Multiple Abiotic Stresses Applied Simultaneously Elicit Distinct Responses in Two Contrasting Rice Cultivars
Abstract
:1. Introduction
2. Results
2.1. Physiological Responses to Multiple Abiotic Stress
2.1.1. Gas Exchange
2.1.2. Abscisic Acid Concentrations
2.2. Quantitative Proteomic Analysis of Rice Leaves under Multiple Abiotic Stress
2.2.1. Differential Response to Multiple Abiotic Stress
2.2.2. Proteome Response across Genotypes and Stress Treatments
2.2.3. Common Differentially Abundant Proteins
2.2.4. Proteins of Unknown Function Found to Be Differentially Abundant in All Conditions
2.3. Functional Enrichment Analysis of Proteins Significantly Changed in Response to Stress
3. Discussion
4. Materials and Methods
4.1. Plant Material and Stress Treatment
4.2. Physiological Measurements
4.2.1. Gas Exchange Parameters
4.2.2. Abscisic Acid (ABA) Assay
4.3. Proteome Quantification and Analysis
4.3.1. Protein Extraction and Assay
4.3.2. Trypsin In-Solution Digestion and Peptide Extraction
4.3.3. Tandem Mass Tag (TMT) Labelling and Fractionation
4.3.4. Nano LC-MS/MS
4.3.5. Peptide to Spectrum Matching
4.3.6. Analysis of Quantitative Proteomics TMT Data
4.3.7. Gene Ontology (GO) Functional Enrichment Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashikari, M.; Ma, J.F. Exploring the Power of Plants to Overcome Environmental Stresses. Rice 2015, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Almeida, T.E.; Hennequin, S.; Schneider, H.; Smith, A.R.; Batista, J.A.N.; Ramalho, A.J.; Proite, K.; Salino, A. Towards a Phylogenetic Generic Classification of thelypteridaceae: Additional Sampling Suggests Alterations of Neotropical Taxa and further Study of Paleotropical Genera. Mol. Phylogenet. Evol. 2016, 94, 688–700. [Google Scholar] [CrossRef] [PubMed]
- Mittler, R. Abiotic Stress, the Field Environment and Stress Combination. Trends Plant Sci. 2006, 11, 15–19. [Google Scholar] [CrossRef]
- Suzuki, N.; Rivero, R.M.; Shulaev, V.; Blumwald, E.; Mittler, R. Abiotic and Biotic Stress Combinations. New Phytol. 2014, 203, 32–43. [Google Scholar] [CrossRef]
- Pandey, P.; Ramegowda, V.; Senthil-Kumar, M. Shared and Unique Responses of Plants to Multiple Individual Stresses and Stress Combinations: Physiological and Molecular Mechanisms. Front. Plant Sci. 2015, 6, 723. [Google Scholar] [CrossRef] [Green Version]
- Prasch, C.M.; Sonnewald, U. Signaling Events in Plants: Stress Factors in Combination Change the Picture. Environ. Exp. Bot. 2015, 114, 4–14. [Google Scholar] [CrossRef]
- Liu, C.; Wang, H.; Zhang, X.; Ma, F.; Guo, T.; Li, C. Activation of the Aba Signal Pathway Mediated by Gaba Improves the Drought Resistance of Apple Seedlings. Int. J. Mol. Sci. 2021, 22, 12676. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xu, F.; Chen, Z.; Teng, Z.; Sun, K.; Li, X.; Yu, J.; Zhang, G.; Liang, Y.; Huang, X.; et al. Synergistic Interplay of Aba and Br Signal in Regulating Plant Growth and Adaptation. Nat. Plants 2021, 7, 1108–1118. [Google Scholar] [CrossRef] [PubMed]
- Sharma, E.; Borah, P.; Kaur, A.; Bhatnagar, A.; Mohapatra, T.; Kapoor, S.; Khurana, J.P. A Comprehensive Transcriptome Analysis of Contrasting Rice Cultivars Highlights the Role of Auxin and Aba Responsive Genes in Heat Stress Response. Genomics 2021, 113, 1247–1261. [Google Scholar] [CrossRef]
