Regulation of Opsin Gene Expression by DNA Methylation and Histone Acetylation
Abstract
:1. Introduction
2. Results
2.1. Treatment of Tissue Culture Cells with 5-Aza-dc or HDACi Induces a Global DNA Hypomethylation or Increased Histone Acetylation
2.2. 5-Aza-dc and/or HDACi Treatment Results in DNA Hypomethylation of RHO and OPN1LW and Increased Expression in Tissue Culture Cells
2.3. Role of DNA Methylation and Histone Deacetylase Activity on Expressions of Opsin Genes during the Development of Mouse Photoreceptor Cells
3. Discussion
4. Materials and Methods
4.1. Cell Culture and Drug Treatment
4.2. Animals
4.3. Ex Vivo Retinal Explant Cultures
4.4. LUMA and Bisulfite Pyrosequencing Assays
4.5. Real-Time Reverse Transcription-Polymerase Chain Reaction
4.6. Immunoblot Analysis
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DNMT | DNA methyltransferase |
5-Aza-dc | 5-aza-2’-deoxycytidine |
HDACi | histone deacetylase inhibitor |
SB | sodium butyrate |
SAHA | suberoylanilide hydroxamic acid |
References
- Klose, R.J.; Bird, A.P. Genomic DNA methylation: The mark and its mediators. Trends Biochem. Sci. 2006, 31, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Antequera, F.; Bird, A. Number of CpG islands and genes in human and mouse. Proc. Natl. Acad. Sci. USA 1993, 90, 11995–11999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otteson, D.C. Eyes on DNA methylation: Current evidence for DNA methylation in ocular development and disease. J. Ocul. Biol. Dis. Inform. 2011, 4, 95–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, F.; Mahmood, S.; Ghosh, S.; Liang, P.; Smiraglia, D.J.; Nagase, H.; Held, W.A. Tissue specific differentially methylated regions (TDMR): Changes in DNA methylation during development. Genomics 2009, 93, 130–139. [Google Scholar] [CrossRef] [Green Version]
- Cedar, H.; Bergman, Y. Linking DNA methylation and histone modification: Patterns and paradigms. Nat. Rev. Genet. 2009, 10, 295–304. [Google Scholar] [CrossRef]
- Bestor, T.H. The DNA methyltransferases of mammals. Hum. Mol. Genet. 2000, 9, 2395–2402. [Google Scholar] [CrossRef] [Green Version]
- Goffin, J.; Eisenhauer, E. DNA methyltransferase inhibitors-state of the art. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol./ESMO 2002, 13, 1699–1716. [Google Scholar] [CrossRef]
- Yoo, C.B.; Jones, P.A. Epigenetic therapy of cancer: Past, present and future. Nat. Rev. Drug Discov. 2006, 5, 37–50. [Google Scholar] [CrossRef]
- Santi, D.V.; Norment, A.; Garrett, C.E. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc. Natl. Acad. Sci. USA 1984, 81, 6993–6997. [Google Scholar] [CrossRef] [Green Version]
- Haberland, M.; Montgomery, R.L.; Olson, E.N. The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nat. Rev. Genet. 2009, 10, 32–42. [Google Scholar] [CrossRef]
- Kelly, W.K.; Marks, P.A. Drug insight: Histone deacetylase inhibitors--development of the new targeted anticancer agent suberoylanilide hydroxamic acid. Nat. Clin. Pract. Oncol. 2005, 2, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.Y.; Chen, C.S.; Lin, S.P.; Weng, J.R.; Chen, C.S. Targeting histone deacetylase in cancer therapy. Med. Res. Rev. 2006, 26, 397–413. [Google Scholar] [CrossRef] [PubMed]
- Marks, P.A.; Richon, V.M.; Miller, T.; Kelly, W.K. Histone deacetylase inhibitors. Adv. Cancer Res. 2004, 91, 137–168. [Google Scholar] [CrossRef] [PubMed]
