolomics in epidemiology: Sources of variability in metabolite measurements and implications. Cancer Epidemiol. Biomark. Prev. 2013, 22, 631–640. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, O.A.; Duprez, D.A.; Bahrami, H.; Daniels, L.B.; Folsom, A.R.; Lima, J.A.; Maisel, A.; Peralta, C.A.; Jacobs, D.R., Jr. The associations between metabolic variables and NT-proBNP are blunted at pathological ranges: The Multi-Ethnic Study of Atherosclerosis. Metabolism 2014, 63, 475–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, S.; Parr, E.B.; Devlin, B.L.; Hawley, J.A.; Sassone-Corsi, P. Human metabolomics reveal daily variations under nutritional challenges specific to serum and skeletal muscle. Mol. Metab. 2018, 16, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, A.; Sugimoto, M.; Suzuki, A.; Hatakeyama, Y.; Enomoto, A.; Harada, S.; Soga, T.; Tomita, M.; Takebayashi, T. Effects of processing and storage conditions on charged metabolomic profiles in blood. Electrophoresis 2015, 36, 2148–2155. [Google Scholar] [CrossRef]
- Ferreira, D.L.S.; Maple, H.J.; Goodwin, M.; Brand, J.S.; Yip, V.; Min, J.L.; Groom, A.; Lawlor, D.A.; Ring, S. The effect of pre-analytical conditions on blood metabolomics in epidemiological studies. Metabolites 2019, 9, 64. [Google Scholar] [CrossRef] [Green Version]
- Laparre, J.; Kaabia, Z.; Mooney, M.; Buckley, T.; Sherry, M.; Le Bizec, B.; Dervilly-Pinel, G. Impact of storage conditions on the urinary metabolomics fingerprint. Anal. Chim. Acta 2017, 951, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Yet, I.; Menni, C.; Shin, S.Y.; Mangino, M.; Soranzo, N.; Adamski, J.; Suhre, K.; Spector, T.D.; Kastenmüller, G.; Bell, J.T. Genetic influences on metabolite levels: A comparison across metabolomic platforms. PLoS ONE 2016, 11, e0153672. [Google Scholar] [CrossRef] [Green Version]
- Zelena, E.; Dunn, W.B.; Broadhurst, D.; Francis-McIntyre, S.; Carroll, K.M.; Begley, P.; O’Hagan, S.; Knowles, J.D.; Halsall, A.; Wilson, I.D.; et al. Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum. Anal. Chem. 2009, 81, 1357–1364. [Google Scholar] [CrossRef]
- Gika, H.G.; Macpherson, E.; Theodoridis, G.A.; Wilson, I.D. Evaluation of the repeatability of ultra-performance liquid chromatography-TOF-MS for global metabolic profiling of human urine samples. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 871, 299–305. [Google Scholar] [CrossRef]
- Noh, K.; Kang, Y.R.; Nepal, M.R.; Shakya, R.; Kang, M.J.; Kang, W.; Lee, S.; Jeong, H.G.; Jeong, T.C. Impact of gut microbiota on drug metabolism: An update for safe and effective use of drugs. Arch. Pharm. Res. 2017, 40, 1345–1355. [Google Scholar] [CrossRef]
- Emwas, A.M.; Al-Rifai, N.; Szczepski, K.; Alsuhaymi, S.; Rayyan, S.; Almahasheer, H.; Jaremko, M.; Brennan, L.; Lachowicz, J.I. You are what you eat: Application of metabolomics approaches to advance nutrition research. Foods 2021, 10, 1249. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Zhao, X.; Yang, S.; Cui, H.; Wang, G. Metabolomic signature between metabolically healthy overweight/obese and metabolically unhealthy overweight/obese: A systematic review. Diabetes Metab. Syndr. Obes. 2021, 14, 991–1010. [Google Scholar] [CrossRef] [PubMed]
- Handakas, E.; Lau, C.H.; Alfano, R.; Chatzi, V.L.; Plusquin, M.; Vineis, P.; Robinson, O. A systematic review of metabolomic studies of childhood obesity: State of the evidence for metabolic determinants and consequences. Obes. Rev. 2021, e13384. [Google Scholar] [CrossRef] [PubMed]
- Fuschillo, S.; Paris, D.; Tramice, A.; Ambrosino, P.; Palomba, L.; Maniscalco, M.; Motta, A. Metabolomic profiling of exhaled breath condensate and plasma/serum in chronic obstructive pulmonary disease. Curr. Med. Chem. 2021. Epub Ahead of Print. [Google Scholar] [CrossRef]
