Role of Neutrophils and NETs in Animal Models of Thrombosis
Abstract
:1. Introduction
2. Neutrophils
3. Neutrophils Extracellular Traps (NETs)
4. Models of Thrombosis
4.1. Animal Models
4.2. Experimental In Vivo Thrombosis Models
5. Models of Thrombosis by Endothelium Denudation
5.1. The Ferric Chloride (FeCl3) Chemical Thrombosis Model
5.2. The Rose Bengal Photochemical Thrombosis Model
6. Models of Thrombosis by Endothelium Activation
6.1. The Ablative Laser Thrombosis Model
6.2. The Vena Cava Ligation Model (DVT)
7. Clinical Relevance
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Darbousset, R.; Mezouar, S.; Dignat-George, F.; Panicot-Dubois, L.; Dubois, C. Involvement of Neutrophils in Thrombus Formation in Living Mice. Pathol. Biol. 2014, 62, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Darbousset, R.; Delierneux, C.; Mezouar, S.; Hego, A.; Lecut, C.; Guillaumat, I.; Riederer, M.A.; Evans, R.J.; Dignat-George, F.; Panicot-Dubois, L.; et al. P2X1 Expressed on Polymorphonuclear Neutrophils and Platelets Is Required for Thrombosis in Mice. Blood 2014, 124, 2575–2585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuchs, T.A.; Brill, A.; Wagner, D.D. NET Impact on Deep Vein Thrombosis. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 1777–1783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubes, P. The Enigmatic Neutrophil: What We Do Not Know. Cell Tissue Res. 2018, 371, 399–406. [Google Scholar] [CrossRef]
- Liew, P.X.; Kubes, P. The Neutrophil’s Role During Health and Disease. Physiol. Rev. 2019, 99, 1223–1248. [Google Scholar] [CrossRef]
- Brinkmann, V. Neutrophil Extracellular Traps Kill Bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Darbousset, R.; Thomas, G.M.; Mezouar, S.; Frère, C.; Bonier, R.; Mackman, N.; Renné, T.; Dignat-George, F.; Dubois, C.; Panicot-Dubois, L. Tissue Factor–Positive Neutrophils Bind to Injured Endothelial Wall and Initiate Thrombus Formation. Blood 2012, 120, 2133–2143. [Google Scholar] [CrossRef] [Green Version]
- Von Brühl, M.-L.; Stark, K.; Steinhart, A.; Chandraratne, S.; Konrad, I.; Lorenz, M.; Khandoga, A.; Tirniceriu, A.; Coletti, R.; Köllnberger, M.; et al. Monocytes, Neutrophils, and Platelets Cooperate to Initiate and Propagate Venous Thrombosis in Mice In Vivo. J. Exp. Med. 2012, 209, 819–835. [Google Scholar] [CrossRef]
- Brill, A.; Fuchs, T.A.; Savchenko, A.S.; Thomas, G.M.; Martinod, K.; De Meyer, S.F.; Bhandari, A.A.; Wagner, D.D. Neutrophil Extracellular Traps Promote Deep Vein Thrombosis in Mice: NETs Promote Deep Vein Thrombosis. J. Thromb. Haemost. 2012, 10, 136–144. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, T.A.; Brill, A.; Duerschmied, D.; Schatzberg, D.; Monestier, M.; Myers, D.D.; Wrobleski, S.K.; Wakefield, T.W.; Hartwig, J.H.; Wagner, D.D. Extracellular DNA Traps Promote Thrombosis. Proc. Natl. Acad. Sci. USA 2010, 107, 15880–15885. [Google Scholar] [CrossRef] [Green Version]
- Bassuk, J.A.; Capodici, C.; Berg, R.A. Protein Disulphide Isomerase from Human Peripheral Blood Neutrophils. J. Cell. Physiol. 1990, 144, 280–286. [Google Scholar] [CrossRef]
- Massberg, S.; Grahl, L.; von Bruehl, M.-L.; Manukyan, D.; Pfeiler, S.; Goosmann, C.; Brinkmann, V.; Lorenz, M.; Bidzhekov, K.; Khandagale, A.B.; et al. Reciprocal Coupling of Coagulation and Innate Immunity via Neutrophil Serine Proteases. Nat. Med. 2010, 16, 887–896. [Google Scholar] [CrossRef]
- Mori, Y.; Yamaguchi, M.; Terao, Y.; Hamada, S.; Ooshima, T.; Kawabata, S. α-Enolase of Streptococcus Pneumoniae Induces Formation of Neutrophil Extracellular Traps. J. Biol. Chem. 2012, 287, 10472–10481. [Google Scholar] [CrossRef] [Green Version]
- Clark, S.R.; Ma, A.C.; Tavener, S.A.; McDonald, B.; Goodarzi, Z.; Kelly, M.M.; Patel, K.D.; Chakrabarti, S.; McAvoy, E.; Sinclair, G.D.; et al. Platelet TLR4 Activates Neutrophil Extracellular Traps to Ensnare Bacteria in Septic Blood. Nat. Med. 2007, 13, 463–469. [Google Scholar] [CrossRef]
- Kenny, E.F.; Herzig, A.; Krüger, R.; Muth, A.; Mondal, S.; Thompson, P.R.; Brinkmann, V.; von Bernuth, H.; Zychlinsky, A. Diverse Stimuli Engage Different Neutrophil Extracellular Trap Pathways. eLife 2017, 6, e24437. [Google Scholar] [CrossRef]
- Brinkmann, V.; Zychlinsky, A. Neutrophil Extracellular Traps: Is Immunity the Second Function of Chromatin? J. Cell Biol. 2012, 198, 773–783. [Google Scholar] [CrossRef] [Green Version]
- Cassatella, M.A.; Östberg, N.K.; Tamassia, N.; Soehnlein, O. Biological Roles of Neutrophil-Derived Granule Proteins and Cytokines. Trends Immunol. 2019, 40, 648–664. [Google Scholar] [CrossRef]
- Cowland, J.B.; Borregaard, N. Granulopoiesis and Granules of Human Neutrophils. Immunol. Rev. 2016, 273, 11–28. [Google Scholar] [CrossRef]
- Silvestre-Roig, C.; Fridlender, Z.G.; Glogauer, M.; Scapini, P. Neutrophil Diversity in Health and Disease. Trends Immunol. 2019, 40, 565–583. [Google Scholar] [CrossRef]
- Sagiv, J.Y.; Michaeli, J.; Assi, S.; Mishalian, I.; Kisos, H.; Levy, L.; Damti, P.; Lumbroso, D.; Polyansky, L.; Sionov, R.V.; et al. Phenotypic Diversity and Plasticity in Circulating Neutrophil Subpopulations in Cancer. Cell Rep. 2015, 10, 562–573. [Google Scholar] [CrossRef] [Green Version]
- Hidalgo, A.; Libby, P.; Soehnlein, O.; Aramburu, I.V.; Papayannopoulos, V.; Silvestre-Roig, C. Neutrophil Extracellular Traps: From Physiology to Pathology. Cardiovasc. Res. 2021, cvab329. [Google Scholar] [CrossRef]
- Mutua, V.; Gershwin, L.J. A Review of Neutrophil Extracellular Traps (NETs) in Disease: Potential Anti-NETs Therapeutics. Clinic. Rev. Allergy Immunol. 2021, 61, 194–211. [Google Scholar] [CrossRef]
- Manda, A.; Pruchniak, M.P.; Araźna, M.; Demkow, U.A. Neutrophil Extracellular Traps in Physiology and Pathology. Cent.-Eur. J. Immunol. 2014, 1, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Carminita, E.; Crescence, L.; Brouilly, N.; Altié, A.; Panicot-Dubois, L.; Dubois, C. DNAse-Dependent, NET-Independent Pathway of Thrombus Formation In Vivo. Proc. Natl. Acad. Sci. USA 2021, 118, e2100561118. [Google Scholar] [CrossRef]
- Jagadeeswaran, P.; Cooley, B.C.; Gross, P.L.; Mackman, N. Animal Models of Thrombosis From Zebrafish to Nonhuman Primates: Use in the Elucidation of New Pathologic Pathways and the Development of Antithrombotic Drugs. Circ. Res. 2016, 118, 1363–1379. [Google Scholar] [CrossRef]
- Fish, R.J.; Freire, C.; Di Sanza, C.; Neerman-Arbez, M. Venous Thrombosis and Thrombocyte Activity in Zebrafish Models of Quantitative and Qualitative Fibrinogen Disorders. Int. J. Mol. Sci. 2021, 22, 655. [Google Scholar] [CrossRef]
- Lee, I.-J.; Yang, Y.-C.; Hsu, J.-W.; Chang, W.-T.; Chuang, Y.-J.; Liau, I. Zebrafish Model of Photochemical Thrombosis for Translational Research and Thrombolytic Screening In Vivo. J. Biophotonics 2017, 10, 494–502. [Google Scholar] [CrossRef]
- Dubois, C.; Panicot-Dubois, L.; Merrill-Skoloff, G.; Furie, B.; Furie, B.C. Glycoprotein VI–Dependent and –Independent Pathways of Thrombus Formation In Vivo. Blood 2006, 107, 3902–3906. [Google Scholar] [CrossRef]
- Denis, C.; Methia, N.; Frenette, P.S.; Rayburn, H.; Ullman-Culleré, M.; Hynes, R.O.; Wagner, D.D. A Mouse Model of Severe von Willebrand Disease: Defects in Hemostasis and Thrombosis. Proc. Natl. Acad. Sci. USA 1998, 95, 9524–9529. [Google Scholar] [CrossRef] [Green Version]
- Falati, S.; Patil, S.; Gross, P.L.; Stapleton, M.; Merrill-Skoloff, G.; Barrett, N.E.; Pixton, K.L.; Weiler, H.; Cooley, B.; Newman, D.K.; et al. Platelet PECAM-1 Inhibits Thrombus Formation In Vivo. Blood 2006, 107, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Mangin, P.; Yap, C.L.; Nonne, C.; Sturgeon, S.A.; Goncalves, I.; Yuan, Y.; Schoenwaelder, S.M.; Wright, C.E.; Lanza, F.; Jackson, S.P. Thrombin Overcomes the Thrombosis Defect Associated with Platelet GPVI/FcRγ Deficiency. Blood 2006, 107, 4346–4353. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Smith, P.L.; Hsu, M.-Y.; Tamasi, J.A.; Bird, E.; Schumacher, W.A. Deficiency in Thrombin-Activatable Fibrinolysis Inhibitor (TAFI) Protected Mice from Ferric Chloride-Induced Vena Cava Thrombosis. J. Thromb. Thrombolysis 2007, 23, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Boulaftali, Y.; Lamrani, L.; Rouzaud, M.C.; Loyau, S.; Jandrot-Perrus, M.; Bouton, M.C.; Ho-Tin-Noé, B. The mouse dorsal skinfold chamber as a model for the study of thrombolysis by intravital microscopy. Thromb. Haemost. 2012, 107, 962–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayak, V.K.; Deschler, D.G. Clopidogrel Use for Reducing the Rate of Thrombosis in a Rat Model of Microarterial Anastomosis. Arch. Otolaryngol. Head Neck Surg. 2005, 131, 800–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bang, J.; Jeon, W.K. Mumefural Improves Blood Flow in a Rat Model of FeCl3-Induced Arterial Thrombosis. Nutrients 2020, 12, 3795. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Hou, J.; Hu, S.; Du, X.; Fang, Y.; Jia, H.; Feng, L.; Zhang, L.; Du, J.; Zhao, Q.; et al. A Rabbit Model of Spontaneous Thrombosis Induced by Lipopolysaccharide. J. Atheroscler. Thromb. 2014, 21, 1075–1086. [Google Scholar] [CrossRef]
- Costa, A.F.; Gamermann, P.W.; Picon, P.X.; Mosmann, M.P.; Kettlun, A.M.; Valenzuela, M.A.; Sarkis, J.J.F.; Battastini, A.M.O.; Picon, P.D. Intravenous Apyrase Administration Reduces Arterial Thrombosis in a Rabbit Model of Endothelial Denudation In Vivo. Blood Coagul. Fibrinolysis 2004, 15, 545–551. [Google Scholar] [CrossRef]
- Shinozawa, E.; Kawamura, M. Anti-Thrombotic Effect of a Factor Xa Inhibitor TAK-442 in a Rabbit Model of Arteriovenous Shunt Thrombosis Stimulated with Tissue Factor. BMC Res. Notes 2018, 11, 776. [Google Scholar] [CrossRef]
- Jankowski, M.; Vreys, I.; Wittevrongel, C.; Boon, D.; Vermylen, J.; Hoylaerts, M.F.; Arnout, J. Thrombogenicity of Β2-Glycoprotein I–Dependent Antiphospholipid Antibodies in a Photochemically Induced Thrombosis Model in the Hamster. Blood 2003, 101, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Nemmar, A.; Hoylaerts, M.F.; Hoet, P.H.M.; Dinsdale, D.; Smith, T.; Xu, H.; Vermylen, J.; Nemery, B. Ultrafine Particles Affect Experimental Thrombosis in an In Vivo Hamster Model. Am. J. Respir. Crit. Care Med. 2002, 166, 998–1004. [Google Scholar] [CrossRef]
- Takiguchi, Y.; Hirata, Y.; Wada, K.; Nakashima, M. Arterial Thrombosis Model with Photochemical Reaction in Guinea-Pig and Its Property. Thromb. Res. 1992, 67, 435–445. [Google Scholar] [CrossRef]
- Moriguchi, A.; Aoki, T.; Mihara, K.; Tojo, N.; Matsuoka, N.; Mutoh, S. Antithrombotic Effects of FK419, a Novel Nonpeptide Platelet GPIIb/IIIa Antagonist, in a Guinea Pig Photochemically Induced Middle Cerebral Artery Thrombosis Model: Comparison with Ozagrel and Argatroban. J. Pharmacol. Exp. Ther. 2004, 308, 1094–1101. [Google Scholar] [CrossRef]
- Hosaka, J.; Roy, S.; Kvernebo, K.; Enge, I.; Laerum, F. Induced Thrombosis in the Pig Inferior Vena Cava: A Model of Deep Venous Thrombosis. J. Vasc. Interv. Radiol. 1996, 7, 395–400. [Google Scholar] [CrossRef]
- Kai, L.; Jiaxiang, M.; Xinxin, F.; Baochen, L.; Weiwei, D.; Xingjiang, W.; Shuofei, Y.; Jieshou, L. Establishment of Mesenteric Venous Thrombosis in a Porcine Model Using a Transhepatic Endovascular Approach. Thromb. Res. 2015, 136, 1179–1184. [Google Scholar] [CrossRef]
- Dogné, J.-M.; Rolin, S.; Pétein, M.; Tchana-Sato, V.; Ghuysen, A.; Lambermont, B.; Hanson, J.; Magis, D.; Segers, P.; Pirotte, B.; et al. Characterization of an Original Model of Myocardial Infarction Provoked by Coronary Artery Thrombosis Induced by Ferric Chloride in Pig. Thromb. Res. 2005, 116, 431–442. [Google Scholar] [CrossRef]
- Frisbie, J.H. An Animal Model for Venous Thrombosis and Spontaneous Pulmonary Embolism. Spinal Cord 2005, 43, 635–639. [Google Scholar] [CrossRef] [Green Version]
- Badylak, S.F.; Poehlman, E.; Williams, C.; Klabunde, R.E.; Turek, J.; William, S. Simple Canine Model of Arterial Thrombosis with Endothelial Injury Suitable for Investigation of Thrombolytic Agent. J. Pharmacol. Methods 1988, 19, 293–304. [Google Scholar] [CrossRef]
- Björkman, J.-A.E.; Abrahamsson, T.I.; Nerme, V.K.; Mattsson, C.J. Inhibition of Carboxypeptidase U (TAFIa) Activity Improves Rt-PA Induced Thrombolysis in a Dog Model of Coronary Artery Thrombosis. Thromb. Res. 2005, 116, 519–524. [Google Scholar] [CrossRef] [Green Version]
- Matafonov, A.; Leung, P.Y.; Gailani, A.E.; Grach, S.L.; Puy, C.; Cheng, Q.; Sun, M.; McCarty, O.J.T.; Tucker, E.I.; Kataoka, H.; et al. Factor XII Inhibition Reduces Thrombus Formation in a Primate Thrombosis Model. Blood 2014, 123, 1739–1746. [Google Scholar] [CrossRef] [Green Version]
- Young, W.B.; Mordenti, J.; Torkelson, S.; Shrader, W.D.; Kolesnikov, A.; Rai, R.; Liu, L.; Hu, H.; Leahy, E.M.; Green, M.J.; et al. Factor VIIa Inhibitors: Chemical Optimization, Preclinical Pharmacokinetics, Pharmacodynamics, and Efficacy in an Arterial Baboon Thrombosis Model. Bioorgan. Med. Chem. Lett. 2006, 16, 2037–2041. [Google Scholar] [CrossRef]
- Tang, Z.; Kattula, S.; Holle, L.A.; Cooley, B.C.; Lin, F.; Wolberg, A.S. Factor XIII Deficiency Does Not Prevent FeCl3-induced Carotid Artery Thrombus Formation in Mice. Res. Pract. Thromb. Haemost. 2020, 4, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Cleuren, A.C.A.; van Vlijmen, B.J.M.; Reitsma, P.H. Transgenic Mouse Models of Venous Thrombosis: Fulfilling the Expectations? Semin. Thromb. Hemost. 2007, 33, 610–616. [Google Scholar] [CrossRef]
- Grover, S.P.; Mackman, N. How Useful Are Ferric Chloride Models of Arterial Thrombosis? Platelets 2020, 31, 432–438. [Google Scholar] [CrossRef]
- Denis, C.V.; Dubois, C.; Brass, L.F.; Heemskerk, J.W.M.; Lenting, P.J. Biorheology Subcommittee of the SSC of the ISTH Towards Standardization of in Vivo Thrombosis Studies in Mice: Standardization of Thrombosis Studies. J. Thromb. Haemost. 2011, 9, 1641–1644. [Google Scholar] [CrossRef]
