Applying Protein–Protein Interactions and Complex Networks to Identify Novel Genes in Retinitis Pigmentosa Pathogenesis
Abstract
:1. Introduction
2. Results
2.1. Initial Retinitis Pigmentosa Gene List and Gene Mapping
2.2. Discovery of Intermediate Genes
2.3. Functional Analysis of Intermediate Genes with Gene Ontology
2.4. Gene Classification and Categorization
3. Discussion
3.1. Summary
3.2. Overview of Candidate Genes’ Potential Roles in Retinitis Pigmentosa Pathology
3.3. Limitations
4. Materials and Methods
4.1. Retinitis Pigmentosa Gene Compilation through RetNet
4.2. Protein–Protein Interactions and Functional Analysis of Novel Genes
4.3. Python Script for Novel Gene Discovery, Classification, and Categorization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix B.1. SVG Modification—Rearranging Genes
- Group 1: RPE65, LRAT, MERTK, RBP3, RGR.
- Group 2: RHO, PRPH2, SAG, CNGA1, CNGB1, FSCN2, ROM1, IMPG2, PROM1.
- Group 3: RPGR, RP1, CLRN1, MAK, USH2A.
- Group 4: NR2E3, CRX, ZNF513, PRPF31, PRPF8, PRPF3, PRPF4, PRPF6, RP9, SNRNP200, DHX38.
Appendix B.2. SVG Modification—Recoloring Genes and Interactions
- Red: Edge connects specific gene with a gene in Group 1.
- Blue: Edge connects specific gene with a gene in Group 2.
- Green: Edge connects specific gene with a gene in Group 3.
- Purple: Edge connects specific gene with a gene in Group 4.
- Gray: Edge connects specific gene with an intermediate Group D gene, or the isolated Group B genes.
Appendix B.3. Output
- Original_gene_map.svg: The SVG file downloaded from the STRING database that maps the original 159 genes with the 10 intermediate genes. This can be seen in Figure 2.
- Colored Map SVG Files: These SVG files are a result of recoloring the genes and recoloring the edges exiting the genes of the files’ respective groups, as mentioned above. Portions of these files can be seen in Figure 3a–d.
Appendix C
Replicating Results
- Download the code from the repository: https://github.com/akaashvenkat/RP-Gene-Mapping.
- Using either Terminal (on Mac or Linux) or Powershell (on Windows), enter into the RP-Gene-Mapping folder that was downloaded.
- Using Terminal or Powershell, run “python download_gene_map.py”.
- Due to the heavy load of automation in this program, there is a chance running this program will crash. If this happens, just re-run “python download_gene_map.py” and the program will pick up from where it left off.
- Once “download_gene_map.py” is finished running, there will be a file called “string_vector_graphic.svg” that will be saved to your computer’s Downloads folder. Relocate that SVG file into the svg_files folder and rename the file as “original_gene_map.svg”.
- Using Terminal or Powershell, run “python restructure_gene_map.py”.
- Using Terminal or Powershell, run “python recolor_gene_map.py”.
- Using Terminal or Powershell, run “python find_connection_counts.py”.
- Go to the svg_files folder to view your final SVG files.