- Esther, C.R., Jr.; O’Neal, W.K.; Anderson, W.H.; Kesimer, M.; Ceppe, A.; Doerschuk, C.M.; Alexis, N.E.; Hastie, A.T.; Barr, R.G.; Bowler, R.P.; et al. SPIROMICS. Identification of sputum biomarkers predictive of pulmonary exacerbations in chronic obstructive pulmonary disease. Chest 2021, in press. [Google Scholar]
- Choudhury, P.; Bhattacharya, A.; Dasgupta, S.; Ghosh, N.; Senpupta, S.; Joshi, M.; Bhattacharyya, P.; Chaudhury, K. Identification of novel metabolic signatures potentially involved in the pathogenesis of COPD associated pulmonary hypertension. Metabolomics 2021, 17, 94. [Google Scholar] [CrossRef]
- Lin, B.M.; Zhang, Y.; Yu, B.; Boerwinkle, E.; Thygarajan, B.; Yunes, M.; Daviglus, M.L.; Qi, Q.; Kaplan, R.; Lash, J.; et al. Metabolome-wide association study of estimated glomerular filtration rates in Hispanics. Kidney Int. 2021, 101, 144–151. [Google Scholar] [CrossRef]
- Hameed, A.; Mojsak, P.; Buczynska, A.; Suleria, H.A.R.; Kretowski, A.; Ciborowski, M. Altered metabolome of lipids and amino acids species: A source of early signature biomarkers of T2DM. J. Clin. Med. 2020, 9, 2257. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Z.; Gerszten, R.E. Metabolomics and proteomics in type 2 diabetes. Circ. Res. 2020, 126, 1613–1627. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Shah, S.H.; Corwin, E.J.; Fiehn, O.; Fitzgerald, R.L.; Gerszten, R.E.; Illig, T.; Rhee, E.P.; Srinivas, P.R.; Wang, T.J.; et al. Potential impact and study considerations of metabolomics in cardiovascular health and disease: A scientific statement from the American Heart Association. Circ. Cardiovasc. Genet. 2017, 10, e000032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashrafian, H.; Sounderajah, V.; Glen, R.; Ebbels, T.; Blaise, B.J.; Kalra, D.; Kultima, K.; Spjuth, O.; Tenori, L.; Salek, R.M.; et al. Metabolomics: The Stethoscope for the Twenty-First Century. Med Princ. Pract. 2021, 30, 301–310. [Google Scholar] [CrossRef]
- Schmidt, D.R.; Patel, R.; Kirsch, D.G.; Lewis, C.A.; Heiden, M.G.V.; Locasale, J.W. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J. Clin. 2021, 71, 333–358. [Google Scholar] [CrossRef]
Tumor Size (cm) | Lymph Nodes | Metastasis | |
---|---|---|---|
T1: <3 | N0: no lymph nodes | M0: no | |
T2 | T2a: 3–5 T2b: 5–7 | N1: ipsilateral bronchopulmonar/hilar lymph nodes | M1: present |
T3: >7 | N2: ipsilateral mediastinal/subcarinal lymph nodes | ||
T4 Invasion Mediastinal organs Vertebral bodies | N3: contralateral/hilar/mediastinal supraclavicular lymph nodes | ||
Stage I | Stage II | ||
Ia: T1, N0, M0 | IIa: T2b, N0, M0 | ||
Ib: T2a, N0, M0 | IIa: T1, N1, M0 | ||
IIa: T2a, N1, M0 | |||
IIb: T2b, N1, M0 | |||
IIb: T3, N0, M0 |
Sample | Type of Cancer | Relevant Metabolites | Reference | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ad | LCC | N | Sq | S | LC | M | H | P | Com | |||
Tissue | ||||||||||||
14 | 20 * | A | DS | Early stage (selected metabolites that differentiate the groups): creatine, creatinine, GP-N-heptacenyl EA, GP-N-heptadecanoyl EA, GP-NAE, GP-N-hexodecenyl EA, GP-N-octadecanoyl EA, GP-N-octadecenyl EA, DHTH, LysoPE P-16:0, and xanthine. | [80] | |||||||
33 | 54 | 12 | 20 * | A | DS | Advanced stage (selected metabolites that differentiate the groups): arachidonic acid, LysoPC 16:0 plasm, oleic acid, PC 18:1 plasm/0:0, PC 32:0 plasm, adrenic acid, DPA, LysoPC 16:2 plasm, PC 34:2(OH), PE 0–18:2/0:0, and P-18:1/0:0. | ||||||
Plasma | ||||||||||||
21 | 18 | 20 * | A | DS | Early stage (selected metabolites that differentiate the groups): PC 15:0/22:6 and PC 18:1/22:6. | [80] | ||||||