- Barr, J.D.; Chauhan, A.K.; Schaeffer, G.V.; Hansen, J.K.; Motto, D.G. Red Blood Cells Mediate the Onset of Thrombosis in the Ferric Chloride Murine Model. Blood 2013, 121, 3733–3741. [Google Scholar] [CrossRef]
- Eckly, A.; Hechler, B.; Freund, M.; Zerr, M.; Cazenave, J.-P.; Lanza, F.; Mangin, P.H.; Gachet, C. Mechanisms Underlying FeCl3-Induced Arterial Thrombosis. J. Thromb. Haemost. 2011, 9, 779–789. [Google Scholar] [CrossRef]
- Grambow, E.; Leppin, C.; Leppin, K.; Kundt, G.; Klar, E.; Frank, M.; Vollmar, B. The effects of hydrogen sulfide on platelet-leukocyte aggregation and microvascular thrombolysis. Platelets 2017, 28, 509–517. [Google Scholar] [CrossRef]
- Massberg, S.; Gawaz, M.; Grüner, S.; Schulte, V.; Konrad, I.; Zohlnhöfer, D.; Heinzmann, U.; Nieswandt, B. A Crucial Role of Glycoprotein VI for Platelet Recruitment to the Injured Arterial Wall In Vivo. J. Exp. Med. 2003, 197, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Nechipurenko, D.Y.; Receveur, N.; Yakimenko, A.O.; Shepelyuk, T.O.; Yakusheva, A.A.; Kerimov, R.R.; Obydennyy, S.I.; Eckly, A.; Léon, C.; Gachet, C.; et al. Clot Contraction Drives the Translocation of Procoagulant Platelets to Thrombus Surface. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 37–47. [Google Scholar] [CrossRef]
- Faraday, N.; Schunke, K.; Saleem, S.; Fu, J.; Wang, B.; Zhang, J.; Morrell, C.; Dore, S. Cathepsin G-Dependent Modulation of Platelet Thrombus Formation In Vivo by Blood Neutrophils. PLoS ONE 2013, 8, e71447. [Google Scholar] [CrossRef] [Green Version]
- Leal, A.C.; Mizurini, D.M.; Gomes, T.; Rochael, N.C.; Saraiva, E.M.; Dias, M.S.; Werneck, C.C.; Sielski, M.S.; Vicente, C.P.; Monteiro, R.Q. Tumor-Derived Exosomes Induce the Formation of Neutrophil Extracellular Traps: Implications For The Establishment of Cancer-Associated Thrombosis. Sci. Rep. 2017, 7, 6438. [Google Scholar] [CrossRef] [PubMed]
- Rosen, E.D.; Raymond, S.; Zollman, A.; Noria, F.; Sandoval-Cooper, M.; Shulman, A.; Merz, J.L.; Castellino, F.J. Laser-Induced Noninvasive Vascular Injury Models in Mice Generate Platelet- and Coagulation-Dependent Thrombi. Am. J. Pathol. 2001, 158, 1613–1622. [Google Scholar] [CrossRef] [Green Version]
- Pérez, P.; Alarcón, M.; Fuentes, E.; Palomo, I. Thrombus Formation Induced by Laser in a Mouse Model. Exp. Ther. Med. 2014, 8, 64–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, H.; Gebska, M.A.; Blokhin, I.O.; Wilson, K.M.; Ketsawatsomkron, P.; Chauhan, A.K.; Keen, H.L.; Sigmund, C.D.; Lentz, S.R. Endothelial PPAR-γ Protects Against Vascular Thrombosis by Downregulating P-Selectin Expression. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 838–844. [Google Scholar] [CrossRef] [Green Version]
- Hirata, Y.; Umemura, K.; Kondoh, K.; Uematsu, T.; Nakashima, M. Experimental Intimal Thickening Studies Using the Photochemically Induced Thrombosis Model in the Guinea-Pig Femoral Artery. Atherosclerosis 1994, 107, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Weyand, A.C.; Shavit, J.A. Zebrafish as a Model System for the Study of Hemostasis and Thrombosis. Curr. Opin. Hematol. 2014, 21, 418–422. [Google Scholar] [CrossRef] [Green Version]
- Marjoram, R.J.; Li, Z.; He, L.; Tollefsen, D.M.; Kunicki, T.J.; Dickeson, S.K.; Santoro, S.A.; Zutter, M.M. A2β1 Integrin, GPVI Receptor, and Common FcRγ Chain on Mouse Platelets Mediate Distinct Responses to Collagen in Models of Thrombosis. PLoS ONE 2014, 9, e114035. [Google Scholar] [CrossRef] [Green Version]