References
- Ayuso, C.; Millan, J.M. Retinitis Pigmentosa and Allied Conditions Today: A Paradigm of Translational Research. Genome Med. 2010, 2, 34. [Google Scholar] [CrossRef] [PubMed]
- Hamel, C. Retinitis Pigmentosa. Orphanet J. Rare Dis. 2006, 1, 40. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.K.; Lu, B.; Girman, S.; Wang, S. Cell-Based Therapeutic Strategies for Replacement and Preservation in Retinal Degenerative Diseases. Prog. Retin. Eye Res. 2017, 58, 1–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Natarajan, S. Retinitis Pigmentosa: A Brief Overview. Indian J. Ophthalmol. 2011, 59, 343. [Google Scholar] [CrossRef]
- Daiger, S.P.; Sullivan, L.S.; Bowne, S.J. Genes and Mutations Causing Retinitis Pigmentosa: Genes and Mutations Causing Retinitis Pigmentosa. Clin. Genet. 2013, 84, 132–141. [Google Scholar] [CrossRef]
- Newton, F.; Megaw, R. Mechanisms of Photoreceptor Death in Retinitis Pigmentosa. Genes 2020, 11, 1120. [Google Scholar] [CrossRef]
- Rinaldi, C.; Donato, L.; Alibrandi, S.; Scimone, C.; D’Angelo, R.; Sidoti, A. Oxidative Stress and the Neurovascular Unit. Life 2021, 11, 767. [Google Scholar] [CrossRef]
- Cremers, F.P.M.; Lee, W.; Collin, R.W.J.; Allikmets, R. Clinical Spectrum, Genetic Complexity and Therapeutic Approaches for Retinal Disease Caused by ABCA4 Mutations. Prog. Retin. Eye Res. 2020, 79, 100861. [Google Scholar] [CrossRef]
- Quazi, F.; Lenevich, S.; Molday, R.S. ABCA4 Is an N-Retinylidene-Phosphatidylethanolamine and Phosphatidylethanolamine Importer. Nat. Commun. 2012, 3, 925. [Google Scholar] [CrossRef] [Green Version]
- Jing, G.; Wang, J.J.; Zhang, S.X. ER Stress and Apoptosis: A New Mechanism for Retinal Cell Death. Exp. Diabetes Res. 2012, 2012, 589589. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Popp, V.; Power, M.; Groeneveld, K.; Yan, J.; Melle, C.; Rogerson, L.; Achury, M.; Schwede, F.; Strasser, T.; et al. Redefining the Role of Ca2+-Permeable Channels in Photoreceptor Degeneration Using Diltiazem. Cell Death Dis. 2022, 13, 47. [Google Scholar] [CrossRef]
- Hutto, R.A.; Bisbach, C.M.; Abbas, F.; Brock, D.C.; Cleghorn, W.M.; Parker, E.D.; Bauer, B.H.; Ge, W.; Vinberg, F.; Hurley, J.B.; et al. Increasing Ca2+ in Photoreceptor Mitochondria Alters Metabolites, Accelerates Photoresponse Recovery, and Reveals Adaptations to Mitochondrial Stress. Cell Death Differ. 2020, 27, 1067–1085. [Google Scholar] [CrossRef] [Green Version]
- Ghiassian, S.D.; Menche, J.; Barabási, A.-L. A DIseAse MOdule Detection (DIAMOnD) Algorithm Derived from a Systematic Analysis of Connectivity Patterns of Disease Proteins in the Human Interactome. PLOS Comput. Biol. 2015, 11, e1004120. [Google Scholar] [CrossRef]
- Menche, J.; Sharma, A.; Kitsak, M.; Ghiassian, S.D.; Vidal, M.; Loscalzo, J.; Barabasi, A.-L. Uncovering Disease-Disease Relationships through the Incomplete Interactome. Science 2015, 347, 1257601. [Google Scholar] [CrossRef] [Green Version]
- Sonawane, A.R.; Weiss, S.T.; Glass, K.; Sharma, A. Network Medicine in the Age of Biomedical Big Data. Front. Genet. 2019, 10, 294. [Google Scholar] [CrossRef] [Green Version]
- Vulliard, L.; Menche, J. Complex Networks in Health and Disease. In Systems Medicine; Elsevier: Amsterdam, The Netherlands, 2021; pp. 26–33. ISBN 978-0-12-816078-7. [Google Scholar]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING V11: Protein-Protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [Green Version]
- Rabbani, G.; Baig, M.H.; Ahmad, K.; Choi, I. Protein-Protein Interactions and Their Role in Various Diseases and Their Prediction Techniques. Curr. Protein Pept. Sci. 2018, 19, 948–957. [Google Scholar] [CrossRef]
- Bajpai, A.K.; Davuluri, S.; Tiwary, K.; Narayanan, S.; Oguru, S.; Basavaraju, K.; Dayalan, D.; Thirumurugan, K.; Acharya, K.K. Systematic Comparison of the Protein-Protein Interaction Databases from a User’s Perspective. J. Biomed. Inform. 2020, 103, 103380. [Google Scholar] [CrossRef]
- Huang, J.K.; Carlin, D.E.; Yu, M.K.; Zhang, W.; Kreisberg, J.F.; Tamayo, P.; Ideker, T. Systematic Evaluation of Molecular Networks for Discovery of Disease Genes. Cell Syst. 2018, 6, 484–495.e5. [Google Scholar] [CrossRef] [Green Version]
- Daiger, S.; Rossiter, B.; Greenberg, J.; Christoffels, A.; Hide, W. Data Services and Software for Identifying Genes and Mutations Causing Retinal Degeneration. Investig. Opthalmol. Vis. Sci. 1998, 39, S295. [Google Scholar]
- González-del Pozo, M.; Fernández-Suárez, E.; Martín-Sánchez, M.; Bravo-Gil, N.; Méndez-Vidal, C.; Rodríguez-de la Rúa, E.; Borrego, S.; Antiñolo, G. Unmasking Retinitis Pigmentosa Complex Cases by a Whole Genome Sequencing Algorithm Based on Open-Access Tools: Hidden Recessive Inheritance and Potential Oligogenic Variants. J. Transl. Med. 2020, 18, 73. [Google Scholar] [CrossRef] [Green Version]
- Dias, M.F.; Joo, K.; Kemp, J.A.; Fialho, S.L.; Da Silva Cunha, A.; Woo, S.J.; Kwon, Y.J. Molecular Genetics and Emerging Therapies for Retinitis Pigmentosa: Basic Research and Clinical Perspectives. Prog. Retin. Eye Res. 2018, 63, 107–131. [Google Scholar] [CrossRef]
- Donato, L.; Abdalla, E.M.; Scimone, C.; Alibrandi, S.; Rinaldi, C.; Nabil, K.M.; D’Angelo, R.; Sidoti, A. Impairments of Photoreceptor Outer Segments Renewal and Phototransduction Due to a Peripherin Rare Haplotype Variant: Insights from Molecular Modeling. Int. J. Mol. Sci. 2021, 22, 3484. [Google Scholar] [CrossRef]
- Rao, K.N.; Li, L.; Zhang, W.; Brush, R.S.; Rajala, R.V.S.; Khanna, H. Loss of Human Disease Protein Retinitis Pigmentosa GTPase Regulator (RPGR) Differentially Affects Rod or Cone-Enriched Retina. Hum. Mol. Genet. 2016, 25, 1345–1356. [Google Scholar] [CrossRef] [Green Version]
- Arno, G.; Carss, K.J.; Hull, S.; Zihni, C.; Robson, A.G.; Fiorentino, A.; Hardcastle, A.J.; Holder, G.E.; Cheetham, M.E.; Plagnol, V.; et al. Biallelic Mutation of ARHGEF18, Involved in the Determination of Epithelial Apicobasal Polarity, Causes Adult-Onset Retinal Degeneration. Am. J. Hum. Genet. 2017, 100, 334–342. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, N.P.; Earp, H.S. An SH2 Domain-Dependent, Phosphotyrosine-Independent Interaction between Vav1 and the Mer Receptor Tyrosine Kinase: A Mechanism for Localizing Guanine Nucleotide-Exchange Factor Action. J. Biol. Chem. 2003, 278, 42596–42603. [Google Scholar] [CrossRef] [Green Version]
