Amphiphilic Pentablock Copolymers Prepared from Pluronic and ε-Caprolactone by Enzymatic Ring Opening Polymerization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Size Exclusion Chromatography (SEC)
2.2. Molecular Characterization
2.3. Solid-State Characterization
2.3.1. Differential Calorimetry Scanning (DSC)
2.3.2. Wide-Angle X-Ray Diffraction (WAXD)
2.3.3. Morphology
2.4. Cytocompatibility Evaluation
3. Materials and Methods
3.1. Materials
3.2. Synthesis of PCL–EPE–PCL Pentablock Copolymers
3.3. Characterization
- First heating scan from 25 °C to 150 °C at 10 °C/min;
- First cooling scan from 150 °C to –100 °C at 10 °C/min and 4 min of isotherm at –100 °C;
- Second heating scan from –100 °C to 100 °C at 10 °C/min.
3.4. Biological Tests
Quantitative Evaluation of Cytotoxicity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Solaro, R. Targeted delivery of proteins by nanosized carriers. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bharatiya, B.; Aswal, V.K.; Hassan, P.A.; Bahadur, P. Influence of a hydrophobic diol on the micellar transitions of Pluronic P85 in aqueous solution. J. Colloid Interface Sci. 2008, 320, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.Y.; Tam, K.C.; Gan, L.H. Release kinetics of hydrophobic and hydrophilic model drugs from pluronic F127/poly(lactic acid) nanoparticles. J. Control. Release 2005, 103, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Del Favero, E.; Cantu, L.; Nicoli, S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J. Control. Release 2021, 332, 312–336. [Google Scholar] [CrossRef] [PubMed]
- Alexandridis, P.; Holzwarth, J.F.; Hatton, T.A. Micellization of Poly(Ethylene Oxide)-Poly(Propylene Oxide)-Poly(Ethylene Oxide) Triblock Copolymers in Aqueous-Solutions—Thermodynamics of Copolymer Association. Macromolecules 1994, 27, 2414–2425. [Google Scholar] [CrossRef]
- Jommanee, N.; Chanthad, C.; Manokruang, K. Preparation of injectable hydrogels from temperature and pH responsive grafted chitosan with tuned gelation temperature suitable for tumor acidic environment. Carbohydr. Polym. 2018, 198, 486–494. [Google Scholar] [CrossRef]
- An, Y.M.; Liu, T.; Tian, R.; Liu, S.X.; Han, Y.N.; Wang, Q.Q.; Sheng, W.J. Synthesis of novel temperature responsive PEG-b- PCL-g-P(MEO(2)MA-co-OEGMA)-b-PEG (tBG) triblock-graft copolymers and preparation of tBG/graphene oxide composite hydrogels via click chemistry. React. Funct. Polym. 2015, 94, 1–8. [Google Scholar] [CrossRef]
- Hege, C.S.; Schiller, S.M. Non-toxic catalysts for ring-opening polymerizations of biodegradable polymers at room temperature for biohybrid materials. Green Chem. 2014, 16, 1410–1416. [Google Scholar] [CrossRef]
- Ronca, A.; Ronca, S.; Forte, G.; Zeppetelli, S.; Gloria, A.; De Santis, R.; Ambrosio, L. Synthesis and characterization of divinyl-fumarate poly-epsilon-caprolactone for scaffolds with controlled architectures. J. Tissue Eng. Regen. Med. 2018, 12, E523–E531. [Google Scholar] [CrossRef]
- Kim, S.Y.; Ha, J.C.; Lee, Y.M. Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)/poly(epsilon-caprolactone) (PCL) amphiphilic block copolymeric nanosphere—II. Thermo-responsive drug release behaviors. J. Control. Release 2000, 65, 345–358. [Google Scholar] [CrossRef]