11 | 7 | 15 | Advanced stage (selected metabolites that differentiate the groups): deoxycholic acid, glycocholic acid, PE P-18:1/20:5, PE P-16:0/22:5, PC O-16:0/18:2, PE P-19:1, PC 40:1, PC 38:0, linoleic acid, and arachidonic acid. | |||||||||
6 | 6 | 7 | 5 | 2 | 29 | B | DC | Valine, LysoPC (18:2), decadienyl-L-carnitine (C10:2) phosphatidylcholine, acyl-alkyl C36:0 (PC aa C36:0), phosphatidylcholine diacyl C32:2 (PC aa C32:2, phosphatidylcholine diacyl C30:2 (PC aa C30:2), spermine, putrescine, and diacetylspermine. | [81] | |||
31 | 28 | C | DC | Alanine, glutamine, glycine, threonine, 5-hydroxytryptophan, 5-methoxytryptophan, L-arginine, proline, N(6)-methyllysine, deoxycholic acid glycine conjugate, PC (34:4), PE (34:2), PE (36:1), PE (36:2), PE (36:4), PE (38:4), PE (38:6), PE (40:4), PE (40:5), PS (38:4), ceramides (42:0), palmitic acid, linoleic acid, oleic acid, amylose, maltitol, testosterone sulfate, androsterone sulfate, pregnenolone sulfate, 3-hydroxybutyric acid, pipecolic acid, uric acid, bilirubin, ubiquinone, ubiquinol, 3,4,5-trimethoxycinnamic acid, and N-palmitoleoyl ethanolamide. | [82] | |||||||
12 | 9 | 4 | 25 | D | DC | LDL/VLDL, β-hydroxybutyrate, unsaturated lipids, acetoacetate, α-glucose, β-glucose, lactate, glutamate, glutamine, tyrosine, histidine, choline, phosphocholine, glycerophosphocholine, betaine, and TMAO. | [83] | |||||
E | Aspartate, asparagine, glutamate, glutamine, cysteine, methionine, isoleucine, leucine, and tryptophan. | |||||||||||
Biofluid plasma | ||||||||||||
110 | 46 | 60 | B | DC | β-hydroxybutyric acid, LysoPC (20:3), PC ae (C40:6), citric acid, fumaric acid, and carnitine. | [84] | ||||||
BALF | ||||||||||||
8 | 6 | 7 | 3 | 30 ^ | F | DC | Lactic acid, acetic acid, glycerol, L-glycine, L-aspartate, L-proline, L-glutamine, fructose, phosphoric acid, isocitric acid, inositol, galactose, palmitic acid, stearic acid, inosine, and oleic acid. | [85] | ||||
Serum | ||||||||||||
9 | 9 | 6 | 8 | 29 | F | DC | L-valine, L-glycine, tartaric acid, L-serine, L-threonine, uridine, malonic acid, L-proline, L-cysteine, L-glutamine, L-phenylalanine, fructose, phosphoric acid, isocitric acid, L-asparagine, inositol, L-ornithine, deoxy-glucose, glucose, palmitic acid, uric acid, stearic acid, L-cystine, myristic acid, margaric acid, and arachidonic acid. | [85] | ||||
15 | 3 | 12 | 30 | G | DC | 8-OH guanine, phenylglyoxylic acid, L-pipecolic acid, L-carnitine, caffeic acid 3-sulfate, dimethyl fumarate, L-adrenaline, adrenosterone, 3-OH-3-methyl-glutaric acid, acetylcarnitine, L-valine, uric acid, oxalosuccinic acid, cortisol, Prasterone sulfate, uridine, sphinganine, sphingosine, phosphorylcholine, PC(15:0), glycerophospho-N-arachidonoyl ethanolamine, palmitoyl -L-carnitine, PC(16:0), oleamide, glycerophospho-N-oleyl ethanolamine, PC(17:0), 1,25-hydroxyvitamin D3, arachidyl carnitine, PC(18:0), glycocholic acid, γ-linolenic acid, and linoleic acid. | [86] | |||||
15 | 3 | 12 | 30 | H | DC | Lactic acid, alanine, α-hydroxyisobutyric acid, α-hydroxybutyric acid, L-valine, urea, serine, L-leucine, phosphate, L-isoleucine, glycine, L-threonine, aminomalonic acid, pyroglutamic acid, 2,3,4-trihydroxybutyric acid, L-phenylalanine, tetradecanoic acid, glucose, palmitic acid, myo-inositol, 9,12-octadecadienoic acid, oleic acid, and cholesterol. | ||||||
43 | 43 | H | DC | Maltose, maltotriose, cystine, 3-phosphoglycerate, citrulline, pyrophosphate, tryptophan, adenosine-5-phosphate, Bin_226841, Bin_367991, Bin_715929, Bin_299216, and cellobiotol. | [87] | |||||||
65 | 65 | I | DC | Cysteine, serine, glycine, leucine, aspartic acid, cholesterol, 2-hydroxyglutaric acid, and 1- monooleoylglycerol. | [88] | |||||||
