Cellulose Cryogels as Promising Materials for Biomedical Applications
Abstract
:1. Introduction
2. Cellulose as a Source for Producing Biomedical Materials
3. Advantages of Freeze-Drying and Factors Affecting the Structure and Properties of Cryogels
3.1. Type and Degree of Crosslinking
3.2. Concentration and Molecular Weight of the Polymer
3.3. Gelation and Cryoconcentration Parameters
3.4. Capillary Forces
3.5. Freezing Parameters
4. Cellulose-Based Cryogels and Their Applications in Biomedicine
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bakhshpour, M.; Idil, N.; Perçin, I.; Denizli, A. Biomedical applications of polymeric cryogels. Appl. Sci. 2019, 9, 553. [Google Scholar] [CrossRef] [Green Version]
- Jones, L.O.; Williams, L.; Boam, T.; Kalmet, M.; Oguike, C.; Hatton, F.L. Cryogels: Recent applications in 3D-bioprinting, injectable cryogels, drug delivery, and wound healing. Beilstein J. Org. Chem. 2021, 17, 2553–2569. [Google Scholar] [CrossRef] [PubMed]
- Hixon, K.R.; Lu, T.; Sell, S.A. A comprehensive review of cryogels and their roles in tissue engineering applications. Acta Biomaterialia 2017, 62, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Arvidsson, P.; Plieva, F.M.; Lozinsky, V.I.; Galaev, I.Y.; Mattiasson, B. Direct chromatographic capture of enzyme from crude homogenate using immobilized metal affinity chromatography on a continuous supermacroporous adsorbent. J. Chromatogr. A 2003, 986, 275–290. [Google Scholar] [CrossRef]
- Liu, P.; Chen, W.; Bai, S.; Wang, Q.; Duan, W. Facile preparation of poly (vinyl alcohol)/graphene oxide nanocomposites and their foaming behavior in supercritical carbon dioxide. Compos. Part A Appl. Sci. Manuf. 2018, 107, 675–684. [Google Scholar] [CrossRef]
- Lozinsky, V.I.; Plieva, F.M.; Galaev, I.Y.; Mattiasson, B. The potential of polymeric cryogels in bioseparation. Bioseparation 2001, 10, 163–188. [Google Scholar] [CrossRef]
- Kemençe, N.; Bölgen, N. Gelatin-and hydroxyapatite-based cryogels for bone tissue engineering: Synthesis, characterization, in vitro and in vivo biocompatibility. J. Tissue Eng. Regen. Med. 2017, 11, 20–33. [Google Scholar] [CrossRef]
- Zhao, S.; Malfait, W.J.; Guerrero-Alburquerque, N.; Koebel, M.M.; Nyström, G. Biopolymer aerogels and foams: Chemistry, properties, and applications. Angew. Chem. Int. Ed. 2018, 57, 7580–7608. [Google Scholar] [CrossRef]
- Surya, I.; Olaiya, N.; Rizal, S.; Zein, I.; Sri Aprilia, N.; Hasan, M.; Yahya, E.B.; Sadasivuni, K.; Abdul Khalil, H. Plasticizer enhancement on the miscibility and thermomechanical properties of polylactic acid-chitin-starch composites. Polymers 2020, 12, 115. [Google Scholar] [CrossRef] [Green Version]
- Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef]
- Bajpai, S.; Swarnkar, M. New semi-ipn hydrogels based on cellulose for biomedical application. J. Polym. 2014, 2014, 376754. [Google Scholar] [CrossRef]
- Ferreira, E.S.; Rezende, C.A.; Cranston, E.D. Fundamentals of cellulose lightweight materials: Bio-based assemblies with tailored properties. Green Chem. 2021, 23, 3542–3568. [Google Scholar] [CrossRef]
- Jorfi, M.; Foster, E.J. Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci. 2015, 132, 14. [Google Scholar] [CrossRef]
- Nemoto, J.; Saito, T.; Isogai, A. Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters. ACS Appl. Mater. Interfaces 2015, 7, 19809–19815. [Google Scholar] [CrossRef]
- Courtenay, J.C.; Filgueiras, J.G.; Deazevedo, E.R.; Jin, Y.; Edler, K.J.; Sharma, R.I.; Scott, J.L. Mechanically robust cationic cellulose nanofibril 3D scaffolds with tuneable biomimetic porosity for cell culture. J. Mater. Chem. B 2019, 7, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Béduer, A.; Braschler, T.; Peric, O.; Fantner, G.E.; Mosser, S.; Fraering, P.C.; Benchérif, S.; Mooney, D.J.; Renaud, P. A compressible scaffold for minimally invasive delivery of large intact neuronal networks. Adv. Healthc. Mater. 2015, 4, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Naseri, N.; Poirier, J.-M.; