DFT Quantum-Chemical Calculation of Thermodynamic Parameters and DSC Measurement of Thermostability of Novel Benzofuroxan Derivatives Containing Triazidoisobutyl Fragments
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Azidobenzofuroxans
2.2. Heats of Formation
2.3. Thermostability of Obtained Compound: TG/DSC Measurement
2.4. Thermodynamic Parameters Calculation Using REAL Version 3.0
2.5. Explosive Characteristics Calculation
3. Materials and Methods
3.1. 7-(1,3-Diazido-2-(azidomethyl)propan-2-ylamino)-4,6-dinitrobenzofuroxan (4a)
3.2. 5,7-Bis(1,3-diazido-2-(azidomethyl)propan-2-ylamino)-4,6-dinitrobenzofuroxan (4b)
3.3. Quantum Chemical Calculations
3.4. TG/DSC Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dos Santos Fernandes, G.F.; de Souza, P.C.; Marino, L.B.; Chegaev, K.; Guglielmo, S.; Lazzarato, L.; Fruttero, R.; Chung, M.C.; Pavan, F.R.; dos Santos, J.L. Synthesis and biological activity of furoxan derivatives against Mycobacterium tuberculosis. Eur. J. Med. Chem. 2016, 123, 523–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Bai, Z.-W.; Ling, Y.; He, L.-Q.; Huang, P.; Gu, H.-X.; Hu, R.-F. Design, synthesis and biological evaluation of novel furoxan-based coumarin derivatives as antitumor agents. Med. Chem. Res. 2018, 27, 1198–1205. [Google Scholar] [CrossRef]
- Abdelall, E.K.A. Synthesis and biological evaluations of novel isoxazoles and furoxan derivative as anti-inflammatory agents. Bioorg. Chem. 2020, 94, 103441. [Google Scholar] [CrossRef] [PubMed]
- Ustyuzhanina, N.E.; Fershtat, L.L.; Gening, M.L.; Nifantiev, N.E.; Makhova, N.N. New insight into the antiaggregant activity of furoxans. Mendeleev Commun. 2016, 26, 513–515. [Google Scholar] [CrossRef]
- Fershtat, L.L.; Ovchinnikov, I.V.; Epishina, M.A.; Romanova, A.A.; Lempert, D.B.; Muravyev, N.V.; Makhova, N.N. Assembly of Nitrofurazan and Nitrofuroxan Frameworks for High-Performance Energetic Materials. Chempluschem 2017, 82, 1315–1319. [Google Scholar] [CrossRef]
- Fershtat, L.L.; Makhova, N.N. 1,2,5-Oxadiazole-Based High-Energy-Density Materials: Synthesis and Performance. Chempluschem 2020, 85, 13–42. [Google Scholar] [CrossRef] [Green Version]
- Sarlauskas, J.; Anusevicius, Z.; Misiūnas, A. Benzofuroxan (Benzo[1,2-c]1,2,5-oxadiazole N-oxide) Derivatives as Potential Energetic Materials: Studies on Their Synthesis and Properties. Cent. Eur. J. Energ. Mater. 2012, 9, 365–385. [Google Scholar]
- Urbanski, T. Chemistry and Technology of Explosives; Pergamon Press: Oxford, UK, 1964; Volume 1, p. 603. [Google Scholar]
- Fedoroff, B.T.; Sheffield, O.E. Encyclopedia of Explosives and Related Items; Piccatiny Arsenal: Dover, NJ, USA, 1962; Volume 2, p. B45. [Google Scholar]
- Dobratz, B.M. LLNL Explosives Handbook Properties of Chemical Explosives and Explosive Simulants; LLNL University of California: Livermore, CA, USA, 1985. [Google Scholar]