- NCBI Resource Coordinators; Agarwala, R.; Barrett, T.; Beck, J.; Benson, D.A.; Bollin, C.; Bolton, E.; Bourexis, D.; Brister, J.R.; Bryant, S.H.; et al. Database Resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2018, 46, D8–D13. [Google Scholar] [CrossRef] [Green Version]
- Kolesnikov, A.V.; Rikimaru, L.; Hennig, A.K.; Lukasiewicz, P.D.; Fliesler, S.J.; Govardovskii, V.I.; Kefalov, V.J.; Kisselev, O.G. G-Protein -Complex Is Crucial for Efficient Signal Amplification in Vision. J. Neurosci. 2011, 31, 8067–8077. [Google Scholar] [CrossRef]
- Scherer, S.W.; Feinstein, D.S.; Oliveira, L.; Tsui, L.-C.; Pittler, S.J. Gene Structure and Chromosome Localization to 7q21.3 of the Human Rod Photoreceptor Transducin γ-Subunit Gene (GNGT1). Genomics 1996, 35, 241–243. [Google Scholar] [CrossRef]
- Khan, S.M.; Min, A.; Gora, S.; Houranieh, G.M.; Campden, R.; Robitaille, M.; Trieu, P.; Pétrin, D.; Jacobi, A.M.; Behlke, M.A.; et al. Gβ 4 γ 1 as a Modulator of M3 Muscarinic Receptor Signalling and Novel Roles of Gβ 1 Subunits in the Modulation of Cellular Signalling. Cell. Signal. 2015, 27, 1597–1608. [Google Scholar] [CrossRef]
- Ng, A.; Uribe, R.A.; Yieh, L.; Nuckels, R.; Gross, J.M. Zebrafish Mutations in Gart and Paics Identify Crucial Roles for de Novo Purine Synthesis in Vertebrate Pigmentation and Ocular Development. Dev. Camb. Engl. 2009, 136, 2601–2611. [Google Scholar] [CrossRef] [Green Version]
- Massé, K.; Bhamra, S.; Eason, R.; Dale, N.; Jones, E.A. Purine-Mediated Signalling Triggers Eye Development. Nature 2007, 449, 1058–1062. [Google Scholar] [CrossRef] [PubMed]
- Sild, M.; Ruthazer, E.S. Radial Glia: Progenitor, Pathway, and Partner. Neuroscientist 2011, 17, 288–302. [Google Scholar] [CrossRef] [PubMed]
- Bringmann, A.; Pannicke, T.; Grosche, J.; Francke, M.; Wiedemann, P.; Skatchkov, S.; Osborne, N.; Reichenbach, A. Müller Cells in the Healthy and Diseased Retina. Prog. Retin. Eye Res. 2006, 25, 397–424. [Google Scholar] [CrossRef]
- Franze, K.; Grosche, J.; Skatchkov, S.N.; Schinkinger, S.; Foja, C.; Schild, D.; Uckermann, O.; Travis, K.; Reichenbach, A.; Guck, J. Muller Cells Are Living Optical Fibers in the Vertebrate Retina. Proc. Natl. Acad. Sci. USA 2007, 104, 8287–8292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volonté, Y.A.; Vallese-Maurizi, H.; Dibo, M.J.; Ayala-Peña, V.B.; Garelli, A.; Zanetti, S.R.; Turpaud, A.; Craft, C.M.; Rotstein, N.P.; Politi, L.E.; et al. A Defective Crosstalk Between Neurons and Müller Glial Cells in the Rd1 Retina Impairs the Regenerative Potential of Glial Stem Cells. Front. Cell. Neurosci. 2019, 13, 334. [Google Scholar] [CrossRef] [PubMed]
- Canola, K.; Ange´nieux, B.; Tekaya, M.; Quiambao, A.; Naash, M.I.; Munier, F.L.; Schorderet, D.F.; Arsenijevic, Y. Retinal Stem Cells Transplanted into Models of Late Stages of Retinitis Pigmentosa Preferentially Adopt a Glial or a Retinal Ganglion Cell Fate. Investig. Opthalmol. Vis. Sci. 2007, 48, 446. [Google Scholar] [CrossRef] [PubMed]
- Bringmann, A.; Wiedemann, P. Müller Glial Cells in Retinal Disease. Ophthalmologica 2012, 227, 1–19. [Google Scholar] [CrossRef]