- Shoda, S.; Uyama, H.; Kadokawa, J.; Kimura, S.; Kobayashi, S. Enzymes as Green Catalysts for Precision Macromolecular Synthesis. Chem. Rev. 2016, 116, 2307–2413. [Google Scholar] [CrossRef] [PubMed]
- Albertsson, A.C.; Srivastava, R.K. Recent developments in enzyme-catalyzed ring-opening polymerization. Adv. Drug Deliv. Rev. 2008, 60, 1077–1093. [Google Scholar] [CrossRef] [PubMed]
- Engel, J.; Cordellier, A.; Huang, L.; Kara, S. Enzymatic Ring-Opening Polymerization of Lactones: Traditional Approaches and Alternative Strategies. Chemcatchem 2019, 11, 4983–4997. [Google Scholar] [CrossRef]
- Kumar, A.; Gross, R.A. Candida antartica lipase B catalyzed polycaprolactone synthesis: Effects of organic media and temperature. Biomacromolecules 2000, 1, 133–138. [Google Scholar] [CrossRef]
- Liu, C.B.; Gong, C.Y.; Pan, Y.F.; Zhang, Y.D.; Wang, J.W.; Huang, M.J.; Wang, Y.S.; Wang, K.; Gou, M.L.; Tu, M.J.; et al. Synthesis and characterization of a thermosensitive hydrogel based on biodegradable amphiphilic PCL-Pluronic (L35)-PCL block copolymers. Colloids Surf. Physicochem. Eng. Asp. 2007, 302, 430–438. [Google Scholar] [CrossRef]
- Ha, J.C.; Kim, S.Y.; Lee, Y.M. Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (pluronic)/poly(epsilon-caprolactone) (PCL) amphiphilic block copolymeric nanospheres—I. Preparation and characterization. J. Control. Release 1999, 62, 381–392. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, B.B.; Zhang, Y.; Ding, J.D. Preparation of a thermosensitive and biodegradable microgel via polymerization of macromonomers based on diacrylated Pluronic/oligoester copolymers. Eur. Polym. J. 2005, 41, 2161–2170. [Google Scholar] [CrossRef]
- Zhang, F.J.; Stuhn, B. Crystallization and melting behavior of low molar weight PEO-PPO-PEO triblock copolymers. Colloid Polym. Sci. 2007, 285, 371–379. [Google Scholar] [CrossRef]
- Gan, Z.H.; Zhang, J.; Jiang, B.Z. Poly(epsilon-capralactone)/poly(ethylene oxide) diblock copolymer. 2. Nonisothermal crystallization and melting behavior. J. Appl. Polym. Sci. 1997, 63, 1793–1804. [Google Scholar] [CrossRef]
- Atanase, L.I.; Glaied, O.; Riess, G. Crystallization kinetics of PCL tagged with well-defined positional triazole defects generated by click chemistry. Polymer 2011, 52, 3074–3081. [Google Scholar] [CrossRef]
- Xu, Y.; He, Y.; Wei, J.; Fan, Z.Y.; Li, S.M. Morphology and melt crystallization of PCL-PEG diblock copolymers. Macromol. Chem. Phys. 2008, 209, 1836–1844. [Google Scholar] [CrossRef]
- Bogdanov, B.; Vidts, A.; Van Den Bulcke, A.; Verbeeck, R.; Schacht, E. Synthesis and thermal properties of poly(ethylene glycol)-poly(epsilon-caprolactone) copolymers. Polymer 1998, 39, 1631–1636. [Google Scholar] [CrossRef]
- Bittiger, H.; Marchessault, R.H.; Niegisch, W.D. Crystal Structure of Poly-Eta-Caprolactone. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1970, 26, 1923. [Google Scholar] [CrossRef]
- Lotz, B.; Cheng, S.Z.D. A critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals. Polymer 2005, 46, 577–610. [Google Scholar] [CrossRef] [Green Version]
- Harmand, M.F. Cytotoxicity: Part I: Toxicological Risk Valuation Using Cell Culture; Braybrook, J.H., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 1997; p. 119. [Google Scholar]
- Biological Evaluation of Medical Device—Part 5: Tests for In Vitro Cytotoxity; International Organization for Standardization: Geneva, Switzerland, 2017; ISO 10993-5.