- Peart, M.J.; Smyth, G.K.; van Laar, R.K.; Bowtell, D.D.; Richon, V.M.; Marks, P.A.; Holloway, A.J.; Johnstone, R.W. Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc. Natl. Acad. Sci. USA 2005, 102, 3697–3702. [Google Scholar] [CrossRef] [Green Version]
- Cameron, E.E.; Bachman, K.E.; Myohanen, S.; Herman, J.G.; Baylin, S.B. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat. Genet. 1999, 21, 103–107. [Google Scholar] [CrossRef]
- Chai, G.; Li, L.; Zhou, W.; Wu, L.; Zhao, Y.; Wang, D.; Lu, S.; Yu, Y.; Wang, H.; McNutt, M.A.; et al. HDAC inhibitors act with 5-aza-2’-deoxycytidine to inhibit cell proliferation by suppressing removal of incorporated abases in lung cancer cells. PLoS ONE 2008, 3, e2445. [Google Scholar] [CrossRef] [Green Version]
- Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet. 2007, 8, 286–298. [Google Scholar] [CrossRef]
- Jones, P.A.; Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 2002, 3, 415–428. [Google Scholar] [CrossRef]
- Peng, G.H.; Chen, S. Active opsin loci adopt intrachromosomal loops that depend on the photoreceptor transcription factor network. Proc. Natl. Acad. Sci. USA 2011, 108, 17821–17826. [Google Scholar] [CrossRef] [Green Version]
- Rao, R.C.; Hennig, A.K.; Malik, M.T.; Chen, D.F.; Chen, S. Epigenetic regulation of retinal development and disease. J. Ocul. Biol. Dis. Inform. 2011, 4, 121–136. [Google Scholar] [CrossRef] [Green Version]
- Deeb, S.S.; Bisset, D.; Fu, L. Epigenetic control of expression of the human L- and M-pigment genes. Ophthalmic Physiol. Opt. J. Br. Coll. Ophthalmic Opt. 2010, 30, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Merbs, S.L.; Khan, M.A.; Hackler, L., Jr.; Oliver, V.F.; Wan, J.; Qian, J.; Zack, D.J. Cell-specific DNA methylation patterns of retina-specific genes. PLoS ONE 2012, 7, e32602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.; Cepko, C.L. Requirement of histone deacetylase activity for the expression of critical photoreceptor genes. BMC Dev. Biol. 2007, 7, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhee, K.D.; Yu, J.; Zhao, C.Y.; Fan, G.; Yang, X.J. Dnmt1-dependent DNA methylation is essential for photoreceptor terminal differentiation and retinal neuron survival. Cell Death Dis. 2012, 3, e427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Wang, Q.L.; Nie, Z.; Sun, H.; Lennon, G.; Copeland, N.G.; Gilbert, D.J.; Jenkins, N.A.; Zack, D.J. Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron 1997, 19, 1017–1030. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, M.; Rohrer, B. Photoreceptor structure and function is maintained in organotypic cultures of mouse retinas. Mol. Vis. 2010, 16, 1178–1185. [Google Scholar]
- Donovan, S.L.; Dyer, M.A. Preparation and square wave electroporation of retinal explant cultures. Nat. Protoc. 2006, 1, 2710–2718. [Google Scholar] [CrossRef]
- Sawamiphak, S.; Ritter, M.; Acker-Palmer, A. Preparation of retinal explant cultures to study ex vivo tip endothelial cell responses. Nat. Protoc. 2010, 5, 1659–1665. [Google Scholar] [CrossRef]
- Wallace, D.M.; Donovan, M.; Cotter, T.G. Histone deacetylase activity regulates apaf-1 and caspase 3 expression in the developing mouse retina. Investig. Ophthalmol. Vis. Sci. 2006, 47, 2765–2772. [Google Scholar] [CrossRef] [Green Version]