- Bernardos, R.L.; Barthel, L.K.; Meyers, J.R.; Raymond, P.A. Late-Stage Neuronal Progenitors in the Retina Are Radial Muller Glia That Function as Retinal Stem Cells. J. Neurosci. 2007, 27, 7028–7040. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Yang, H.; Jiao, H.; Wang, S.; Liu, A.; Li, X.; Xiao, J.; Yang, Y.; Wu, X.; Xiong, H. Novel Copy Number Variation of POMGNT1 Associated with Muscle-Eye-Brain Disease Detected by next-Generation Sequencing. Sci. Rep. 2017, 7, 7056. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.H.-H.; Chen, S.-J.; Yang, C.-F.; Chen, H.-W.; Chuang, H.-P.; Lu, Y.-H.; Chen, C.-H.; Wu, J.-Y.; Niu, D.-M.; Chen, Y.-T. Homozygosity Mapping and Whole-Genome Sequencing Links a Missense Mutation in POMGNT1 to Autosomal Recessive Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3601–3609. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Yamada, T.; Sun, Z.; Eblimit, A.; Lopez, I.; Wang, F.; Manya, H.; Xu, S.; Zhao, L.; Li, Y.; et al. Mutations in POMGNT1 Cause Non-Syndromic Retinitis Pigmentosa. Hum. Mol. Genet. 2016, 25, 1479–1488. [Google Scholar] [CrossRef] [Green Version]
- Zelinger, L.; Banin, E.; Obolensky, A.; Mizrahi-Meissonnier, L.; Beryozkin, A.; Bandah-Rozenfeld, D.; Frenkel, S.; Ben-Yosef, T.; Merin, S.; Schwartz, S.B.; et al. A Missense Mutation in DHDDS, Encoding Dehydrodolichyl Diphosphate Synthase, Is Associated with Autosomal-Recessive Retinitis Pigmentosa in Ashkenazi Jews. Am. J. Hum. Genet. 2011, 88, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Züchner, S.; Dallman, J.; Wen, R.; Beecham, G.; Naj, A.; Farooq, A.; Kohli, M.A.; Whitehead, P.L.; Hulme, W.; Konidari, I.; et al. Whole-Exome Sequencing Links a Variant in DHDDS to Retinitis Pigmentosa. Am. J. Hum. Genet. 2011, 88, 201–206. [Google Scholar] [CrossRef] [Green Version]
Group | 1 | 2 | 3 | 4 |
---|---|---|---|---|
1 | 10 | - | - | - |
2 | 81 | 415 | - | - |
3 | 10 | 60 | 32 | - |
4 | 80 | 386 | 92 | 396 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, S.-B.; Ma, Y.-C.; Venkat, A.; Liu, C.-Y.; Zheng, J.J. Applying Protein–Protein Interactions and Complex Networks to Identify Novel Genes in Retinitis Pigmentosa Pathogenesis. Int. J. Mol. Sci. 2022, 23, 3962. https://doi.org/10.3390/ijms23073962
Yoon S-B, Ma Y-C, Venkat A, Liu C-Y, Zheng JJ. Applying Protein–Protein Interactions and Complex Networks to Identify Novel Genes in Retinitis Pigmentosa Pathogenesis. International Journal of Molecular Sciences. 2022; 23(7):3962. https://doi.org/10.3390/ijms23073962
Chicago/Turabian StyleYoon, Su-Bin, Yu-Chien (Calvin) Ma, Akaash Venkat, Chun-Yu (Audi) Liu, and Jie J. Zheng. 2022. "Applying Protein–Protein Interactions and Complex Networks to Identify Novel Genes in Retinitis Pigmentosa Pathogenesis" International Journal of Molecular Sciences 23, no. 7: 3962. https://doi.org/10.3390/ijms23073962
APA StyleYoon, S. -B., Ma, Y. -C., Venkat, A., Liu, C. -Y., & Zheng, J. J. (2022). Applying Protein–Protein Interactions and Complex Networks to Identify Novel Genes in Retinitis Pigmentosa Pathogenesis. International Journal of Molecular Sciences, 23(7), 3962. https://doi.org/10.3390/ijms23073962