- Kempa, S.; Krasensky, J.; Dal Santo, S.; Kopka, J.; Jonak, C. A Central Role of Abscisic Acid in Stress-Regulated Carbohydrate Metabolism. PLoS ONE 2008, 3, e3935. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.K. Salt and Drought Stress Signal Transduction in Plants. Annu. Rev. Plant Biol. 2002, 53, 247–273. [Google Scholar] [CrossRef] [Green Version]
- Cruz, D.F.; De Meyer, S.; Ampe, J.; Sprenger, H.; Herman, D.; Van Hautegem, T.; De Block, J.; Inze, D.; Nelissen, H.; Maere, S. Using Single-Plant-Omics in the Field to Link Maize Genes to Functions and Phenotypes. Mol. Syst. Biol. 2020, 16, e9667. [Google Scholar] [CrossRef] [PubMed]
- Shah, T.; Xu, J.; Zou, X.; Cheng, Y.; Nasir, M.; Zhang, X. Omics Approaches for Engineering Wheat Production under Abiotic Stresses. Int. J. Mol. Sci. 2018, 19, 2390. [Google Scholar] [CrossRef] [Green Version]
- Gehan, M.A.; Park, S.; Gilmour, S.J.; An, C.; Lee, C.M.; Thomashow, M.F. Natural Variation in the C-Repeat Binding Factor Cold Response Pathway Correlates with Local Adaptation of Arabidopsis Ecotypes. Plant J. Cell Mol. Biol. 2015, 84, 682–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumari, S.; Singh, P.; Singla-Pareek, S.L.; Pareek, A. Heterologous Expression of a Salinity and Developmentally Regulated Rice Cyclophilin Gene (Oscyp2) in e. Coli and s. Cerevisiae Confers Tolerance towards Multiple Abiotic Stresses. Mol. Biotechnol. 2009, 42, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Mirzaei, M.; Pascovici, D.; Haynes, P.A.; Atwell, B.J. Proteomes of Leaf-Growing Zones in Rice Genotypes with Contrasting Drought Tolerance. Proteomics 2019, 19, e1800310. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C.; Li, Y.C. The Role of Nutrient Efficient Plants in Improving Crop Yields in the Twenty First Century. J. Plant Nutr. 2008, 31, 1121–1157. [Google Scholar] [CrossRef]
- Wu, Y.; Mirzaei, M.; Pascovici, D.; Chick, J.M.; Atwell, B.J.; Haynes, P.A. Quantitative Proteomic Analysis of Two Different Rice Varieties Reveals That Drought Tolerance Is Correlated with Reduced Abundance of Photosynthetic Machinery and Increased Abundance of CLPD1 Protease. J. Proteom. 2016, 143, 73–82. [Google Scholar] [CrossRef]
- Herve, P.; Kayano, T. Japonica Rice Varieties (Oryza Sativa, Nipponbare, and Others). Methods Mol. Biol. 2006, 343, 213–222. [Google Scholar]
- Atwell, B.J. Well-Designed Experiments Make Proteomic Studies on Stressed Plants Meaningful. In Agricultural Proteomics Volume 2; Salekdeh, G.J., Ed.; Springer: New York, NY, USA, 2016; pp. 1–18. [Google Scholar]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef]
- Kosová, K.; Vítámvás, P.; Urban, M.O.; Prášil, I.T.; Renaut, J. Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome. Front. Plant Sci. 2018, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Pattanagul, W.; Thitisaksakul, M. Effect of Salinity Stress on Growth and Carbohydrate Metabolism in Three Rice (oryza sativa l.) Cultivars Differing in Salinity Tolerance. Indian J. Exp. Biol. 2008, 46, 736–742. [Google Scholar] [PubMed]
- Ye, Y.; Yuan, J.; Chang, X.; Yang, M.; Zhang, L.; Lu, K.; Lian, X. The Phosphate Transporter Gene ospht1;4 Is Involved in Phosphate Homeostasis in Rice. PLoS ONE 2015, 10, e0126186. [Google Scholar] [CrossRef] [Green Version]
- Hamzelou, S.; Pascovici, D.; Kamath, K.S.; Amirkhani, A.; McKay, M.; Mirzaei, M.; Atwell, B.J.; Haynes, P.A. Proteomic Responses to Drought Vary Widely among Eight Diverse Genotypes of Rice (oryza sativa). Int. J. Mol. Sci. 2020, 21, 363. [Google Scholar] [CrossRef] [Green Version]