- Swaroop, A.; Kim, D.; Forrest, D. Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. Nat. Rev. Neurosci. 2010, 11, 563–576. [Google Scholar] [CrossRef] [Green Version]
- Boatright, J.H.; Stodulkova, E.; Do, V.T.; Padove, S.A.; Nguyen, H.T.; Borst, D.E.; Nickerson, J.M. The effect of retinoids and butyrate on the expression of CRX and IRBP in retinoblastoma cells. Vis. Res. 2002, 42, 933–938. [Google Scholar] [CrossRef] [Green Version]
- Karasawa, Y.; Okisaka, S. Inhibition of histone deacetylation by butyrate induces morphological changes in Y79 retinoblastoma cells. Jpn. J. Ophthalmol. 2004, 48, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Madigan, M.C.; Chaudhri, G.; Penfold, P.L.; Conway, R.M. Sodium butyrate modulates p53 and Bcl-2 expression in human retinoblastoma cell lines. Oncol. Res. 1999, 11, 331–337. [Google Scholar] [PubMed]
- Peng, G.-H.; Chen, S. Crx activates opsin transcription by recruiting HAT-containing co-activators and promoting histone acetylation. Hum. Mol. Genet. 2007, 16, 2433–2452. [Google Scholar] [CrossRef] [PubMed]
- Nasonkin, I.O.; Lazo, K.; Hambright, D.; Brooks, M.; Fariss, R.; Swaroop, A. Distinct nuclear localization patterns of DNA methyltransferases in developing and mature mammalian retina. J. Comp. Neurol. 2011, 519, 1914–1930. [Google Scholar] [CrossRef] [PubMed]
- Kaewkhaw, R.; Kaya, K.D.; Brooks, M.; Homma, K.; Zou, J.; Chaitankar, V.; Rao, M.; Swaroop, A. Transcriptome Dynamics of Developing Photoreceptors in Three-Dimensional Retina Cultures Recapitulates Temporal Sequence of Human Cone and Rod Differentiation Revealing Cell Surface Markers and Gene Networks. Stem Cells 2015, 33, 3504–3518. [Google Scholar] [CrossRef]
- Karimi, M.; Johansson, S.; Ekstrom, T.J. Using LUMA: A Luminometric-based assay for global DNA-methylation. Epigenetics Off. J. DNA Methylation Soc. 2006, 1, 45–48. [Google Scholar]
- Karimi, M.; Johansson, S.; Stach, D.; Corcoran, M.; Grander, D.; Schalling, M.; Bakalkin, G.; Lyko, F.; Larsson, C.; Ekstrom, T.J. LUMA (LUminometric Methylation Assay)—A high throughput method to the analysis of genomic DNA methylation. Exp. Cell Res. 2006, 312, 1989–1995. [Google Scholar] [CrossRef]
- Tost, J.; El Abdalaoui, H.; Gut, I.G. Serial pyrosequencing for quantitative DNA methylation analysis. BioTechniques 2006, 40, 721–726. [Google Scholar] [CrossRef] [Green Version]
- Tost, J.; Gut, I.G. DNA methylation analysis by pyrosequencing. Nat. Protoc. 2007, 2, 2265–2275. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; VanBuskirk, J.A.; Merbs, S.L. Regulation of Opsin Gene Expression by DNA Methylation and Histone Acetylation. Int. J. Mol. Sci. 2022, 23, 1408. https://doi.org/10.3390/ijms23031408
Song J, VanBuskirk JA, Merbs SL. Regulation of Opsin Gene Expression by DNA Methylation and Histone Acetylation. International Journal of Molecular Sciences. 2022; 23(3):1408. https://doi.org/10.3390/ijms23031408
Chicago/Turabian StyleSong, Jin, Julia A. VanBuskirk, and Shannath L. Merbs. 2022. "Regulation of Opsin Gene Expression by DNA Methylation and Histone Acetylation" International Journal of Molecular Sciences 23, no. 3: 1408. https://doi.org/10.3390/ijms23031408
APA StyleSong, J., VanBuskirk, J. A., & Merbs, S. L. (2022). Regulation of Opsin Gene Expression by DNA Methylation and Histone Acetylation. International Journal of Molecular Sciences, 23(3), 1408. https://doi.org/10.3390/ijms23031408