- Kleinschnitz, C.; Braeuninger, S.; Pham, M.; Austinat, M.; Nölte, I.; Renné, T.; Nieswandt, B.; Bendszus, M.; Stoll, G. Blocking of Platelets or Intrinsic Coagulation Pathway–Driven Thrombosis Does Not Prevent Cerebral Infarctions Induced by Photothrombosis. Stroke 2008, 39, 1262–1268. [Google Scholar] [CrossRef]
- Day, S.M.; Reeve, J.L.; Pedersen, B.; Farris, D.M.; Myers, D.D.; Im, M.; Wakefield, T.W.; Mackman, N.; Fay, W.P. Macrovascular Thrombosis Is Driven by Tissue Factor Derived Primarily from the Blood Vessel Wall. Blood 2005, 105, 192–198. [Google Scholar] [CrossRef] [Green Version]
- Shimazawa, M.; Kondo, K.; Hara, H.; Nakashima, M.; Umemura, K. Sulfatides, L- and P-Selectin Ligands, Exacerbate the Intimal Hyperplasia Occurring after Endothelial Injury. Eur. J. Pharmacol. 2005, 520, 118–126. [Google Scholar] [CrossRef]
- Furie, B. Thrombus Formation In Vivo. J. Clin. Investig. 2005, 115, 3355–3362. [Google Scholar] [CrossRef]
- Grover, S.P.; Bendapudi, P.K.; Yang, M.; Merrill-Skoloff, G.; Govindarajan, V.; Mitrophanov, A.Y.; Flaumenhaft, R. Injury Measurements Improve Interpretation of Thrombus Formation Data in the Cremaster Arteriole Laser-Induced Injury Model of Thrombosis. J. Thromb. Haemost. 2020, 18, 3078–3085. [Google Scholar] [CrossRef]
- Atkinson, B.T.; Jasuja, R.; Chen, V.M.; Nandivada, P.; Furie, B.; Furie, B.C. Laser-Induced Endothelial Cell Activation Supports Fibrin Formation. Blood 2010, 116, 4675–4683. [Google Scholar] [CrossRef] [Green Version]
- Jasuja, R.; Furie, B.; Furie, B.C. Endothelium-Derived but Not Platelet-Derived Protein Disulfide Isomerase Is Required for Thrombus Formation In Vivo. Blood 2010, 116, 4665–4674. [Google Scholar] [CrossRef] [Green Version]
- Passam, F.H.; Lin, L.; Gopal, S.; Stopa, J.D.; Bellido-Martin, L.; Huang, M.; Furie, B.C.; Furie, B. Both Platelet- and Endothelial Cell–Derived ERp5 Support Thrombus Formation in a Laser-Induced Mouse Model of Thrombosis. Blood 2015, 125, 2276–2285. [Google Scholar] [CrossRef] [Green Version]
- Dubois, C.; Panicot-Dubois, L.; Gainor, J.F.; Furie, B.C.; Furie, B. Thrombin-Initiated Platelet Activation In Vivo Is VWF Independent during Thrombus Formation in a Laser Injury Model. J. Clin. Investig. 2007, 117, 953–960. [Google Scholar] [CrossRef] [Green Version]
- Chou, J.; Mackman, N.; Merrill-Skoloff, G.; Pedersen, B.; Furie, B.C.; Furie, B. Hematopoietic Cell-Derived Microparticle Tissue Factor Contributes to Fibrin Formation during Thrombus Propagation. Blood 2004, 104, 3190–3197. [Google Scholar] [CrossRef] [Green Version]
- Gross, P.L.; Furie, B.C.; Merrill-Skoloff, G.; Chou, J.; Furie, B. Leukocyte-versus Microparticle-Mediated Tissue Factor Transfer during Arteriolar Thrombus Development. J. Leukoc. Biol. 2005, 78, 1318–1326. [Google Scholar] [CrossRef]
- Vandendries, E.R.; Hamilton, J.R.; Coughlin, S.R.; Furie, B.; Furie, B.C. Par4 Is Required for Platelet Thrombus Propagation but Not Fibrin Generation in a Mouse Model of Thrombosis. Proc. Natl. Acad. Sci. USA 2007, 104, 288–292. [Google Scholar] [CrossRef] [Green Version]
- Brill, A.; Fuchs, T.A.; Chauhan, A.K.; Yang, J.J.; De Meyer, S.F.; Köllnberger, M.; Wakefield, T.W.; Lämmle, B.; Massberg, S.; Wagner, D.D. Von Willebrand Factor–Mediated Platelet Adhesion Is Critical for Deep Vein Thrombosis in Mouse Models. Blood 2011, 117, 1400–1407. [Google Scholar] [CrossRef] [Green Version]
- DeRoo, E.; Martinod, K.; Cherpokova, D.; Fuchs, T.; Cifuni, S.; Chu, L.; Staudinger, C.; Wagner, D.D. The Role of Platelets in Thrombus Fibrosis and Vessel Wall Remodeling after Venous Thrombosis. J. Thromb. Haemost. 2021, 19, 387–399. [Google Scholar] [CrossRef]