- Pang, Q.; Chen, S.; Dai, S.; Chen, Y.; Wang, Y.; Yan, X. Comparative Proteomics of Salt Tolerance in Arabidopsis thaliana and Thellungiella halophila. J. Proteom. Res. 2010, 9, 2584–2599. [Google Scholar] [CrossRef]
- Kosova, K.; Prasil, I.T.; Vitamvas, P.; Dobrev, P.; Motyka, V.; Flokova, K.; Novak, O.; Tureckova, V.; Rolcik, J.; Pesek, B.; et al. Complex Phytohormone Responses during the Cold Acclimation of Two Wheat Cultivars Differing in Cold Tolerance, Winter Samanta and Spring Sandra. J. Plant Physiol. 2012, 169, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, D.W. Genetic Engineering to Improve Plant Performance under Drought: Physiological Evaluation of Achievements, Limitations, and Possibilities. J. Exp. Bot. 2012, 64, 83–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Z.; Wang, M.; Li, F.; Lv, H.; Li, C.; Xia, G. A Proteomic Study of the Response to Salinity and Drought Stress in an Introgression Strain of Bread Wheat. Mol. Cell. Proteom. 2009, 8, 2676–2686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szopinska, A.; Degand, H.; Hochstenbach, J.F.; Nader, J.; Morsomme, P. Rapid Response of the Yeast Plasma Membrane Proteome to Salt Stress. Mol. Cell. Proteom. 2011, 10, M111.009589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folgado, R.; Panis, B.; Sergeant, K.; Renaut, J.; Swennen, R.; Hausman, J.F. Differential Protein Expression in Response to Abiotic Stress in Two Potato Species: Solanum commersonii Dun and solanum tuberosum L. Int. J. Mol. Sci. 2013, 14, 4912–4933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seif El-Yazal, S.A.; Seif El-Yazal, M.A.; Dwidar, E.F.; Rady, M.M. Phytohormone Crosstalk Research: Cytokinin and Its Crosstalk with Other Phytohormones. Curr. Protein Pept. Sci. 2015, 16, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, B.; Chen, L.; Li, P.; Cao, C. The Different Influences of Drought Stress at the Flowering Stage on Rice Physiological Traits, Grain Yield, and Quality. Sci. Rep. 2019, 9, 3742. [Google Scholar] [CrossRef] [Green Version]
- Alves, M.S.; Dadalto, S.P.; Gonçalves, A.B.; De Souza, G.B.; Barros, V.A.; Fietto, L.G. Plant Bzip Transcription Factors Responsive to Pathogens: A Review. Int. J. Mol. Sci. 2013, 14, 7815–7828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakra, N.; Nutan, K.K.; Das, P.; Anwar, K.; Singla-Pareek, S.L.; Pareek, A. A Nuclear-Localized Histone-Gene Binding Protein from Rice (oshbp1b) Functions in Salinity and Drought Stress Tolerance by Maintaining Chlorophyll Content and Improving the Antioxidant Machinery. J. Plant Physiol. 2015, 176, 36–46. [Google Scholar] [CrossRef]
- Lee, K.H.; Piao, H.L.; Kim, H.-Y.; Choi, S.M.; Jiang, F.; Hartung, W.; Hwang, I.; Kwak, J.M.; Lee, I.-J.; Hwang, I. Activation of Glucosidase via Stress-Induced Polymerization Rapidly Increases Active Pools of Abscisic Acid. Cell 2006, 126, 1109–1120. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Zou, H.-F.; Wang, H.-W.; Zhang, W.-K.; Ma, B.; Zhang, J.-S.; Chen, S.-Y. Soybean gmmyb76, gmmyb92, and gmmyb177 Genes Confer Stress Tolerance in Transgenic Arabidopsis Plants. Cell Res. 2008, 18, 1047–1060. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Mao, B.; Ou, S.; Wang, W.; Liu, L.; Wu, Y.; Chu, C.; Wang, X. Osbzip71, a Bzip Transcription Factor, Confers Salinity and Drought Tolerance in Rice. Plant Mol. Biol. 2014, 84, 19–36. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, Y.; Guo, Z. Constitutive Expression of Pathogen-Inducible oswrky31 Enhances Disease Resistance and Affects Root Growth and Auxin Response in Transgenic Rice Plants. Cell Res. 2008, 18, 508–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Głowacka, K.; Kromdijk, J.; Kucera, K.; Xie, J.; Cavanagh, A.P.; Leonelli, L.; Leakey, A.D.B.; Ort, D.R.; Niyogi, K.K.; Long, S.P. Photosystem ii Subunit s Overexpression Increases the Efficiency of Water Use in a Field-Grown Crop. Nat. Commun. 2018, 9, 868. [Google Scholar] [CrossRef] [Green Version]
- Sasi, S.; Venkatesh, J.; Daneshi, R.F.; Gururani, M.A. Photosystem ii Extrinsic Proteins and Their Putative Role in Abiotic Stress Tolerance in Higher Plants. Plants 2018, 7, 100. [Google Scholar] [CrossRef] [Green Version]
- Schumann, W. Function and Regulation of Temperature-Inducible Bacterial Proteins on the Cellular Metabolism. Adv. Biochem. Eng. Biotechnol. 2000, 67, 1–33. [Google Scholar]
- Shinozaki, K.; Yamaguchi-Shinozaki, K. Gene Networks Involved in Drought Stress Response and Tolerance. J. Exp. Bot. 2006, 58, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Yang, J.; Yan, S.; Zhang, S.; Zhao, J.; Wang, W.; Yang, T.; Wang, X.; Mao, X.; Dong, J.; et al. The Germin-Like Protein osglp2-1 Enhances Resistance to Fungal Blast and Bacterial Blight in Rice. Plant Mol. Biol. 2016, 92, 411–423. [Google Scholar] [CrossRef]
- Liang, S.; Xiong, W.; Yin, C.; Xie, X.; Jin, Y.-J.; Zhang, S.; Yang, B.; Ye, G.; Chen, S.; Luan, W.-J. Overexpression of osard1 Improves Submergence, Drought, and Salt Tolerances of Seedling through the Enhancement of Ethylene Synthesis in Rice. Front. Plant Sci. 2019, 10, 1088. [Google Scholar] [CrossRef]
- Bartsch, I.; Wiencke, C.; Bischof, K.; Buchholz, C.M.; Buck, B.H.; Eggert, A.; Feuerpfeil, P.; Hanelt, D.; Jacobsen, S.; Karez, R. The Genus laminaria sensu lato: Recent Insights and Developments. Eur. J. Phycol. 2008, 43, 1–86. [Google Scholar] [CrossRef]
- Sobhanian, H.; Razavizadeh, R.; Nanjo, Y.; Ehsanpour, A.A.; Jazii, F.R.; Motamed, N.; Komatsu, S. Proteome Analysis of Soybean Leaves, Hypocotyls and Roots under Salt Stress. Proteome Sci. 2010, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Peng, Y.; Liu, E.; Ma, H.; Qiao, K.; Zhou, A.; Liu, S.; Bu, Y. Arabidopsis v-atpase d2 Subunit Plays a Role in Plant Responses to Oxidative Stress. Genes 2020, 11, 701. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Zhu, J.-K. Molecular and Genetic Aspects of Plant Responses to Osmotic Stress. Plant Cell Environ. 2002, 25, 131–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manaa, A.; Ben Ahmed, H.; Valot, B.; Bouchet, J.-P.; Aschi-Smiti, S.; Causse, M.; Faurobert, M. Salt and Genotype Impact on Plant Physiology and Root Proteome Variations in Tomato. J. Exp. Bot. 2011, 62, 2797–2813. [Google Scholar] [CrossRef] [Green Version]
- Mishra, R.; Joshi, R.K.; Zhao, K. Genome Editing in Rice: Recent Advances, Challenges, and Future Implications. Front. Plant Sci. 2018, 9, 1361. [Google Scholar] [CrossRef] [PubMed]