- Quinlin, W.T.; Hayes, D.V. Synthesis of Benzotrifuroxane; (BTF) LLNL: Livermore, CA, USA, 1971. [Google Scholar]
- Christian, S.L.; Chafin, A.P.; Nielsen, A.T.; Atkins, R.L.; Norris, W.P.; Hollins, R.A. Synthesis of Aminonitrobenzodifuroxan. U.S. Patent US5149818A, 22 September 1992. [Google Scholar]
- Norris, W.P. Synthesis of 7-Amino-4,6-Dinitrobenzofuroxan. U.S. Patent USH476H, 22 April 1985. [Google Scholar]
- Weber, J.F. Synthesis of 7-Amino-4,6-Dinitrobenzofuroxan. European Patent EP0467033A1, 22 January 1992. [Google Scholar]
- Boezer, G.; Lewis, L.K.; Walker, R.F. Handbook of Energetic Materials for Weapons Systems Including Ballistic and Cruise Missiles; Institute for Defense Analyzes: Alexandria, Virginia, 1995. [Google Scholar]
- Norris, W.P. Insensitive High Density Explosive. U.S. Patent US5039812A, 13 August 1991. [Google Scholar]
- Norris, W.P.; Vanderah, D.J.; Kramer, M.P. Synthesis of 5,7-Diamino-4,6-Dinitrobenzofuroxan. U.S. Patent USH1078H, 7 July 1992. [Google Scholar]
- Norris, W.P.; Vanderah, D.J.; Kramer, M.P. Syntesis of 5,7-Diamino-4,6-Dinitrobenzofuroxan. U.S. Patent USH1304, 5 April 1994. [Google Scholar]
- Sharnin, G.P.; Falyakhov, I.F.; Yusupova, L.M.; Larionova, O.A. Chemistry of Energy-Intensive Compounds. Book 2. N-, O-Nitro Compounds, Furoxans, Furazans, Azides, Diazo Compounds: Text Edition; Ministry of Education and Science of Russia: Moscow, Russia; National Research Technological University: Kazan, Russia, 2011. [Google Scholar]
- Chugunova, E.A.; Voloshina, A.D.; Mukhamatdinova, R.E.; Serkov, I.V.; Proshin, A.N.; Gibadullina, E.M.; Burilov, A.R.; Kulik, N.V.; Zobov, V.V.; Krivolapov, D.B.; et al. The Study of the Biological Activity of Amino-Substituted Benzofuroxans. Lett. Drug Des. Discov. 2014, 11, 502–512. [Google Scholar] [CrossRef]
- Serkov, I.V.V.; Chugunova, E.A.A.; Burilov, A.R.R.; Bachurin, S.O.O. Synthesis of amino acid derivatives of benzofuroxan. Dokl. Chem. 2013, 450, 149–151. [Google Scholar] [CrossRef]
- Chugunova, E.A.; Sazykina, M.A.; Gibadullina, E.M.; Burilov, A.R.; Sazykin, I.S.; Chistyakov, V.A.; Timasheva, R.E.; Krivolapov, D.B.; Goumont, R. Synthesis, genotoxicity and UV-protective activity of new benzofuroxans substituted by aromatic amines. Lett. Drug Des. Discov. 2013, 10, 145–154. [Google Scholar] [CrossRef]
- Gibadullina, E.M.M.; Chugunova, E.A.A.; Mironova, E.V.V.; Krivolapov, D.B.B.; Burilov, A.R.R.; Yusupova, L.M.M.; Pudovik, M.A.A. Reaction of 4,6-Dichloro-5-nitrobenzofuroxan with aromatic amines and nitrogen-containing heterocycles. Chem. Heterocycl. Compd. 2012, 48, 1228–1234. [Google Scholar] [CrossRef]
- Chugunova, E.; Gazizov, A.; Sazykina, M.; Akylbekov, N.; Gildebrant, A.; Sazykin, I.; Burilov, A.; Appazov, N.; Karchava, S.; Klimova, M.; et al. Design of Novel 4-Aminobenzofuroxans and Evaluation of Their Antimicrobial and Anticancer Activity. Int. J. Mol. Sci. 2020, 21, 8292. [Google Scholar] [CrossRef] [PubMed]