- Myers, D.D.; Hawley, A.E.; Farris, D.M.; Wrobleski, S.K.; Thanaporn, P.; Schaub, R.G.; Wagner, D.D.; Kumar, A.; Wakefield, T.W. P-Selectin and Leukocyte Microparticles Are Associated with Venous Thrombogenesis. J. Vasc. Surg. 2003, 38, 1075–1089. [Google Scholar] [CrossRef] [Green Version]
- Martinod, K.; Demers, M.; Fuchs, T.A.; Wong, S.L.; Brill, A.; Gallant, M.; Hu, J.; Wang, Y.; Wagner, D.D. Neutrophil Histone Modification by Peptidylarginine Deiminase 4 Is Critical for Deep Vein Thrombosis in Mice. Proc. Natl. Acad. Sci. USA 2013, 110, 8674–8679. [Google Scholar] [CrossRef] [Green Version]
- Martinod, K.; Witsch, T.; Farley, K.; Gallant, M.; Remold-O’Donnell, E.; Wagner, D.D. Neutrophil Elastase-Deficient Mice Form Neutrophil Extracellular Traps in an Experimental Model of Deep Vein Thrombosis. J. Thromb. Haemost. 2016, 14, 551–558. [Google Scholar] [CrossRef] [Green Version]
- Czaikoski, P.G.; Mota, J.M.S.C.; Nascimento, D.C.; Sônego, F.; Castanheira, F.V.E.S.; Melo, P.H.; Scortegagna, G.T.; Silva, R.L.; Barroso-Sousa, R.; Souto, F.O.; et al. Neutrophil Extracellular Traps Induce Organ Damage during Experimental and Clinical Sepsis. PLoS ONE 2016, 11, e0148142. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Payal, N.; Srivastava, V.K.; Kaushik, S.; Saxena, J.; Jyoti, A. Neutrophil Extracellular Traps and Organ Dysfunction in Sepsis. Clin. Chim. Acta 2021, 523, 152–162. [Google Scholar] [CrossRef]
- Zou, Y.; Chen, X.; Xiao, J.; Zhou, D.B.; Lu, X.X.; Li, W.; Xie, B.; Kuang, X.; Chen, Q. Neutrophil Extracellular Traps Promote Lipopolysaccharide-Induced Airway Inflammation and Mucus Hypersecretion in Mice. Oncotarget 2018, 9, 13276–13286. [Google Scholar] [CrossRef] [Green Version]
- Thomas, G.M.; Carbo, C.; Curtis, B.R.; Martinod, K.; Mazo, I.B.; Schatzberg, D.; Cifuni, S.M.; Fuchs, T.A.; von Andrian, U.H.; Hartwig, J.H.; et al. Extracellular DNA Traps Are Associated with the Pathogenesis of TRALI in Humans and Mice. Blood 2012, 119, 6335–6343. [Google Scholar] [CrossRef] [Green Version]
- Jarrot, P.-A.; Tellier, E.; Plantureux, L.; Crescence, L.; Robert, S.; Chareyre, C.; Daniel, L.; Secq, V.; Garcia, S.; Dignat-George, F.; et al. Neutrophil Extracellular Traps Are Associated with the Pathogenesis of Diffuse Alveolar Hemorrhage in Murine Lupus. J. Autoimmun. 2019, 100, 120–130. [Google Scholar] [CrossRef]
- Ho, A.-S.; Chen, C.-H.; Cheng, C.-C.; Wang, C.-C.; Lin, H.-C.; Luo, T.-Y.; Lien, G.-S.; Chang, J. Neutrophil Elastase as a Diagnostic Marker and Therapeutic Target in Colorectal Cancers. Oncotarget 2014, 5, 473–480. [Google Scholar] [CrossRef] [Green Version]
- Kolodziej, A.R.; Abo-Aly, M.; Elsawalhy, E.; Campbell, C.; Ziada, K.M.; Abdel-Latif, A. Prognostic Role of Elevated Myeloperoxidase in Patients with Acute Coronary Syndrome: A Systemic Review and Meta-Analysis. Mediat. Inflamm. 2019, 2019, 2872607. [Google Scholar] [CrossRef] [PubMed]
- Mauracher, L.-M.; Posch, F.; Martinod, K.; Grilz, E.; Däullary, T.; Hell, L.; Brostjan, C.; Zielinski, C.; Ay, C.; Wagner, D.D.; et al. Citrullinated Histone H3, a Biomarker of Neutrophil Extracellular Trap Formation, Predicts the Risk of Venous Thromboembolism in Cancer Patients. J. Thromb. Haemost. 2018, 16, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Vallés, J.; Lago, A.; Santos, M.T.; Latorre, A.M.; Tembl, J.; Salom, J.; Nieves, C.; Moscardó, A. Neutrophil Extracellular Traps Are Increased in Patients with Acute Ischemic Stroke: Prognostic Significance. Thromb. Haemost. 2017, 117, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Diaz, J.A.; Fuchs, T.A.; Jackson, T.O.; Kremer Hovinga, J.A.; Lämmle, B.; Henke, P.K.; Myers, D.D.; Wagner, D.D.; Wakefield, T.W. Plasma DNA Is Elevated in Patients with Deep Vein Thrombosis. J. Vasc. Surg. Venous Lymphat. Disord. 2013, 1, 341–348.e1. [Google Scholar] [CrossRef] [Green Version]