- Schöffl, F.; Prändl, R.; Reindl, A. Regulation of the Heat-Shock Response. Plant Physiol. 1998, 117, 1135–1141. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Luo, C.; Guo, L.; Li, M.; Guo, X.; Zhang, Y.; Wang, L.; Chen, L. Ossidp366, a duf1644 Gene, Positively Regulates Responses to Drought and Salt Stresses in Rice. J. Integr. Plant Biol. 2016, 58, 492–502. [Google Scholar] [CrossRef]
- Kotak, S.; Vierling, E.; Baumlein, H.; von Koskull-Doring, P. A Novel Transcriptional Cascade Regulating Expression of Heat Stress Proteins during Seed Development of Arabidopsis. Plant Cell 2007, 19, 182–195. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Rachmilevitch, S.; Xu, J. Root Carbon and Protein Metabolism Associated with Heat Tolerance. J. Exp. Bot. 2012, 63, 3455–3465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Zhang, X.; Goatley, M.; Ervin, E. Heat Shock Proteins in Relation to Heat Stress Tolerance of Creeping Bentgrass at Different n Levels. PLoS ONE 2014, 9, e102914. [Google Scholar]
- Wang, W.; Vinocur, B.; Shoseyov, O.; Altman, A. Role of Plant Heat-Shock Proteins and Molecular Chaperones in the Abiotic Stress Response. Trends Plant Sci. 2004, 9, 244–252. [Google Scholar] [CrossRef]
- Li, R.-J.; Lu, W.-J.; Guo, C.-J.; Li, X.-J.; Gu, J.-T.; Kai, X. Molecular Characterization and Functional Analysis of osphy1, a Purple Acid Phosphatase (pap)–Type Phytase Gene in Rice (oryza sativa L.). J. Integr. Agric. 2012, 11, 1217–1226. [Google Scholar] [CrossRef]
- Singh, A.; Jha, S.K.; Bagri, J.; Pandey, G.K. Aba Inducible Rice Protein Phosphatase 2c Confers Aba Insensitivity and Abiotic Stress Tolerance in Arabidopsis. PLoS ONE 2015, 10, e0125168. [Google Scholar] [CrossRef] [Green Version]
- Chinnusamy, V.; Schumaker, K.; Zhu, J.K. Molecular Genetic Perspectives on Cross-Talk and Specificity in Abiotic Stress Signalling in Plants. J. Exp. Bot. 2004, 55, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Fujita, N.; Satoh, R.; Hayashi, A.; Kodama, M.; Itoh, R.; Aihara, S.; Nakamura, Y. Starch Biosynthesis in Rice Endosperm Requires the Presence of Either Starch Synthase i or iiia. J. Exp. Bot. 2011, 62, 4819–4831. [Google Scholar] [CrossRef] [Green Version]
- Sawada, Y.; Akiyama, K.; Sakata, A.; Kuwahara, A.; Otsuki, H.; Sakurai, T.; Saito, K.; Hirai, M.Y. Widely Targeted Metabolomics Based on Large-Scale ms/ms Data for Elucidating Metabolite Accumulation Patterns in Plants. Plant Cell Physiol. 2008, 50, 37–47. [Google Scholar] [CrossRef]
- Kaplan, F.; Kopka, J.; Haskell, D.W.; Zhao, W.; Schiller, K.C.; Gatzke, N.; Sung, D.Y.; Guy, C.L. Exploring the Temperature-Stress Metabolome of Arabidopsis. Plant Physiol. 2004, 136, 4159–4168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schauer, N.; Fernie, A.R. Plant Metabolomics: Towards Biological Function and Mechanism. Trends Plant Sci. 2006, 11, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Harrison, E.M.; Sharpe, E.; Bellamy, C.O.; McNally, S.J.; Devey, L.; Garden, O.J.; Ross, J.A.; Wigmore, S.J. Heat Shock Protein 90-Binding Agents Protect Renal Cells from Oxidative Stress and Reduce Kidney Ischemia-Reperfusion Injury. Am. J. Physiol. Ren. Physiol. 2008, 295, F397–F405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaufman, R.J. Stress Signaling from the Lumen of the Endoplasmic Reticulum: Coordination of Gene Transcriptional and Translational Controls. Genes Dev. 1999, 13, 1211–1233. [Google Scholar] [CrossRef] [Green Version]
- Lindquist, S.; Craig, E.A. The Heat-Shock Proteins. Annu. Rev. Genet. 1988, 22, 631–677. [Google Scholar] [CrossRef] [PubMed]