- Chugunova, E.; Micheletti, G.; Telese, D.; Boga, C.; Islamov, D.; Usachev, K.; Burilov, A.; Tulesinova, A.; Voloshina, A.; Lyubina, A.; et al. Novel Hybrid Compounds Containing Benzofuroxan and Aminothiazole Scaffolds: Synthesis and Evaluation of Their Anticancer Activity. Int. J. Mol. Sci. 2021, 22, 7497. [Google Scholar] [CrossRef] [PubMed]
- Joo, Y.-H.; Shreeve, J.M. 1,3-Diazido-2-(azidomethyl)-2-propylammonium Salts. Inorg. Chem. 2009, 48, 8431–8438. [Google Scholar] [CrossRef] [PubMed]
- Zill, A.T.; Licha, K.; Haag, R.; Zimmerman, S.C. Synthesis and properties of fluorescent dyes conjugated to hyperbranched polyglycerols. New J. Chem. 2012, 36, 419–427. [Google Scholar] [CrossRef]
- Chabre, Y.M.; Giguère, D.; Blanchard, B.; Rodrigue, J.; Rocheleau, S.; Neault, M.; Rauthu, S.; Papadopoulos, A.; Arnold, A.A.; Imberty, A.; et al. Combining Glycomimetic and Multivalent Strategies toward Designing Potent Bacterial Lectin Inhibitors. Chem. Eur. J. 2011, 17, 6545–6562. [Google Scholar] [CrossRef]
- Díaz, D.D.; Punna, S.; Holzer, P.; McPherson, A.K.; Sharpless, K.B.; Fokin, V.V.; Finn, M.G. Click chemistry in materials synthesis. 1. Adhesive polymers from copper-catalyzed azide-alkyne cycloaddition. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 4392–4403. [Google Scholar] [CrossRef]
- Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Organic azides: An exploding diversity of a unique class of compounds. Angew. Chem. Int. Ed. Engl. 2005, 44, 5188–5240. [Google Scholar] [CrossRef]
- Sharnin, G.P.; Falyakhov, I.F. Introduction to the Technology of Energy-Rich Materials: Text Edition; Kazan State Technological University: Kazan, Russia, 2005; 392p. [Google Scholar]
- Mikhajlov, Y.M.; Gatina, R.F.; Korobkova, E.F.; Arutyunyan, A.S.; Kolganov, V.I.; Lyapin, N.M.; Konovalov, V.I.; Rkiev, R.R.; Nikoshina, K.K.; Khajrutdinova, A.F. High-Energy Pyroxylin Powder for Propelling Charges of Tank Artillery. Russian Patent RU2711143C1, 15 January 2020. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision B.01; Gaussian Inc.: Wallingford, UK, 2016. [Google Scholar]
- Becke, A.D. Density Functional Thermochemistry III the Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Parrish, D.A.; Shreeve, J.M. Derivatives of 5-nitro-1,2,3-2H-triazole—High performance energetic materials. J. Mater. Chem. A 2013, 1, 585–593. [Google Scholar] [CrossRef]
- Zhang, J.; Shreeve, J.M. 3,3′-Dinitroamino-4,4′-azoxyfurazan and Its Derivatives: An Assembly of Diverse N–O Building Blocks for High-Performance Energetic Materials. J. Am. Chem. Soc. 2014, 136, 4437–4445. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, J.; Wang, K.; Li, J.; Zhang, Q.; Shreeve, J.M. Bis(4-nitraminofurazanyl-3-azoxy)azofurazan and Derivatives: 1,2,5-Oxadiazole Structures and High-Performance Energetic Materials. Angew. Chemie Int. Ed. 2016, 55, 11548–11551. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, M.H.; Klapötke, T.M. The Properties of Energetic Materials: Sensitivity, Physical and Thermodynamic Properties; De Gruyter; Walter de Gruyter GmbH & Co KG: Berlin, Germany; Boston, MA, USA, 2017; ISBN 9783110521887. [Google Scholar]
- Westwell, M.S.; Searle, M.S.; Wales, D.J.; Williams, D.H. Empirical Correlations between Thermodynamic Properties and Intermolecular Forces. J. Am. Chem. Soc. 1995, 117, 5013–5015. [Google Scholar] [CrossRef]
- Trouton, F. IV On molecular latent heat. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1884, 18, 54–57. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, Z.; Li, Z.; Dong, Y.; Zheng, Y.; Sun, R.; Wang, L. A New Family of Energetic Complexes Constructed From Alkali Metals (K, Rb and Cs) and 7-Amino-4,6-dinitrobenzofuroxan: Crystal Structures, Thermal Decomposition Behaviors, Sensitivity and Catalytic Properties. J. Chem. Soc. Pakistan 2018, 40, 311–318. [Google Scholar]
- Agrawal, J.P.; Hodgson, R.D. Organic Chemistry of Explosives; Agrawal, J.P., Hodgson, R.D., Eds.; John Wiley and Sons, Ltd: Chichester, UK, 2007. [Google Scholar]
- Belov, G.V. Thermodynamic Analysis of Combustion Products at High Temperature and Pressure. Propellants Explos. Pyrotech. 1998, 23, 86–89. [Google Scholar] [CrossRef]
- Doherty, R.M.; Simpson, R.L. A Comparative Evaluation of Several Insensitive High Explosives. In Proceedings of the 28th International Annual Conference of ICT, Pfinztal, Germany, 24–27 June 1997; pp. 24–27. [Google Scholar]
- Agrawal, J.P. Recent trends in high-energy materials. Prog. Energy Combust. Sci. 1998, 24, 1–30. [Google Scholar] [CrossRef]
- Avakyan, G.A.; Dzerzhinsky, F.E. Calculation of Energy and Explosive Characteristics of Explosives: Work-Book; Military Engineering Academy: Moscow, Russia, 1964; 106p. [Google Scholar]
- Sugak, N.Y.; Mochalov, S.V. Calculation of Explosive Characteristics of Explosives; Tutorial; BTI AltGTU: Biysk, Russia, 2013. [Google Scholar]
Comp. | Tm, K | ΔHr(g), kJ/kg | ΔHf(g), kJ/kg | ΔHsub, kJ/kg | ΔHf a, kJ/kg | ΔHf b, kJ/kg |
---|---|---|---|---|---|---|
4a | 377 | 112.6 | 2825.8 | 168.7 | 2657.1 | 2611.7 |
4b | 435 | 80.4 | 3499.1 | 133.1 | 3365.9 | 3279.8 |
Compound | Tg, °C | Tm.p., °C | Tonset, °C | Td1, °C | Td2, °C | Td3, °C | Tf.p., °C |
---|---|---|---|---|---|---|---|
4a | −54.8 | 104.3 (43.4) | 176.5 | 205.4 (337.2) | 250.6 (10.5) | - | - |
4b | −57.9 (−45.3) a | - | 145.6 | 162.9 (306.0) | 228.1 (2.5) | 248.2 (7.2) | - |
1c (ADNBF) b | - | - | - | - | - | - | 279.6 |
1e (CL-14) b | - | - | - | 289.0 | - | - |
Compound | DADNBF (CL-14) | 4a | 4b |
---|---|---|---|
Sum. formula | C6H4N6O6 | C10H8N14O6 | C14H14N24O6 |
Mol. mass [g/mol] | 256.1 | 420.26 | 614.42 |
ρ [g/cm3] | 1.942 a 1.910 b | 1.654 c | solid oil |