- Andreas, M.; Sherin, A.; Thomas, S.; Thomas, H.; Johannes, J.; Adelheid, P.; Daniel, S.; Daniela, L.; Christine, B.; Andreas, K.; et al. Coronary Neutrophil Extracellular Trap Burden and Deoxyribonuclease Activity in ST-Elevation Acute Coronary Syndrome Are Predictors of ST-Segment Resolution and Infarct Size. Circ. Res. 2015, 116, 1182–1192. [Google Scholar] [CrossRef] [Green Version]
- Zuo, Y.; Yalavarthi, S.; Shi, H.; Gockman, K.; Zuo, M.; Madison, J.A.; Blair, C.N.; Weber, A.; Barnes, B.J.; Egeblad, M.; et al. Neutrophil Extracellular Traps in COVID-19. JCI Insight 2020, 5, e138999. [Google Scholar] [CrossRef] [Green Version]
- Hodson, M.E.; Shah, P.L. DNase Trials in Cystic Fibrosis. Eur. Respir. J. 1995, 8, 1786–1791. [Google Scholar] [CrossRef] [Green Version]
- Lauková, L.; Konečná, B.; Janovičová, Ľ.; Vlková, B.; Celec, P. Deoxyribonucleases and Their Applications in Biomedicine. Biomolecules 2020, 10, 1036. [Google Scholar] [CrossRef]
Specie | Vessel | Reference |
---|---|---|
Zebrafish | Caudal vein, dorsal aorta | Jagadeeswaran et al. [25] Fish et al. [26] Lee et al. [27] |
Mouse | Carotid artery, vena cava, jugular vein, femoral artery, cremasteric arterioles, mesenteric arterioles, dorsal arterioles and venules | Dubois et al. [28] von Brulh et al. [8] Denis et al. [29] Falati et al. [30] Mangin et al. [31] Wang et al. [32] Boulaftali Y [33] |
Rat | Carotid artery, femoral artery | Nayak et al. [34] Bang et al. [35] |
Rabbit | Carotid artery, aorta, jugular vein | Liu et al. [36] Costa et al. [37] Shinozawa et al. [38] |
Hamster | Carotid artery, femoral artery | Jankowski et al. [39] Nemmar et al. [40] |
Guinea pig | Femoral artery, cerebral artery | Takiguchi et al. [41] Moriguchi et al. [42] |
Pig | Vena cava, mesenteric arterioles, coronary artery | Hosaka et al. [43] Kai et al. [44] Dogne et al. [45] |
Dog | Jugular vein, femoral artery, coronary artery | Frisbie et al. [46] Badylak et al. [47] Bjorkman et al. [48] |
Baboon | Vena cava, femoral artery | Brill et al. [9] Matafonov et al. [49] Young et al. [50] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carminita, E.; Crescence, L.; Panicot-Dubois, L.; Dubois, C. Role of Neutrophils and NETs in Animal Models of Thrombosis. Int. J. Mol. Sci. 2022, 23, 1411. https://doi.org/10.3390/ijms23031411
Carminita E, Crescence L, Panicot-Dubois L, Dubois C. Role of Neutrophils and NETs in Animal Models of Thrombosis. International Journal of Molecular Sciences. 2022; 23(3):1411. https://doi.org/10.3390/ijms23031411
Chicago/Turabian StyleCarminita, Estelle, Lydie Crescence, Laurence Panicot-Dubois, and Christophe Dubois. 2022. "Role of Neutrophils and NETs in Animal Models of Thrombosis" International Journal of Molecular Sciences 23, no. 3: 1411. https://doi.org/10.3390/ijms23031411
APA StyleCarminita, E., Crescence, L., Panicot-Dubois, L., & Dubois, C. (2022). Role of Neutrophils and NETs in Animal Models of Thrombosis. International Journal of Molecular Sciences, 23(3), 1411. https://doi.org/10.3390/ijms23031411