- Walter, P.; Ron, D. The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation. Science 2011, 334, 1081–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.V.; Wigge, P.A. H2a.Z-Containing Nucleosomes Mediate the Thermosensory Response in Arabidopsis. Cell 2010, 140, 136–147. [Google Scholar] [CrossRef] [Green Version]
- Scharf, K.-D.; Berberich, T.; Ebersberger, I.; Nover, L. The Plant Heat Stress Transcription Factor (hsf) Family: Structure, Function and Evolution. Biochim. Biophys. Acta (BBA)—Gene Regul. Mech. 2012, 1819, 104–119. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, E.W.; Bandeira, N.; Sharma, V.; Perez-Riverol, Y.; Carver, J.J.; Kundu, D.J.; Garcia-Seisdedos, D.; Jarnuczak, A.F.; Hewapathirana, S.; Pullman, B.S.; et al. The Proteomexchange Consortium in 2020: Enabling ‘Big Data’ Approaches in Proteomics. Nucleic Acid. Res 2020, 48, D1145–D1152. [Google Scholar] [CrossRef] [Green Version]
- Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Llinares, M.; Hewapathirana, S.; Kundu, D.J.; Inuganti, A.; Griss, J.; Mayer, G.; Eisenacher, M.; et al. The Pride Database and Related Tools and Resources in 2019: Improving Support for Quantification Data. Nucleic Acid. Res 2019, 47, D442–D450. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, M.; Pascovici, D.; Wu, J.X.; Chick, J.; Wu, Y.; Cooke, B.; Haynes, P.A.; Molloy, M.P. Tmt One-Stop Shop: From Reliable Sample Preparation to Computational Analysis Platform. Methods Mol. Biol. 2017, 1549, 45–66. [Google Scholar] [PubMed]
- Pascovici, D.; Keighley, T.; Mirzaei, M.; Haynes, P.A.; Cooke, B. Plogo: Plotting Gene Ontology Annotation and Abundance in Multi-Condition Proteomics Experiments. Proteomics 2012, 12, 406–410. [Google Scholar] [CrossRef]
- Supek, F.; Bosnjak, M.; Skunca, N.; Smuc, T. Revigo Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS ONE 2011, 6, e21800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habibpourmehraban, F.; Wu, Y.; Wu, J.X.; Hamzelou, S.; Masoomi-Aladizgeh, F.; Kamath, K.S.; Amirkhani, A.; Atwell, B.J.; Haynes, P.A. Multiple Abiotic Stresses Applied Simultaneously Elicit Distinct Responses in Two Contrasting Rice Cultivars. Int. J. Mol. Sci. 2022, 23, 1739. https://doi.org/10.3390/ijms23031739
Habibpourmehraban F, Wu Y, Wu JX, Hamzelou S, Masoomi-Aladizgeh F, Kamath KS, Amirkhani A, Atwell BJ, Haynes PA. Multiple Abiotic Stresses Applied Simultaneously Elicit Distinct Responses in Two Contrasting Rice Cultivars. International Journal of Molecular Sciences. 2022; 23(3):1739. https://doi.org/10.3390/ijms23031739
Chicago/Turabian StyleHabibpourmehraban, Fatemeh, Yunqi Wu, Jemma X. Wu, Sara Hamzelou, Farhad Masoomi-Aladizgeh, Karthik Shantharam Kamath, Ardeshir Amirkhani, Brian J. Atwell, and Paul A. Haynes. 2022. "Multiple Abiotic Stresses Applied Simultaneously Elicit Distinct Responses in Two Contrasting Rice Cultivars" International Journal of Molecular Sciences 23, no. 3: 1739. https://doi.org/10.3390/ijms23031739
APA StyleHabibpourmehraban, F., Wu, Y., Wu, J. X., Hamzelou, S., Masoomi-Aladizgeh, F., Kamath, K. S., Amirkhani, A., Atwell, B. J., & Haynes, P. A. (2022). Multiple Abiotic Stresses Applied Simultaneously Elicit Distinct Responses in Two Contrasting Rice Cultivars. International Journal of Molecular Sciences, 23(3), 1739. https://doi.org/10.3390/ijms23031739