Sample | (Da) | M/In b | DPPCL c | (Da) | Đ | (Da) | (Da) |
---|---|---|---|---|---|---|---|
CUC1 | 4700 | 35 | 34 | 8921 | 1.47 | 8690 | 8576 |
CUC2 | 4700 | 70 | 46 | 9499 | 1.76 | 12,680 | 9944 |
CUC3 | 4700 | 105 | 74 | 10,887 | 1.71 | 16,670 | 13,136 |
CUC4 | 4700 | 140 | 102 | 13,020 | 1.70 | 20,660 | 16,328 |
CUC5 | 8400 | 70 | 68 | 15,375 | 1.48 | 16,380 | 16,200 |
CUC6 | 8400 | 105 | 92 | 20,097 | 1.53 | 20,370 | 18,888 |
CUC7 | 8400 | 140 | 114 | 24,351 | 1.56 | 24,360 | 21,400 |
CUC8 | 8400 | 175 | 132 | 25,229 | 1.49 | 28,350 | 23,448 |
Sample | 1st Heating | Cooling | 2nd Heating | ||||||
---|---|---|---|---|---|---|---|---|---|
Tm1 (°C) | Tm2 (°C) | Tm3 (°C) | Tc1 (°C) | Tc2 (°C) | Tc3 (°C) | Tm1 (°C) | Tm2 (°C) | Tm3 (°C) | |
EPE(F38) | — | 62 | — | −8 | 30 | — | 51 | 58 | — |
CUC1 | 44 | 57 | 61 | nd c | 22 | nd | 47 | 57 | 61 |
CUC2 | 42 | 60 | 63 | 2.2 | 22 | 29 | 43 | 60 | 63 |
CUC3 | 41 | — | (62)65 b | −6 | 15 | 27 | 42 | 62 | 65 |
CUC4 | 28 | — | (66)68 | −15 | nd | 27 | 28 | — | (66)69 |
PCL | — | — | 68 | — | — | 35 | — | — | 60 |
Sample | 1st Heating | Cooling | 2nd Heating | ||||||
---|---|---|---|---|---|---|---|---|---|
Tm1 (°C) | Tm2 (°C) | Tm3 (°C) | Tc1 (°C) | Tc2 (°C) | Tc3 (°C) | Tm1 (°C) | Tm2 (°C) | Tm3 (°C) | |
EPE(F68) | — | 67 | — | nd c | 36 | — | 57 | 63 | — |
CUC5 | 53 | 60 | 63 | nd | 24 | 28 | 53 | 58 | 63 |
CUC6 | 50 | — | (64)67 b | nd | 20 | 26 | 51 | — | (64)67 |
CUC7 | 45 | — | (63)65 | nd | 20 | 30 | 46 | — | (63)5 |
CUC8 | 48 | — | (65)67 | nd | 18 | 30 | 50 | — | (65)67 |
PCL | — | — | 68 | — | — | 35 | — | — | 60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Fattah, A.A.; Grillo Fernandes, E.; Chiellini, F.; Chiellini, E. Amphiphilic Pentablock Copolymers Prepared from Pluronic and ε-Caprolactone by Enzymatic Ring Opening Polymerization. Int. J. Mol. Sci. 2022, 23, 1390. https://doi.org/10.3390/ijms23031390
El-Fattah AA, Grillo Fernandes E, Chiellini F, Chiellini E. Amphiphilic Pentablock Copolymers Prepared from Pluronic and ε-Caprolactone by Enzymatic Ring Opening Polymerization. International Journal of Molecular Sciences. 2022; 23(3):1390. https://doi.org/10.3390/ijms23031390
Chicago/Turabian StyleEl-Fattah, Ahmed Abd, Elizabeth Grillo Fernandes, Federica Chiellini, and Emo Chiellini. 2022. "Amphiphilic Pentablock Copolymers Prepared from Pluronic and ε-Caprolactone by Enzymatic Ring Opening Polymerization" International Journal of Molecular Sciences 23, no. 3: 1390. https://doi.org/10.3390/ijms23031390
APA StyleEl-Fattah, A. A., Grillo Fernandes, E., Chiellini, F., & Chiellini, E. (2022). Amphiphilic Pentablock Copolymers Prepared from Pluronic and ε-Caprolactone by Enzymatic Ring Opening Polymerization. International Journal of Molecular Sciences, 23(3), 1390. https://doi.org/10.3390/ijms23031390