4 | 3 | 5 | 5 | 30 | J | DC | 2015 dataset: valine, leucine, ornithine, methionine, histidine, phenylalanine, arginine, citrulline, tyrosine, aspartate + asparagine, C3-carnitine, C4-carnitine, C5-carnitine, C8-carnitine, C14-carnitine, and C16-carnitine.2017 dataset: glycine, valine, leucine, methionine, histidine, citrulline, and arginine. | [89] | ||||
35 | 70 | K | DC | Bisphenol A, retinol, L-proline. | [90] | |||||||
25 | 18 | 50 | L | DC | Hypoxanthine, inosine, L-tryptophan, indoleacrylic acid, acyl-carnitine C10:1, and LysoPC (18:2). | [91] | ||||||
31 | 29 | H | DC | Indole-3-lactate, erythritol, adenosine-5-phosphate, paracetamol, threitol, oxalic acid, fructose, inosine, naproxen, lyxose, caprylic acid, dodecanol, and cystine. | [92] | |||||||
50 | 41 | H | DC | Cholesterol, oleic acid, myo-inositol, 2-hydroxybutyric acid, 4-hydroxybutyric acid, and pelargonic acid. | [93] | |||||||
Sputum | ||||||||||||
23 | 33 | C | DC | Isobutyl decanoate, putrescine, diethyl glutarate, cysteamine, hexanal, cysteic acid, and hydropyruvic acid. | [94] | |||||||
Urine | ||||||||||||
9 | 9 | 6 | 8 | 29 | F | DC | L-alanine, acetic acid, malonic acid, urea, L-glycine, succinic acid, glyceric acid, L-serine, L-threonine, butanoic acid, threonic acid, creatinine, glutaconic acid, L-aspartate, ribonic acid, adipic acid, arabitol, aconitic acid, phosphoric acid, isocitric acid, hippuric acid, purine, inositol, gluconic acid, sorbitol, glucaric acid, galactaric acid, palmitic acid, uric acid, and stearic acid. | [85] | ||||
51 | 10 | 14 | 78 | M | DC | Creatine riboside and N-acetylneuraminic acid. | [95] | |||||
13 | 22 | 3 | 42 | N | DC | Glycyl-glycine, 7-ethyl-5,6-dihydro-1,4-dimethylazulene, 4-pyridoxic acid, crithmumdiol, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, 1-methylhistidine, indoxyl sulfate, tryptophan, deacetyldiltiazem, maltulose, porson, 8-hydroxynevirapine, austinol, dehydroepiandrosterone sulfate, dehydroepiandrosterone 3-glucuronide, 5-alpha-dihydrotestosterone glucuronide, dulciol C, imidazoelactic acid, glutamine, lyciumoside IV, neuromedin C 1–8, withaphysacarpin, noradrenochrome o-semiquinone, S-prenyl-L-cysteine, tetrahydroaldosterone-3-glucuronide, ax-4′-hydroxy-3′-methoxymasin, dulxanthone, androsterone sulfate, cortolone-3-glucuronide, tyrosine, xanthosine. tyrosyl tyrosine, 3 beta-dihydroxymarasmene, indoxyl, and cis-zeatin-O-glucoside. | [96] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haince, J.-F.; Joubert, P.; Bach, H.; Ahmed Bux, R.; Tappia, P.S.; Ramjiawan, B. Metabolomic Fingerprinting for the Detection of Early-Stage Lung Cancer: From the Genome to the Metabolome. Int. J. Mol. Sci. 2022, 23, 1215. https://doi.org/10.3390/ijms23031215
Haince J-F, Joubert P, Bach H, Ahmed Bux R, Tappia PS, Ramjiawan B. Metabolomic Fingerprinting for the Detection of Early-Stage Lung Cancer: From the Genome to the Metabolome. International Journal of Molecular Sciences. 2022; 23(3):1215. https://doi.org/10.3390/ijms23031215
Chicago/Turabian StyleHaince, Jean-François, Philippe Joubert, Horacio Bach, Rashid Ahmed Bux, Paramjit S. Tappia, and Bram Ramjiawan. 2022. "Metabolomic Fingerprinting for the Detection of Early-Stage Lung Cancer: From the Genome to the Metabolome" International Journal of Molecular Sciences 23, no. 3: 1215. https://doi.org/10.3390/ijms23031215
APA StyleHaince, J. -F., Joubert, P., Bach, H., Ahmed Bux, R., Tappia, P. S., & Ramjiawan, B. (2022). Metabolomic Fingerprinting for the Detection of Early-Stage Lung Cancer: From the Genome to the Metabolome. International Journal of Molecular Sciences, 23(3), 1215. https://doi.org/10.3390/ijms23031215