ΔH°f [kJ/kg] | 337.05 d | 2640.03 e | 3414.6 e |
OB Ω [%] | −49.97 | −68.53 | −75.52 |
T [K] | 2992.97 | 3121.71 | 3096.78 |
µ [g/mol] | 23.69 | 23.27 | 21.88 |
Cp [kJ/(kg∙K)] | 1.61769 | 1.76853 | 1.87110 |
Cp/Cv | 1.27250 | 1.23038 | 1.21592 |
Cov [dm3/kg] | 1.179 | 1.174 | 1.177 |
FP [kJ/kg] | 1050.24 | 1040.91 | 1035.69 |
PP [kJ/kg] | 3804.88 | 4487.11 | 4765.42 |
Q *f [kJ/kg] | 3688.209 | 4713.065 | 4897.836 |
Compound | CL-14 | 4a | 4b | Comp. | CL-14 | 4a | 4b |
C2H2 | 0.05905 | 1.22774 | 1.37763 | NH3 | 0.06708 | 0.07333 | 0.10625 |
C2N2 | - | 0.05202 | 0.05549 | CH4 | 0.15837 | 0.53265 | 0.78604 |
C2H3 | - | 0.03044 | 0.03723 | H | 0.11406 | 0.16742 | 0.17056 |
C3H | - | 0.05927 | 0.05502 | NCN | - | 0.029 | 0.03091 |
CH3 | - | 0.07854 | 0.09924 | HCN | 1.1381 | 6.35595 | 7.26152 |
C3HN | - | 1.84419 | 2.00062 | HNCO | 0.0239 | - | - |
C4H2 | - | 0.30659 | 0.32669 | CO | 53.47079 | 35.3204 | 24.07324 |
C2H4 | - | 0.07693 | 0.10976 | H2 | 16.23264 | 16.26704 | 19.50845 |
CO2 | 0.45169 | 0.04108 | - | N2 | 27.11562 | 37.27977 | 43.74823 |
H2O | 1.07306 | 0.15374 | 0.13094 |
Compound | V a, L/kg | Qv a, kJ/kg | Td a, K | D, m/s | |
---|---|---|---|---|---|
According to G.A. Avakyan a at ρ = 1.6 | By Composition and Structure (According V.I. Pepekin) b | ||||
CL-14 (IIb) | 788 | 4031.86 | 3163.10 | 7441 | 8030 |
4a | 693 | 5554.99 | 3581.71 | 8012 | 8036 |
4b | 693 | 5866.77 | 3550.13 | 8220 | 8158 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chugunova, E.; Shaekhov, T.; Khamatgalimov, A.; Gorshkov, V.; Burilov, A. DFT Quantum-Chemical Calculation of Thermodynamic Parameters and DSC Measurement of Thermostability of Novel Benzofuroxan Derivatives Containing Triazidoisobutyl Fragments. Int. J. Mol. Sci. 2022, 23, 1471. https://doi.org/10.3390/ijms23031471
Chugunova E, Shaekhov T, Khamatgalimov A, Gorshkov V, Burilov A. DFT Quantum-Chemical Calculation of Thermodynamic Parameters and DSC Measurement of Thermostability of Novel Benzofuroxan Derivatives Containing Triazidoisobutyl Fragments. International Journal of Molecular Sciences. 2022; 23(3):1471. https://doi.org/10.3390/ijms23031471
Chicago/Turabian StyleChugunova, Elena, Timur Shaekhov, Ayrat Khamatgalimov, Vladimir Gorshkov, and Alexander Burilov. 2022. "DFT Quantum-Chemical Calculation of Thermodynamic Parameters and DSC Measurement of Thermostability of Novel Benzofuroxan Derivatives Containing Triazidoisobutyl Fragments" International Journal of Molecular Sciences 23, no. 3: 1471. https://doi.org/10.3390/ijms23031471
APA StyleChugunova, E., Shaekhov, T., Khamatgalimov, A., Gorshkov, V., & Burilov, A. (2022). DFT Quantum-Chemical Calculation of Thermodynamic Parameters and DSC Measurement of Thermostability of Novel Benzofuroxan Derivatives Containing Triazidoisobutyl Fragments. International Journal of Molecular Sciences, 23(3), 1471. https://doi.org/10.3390/ijms23031471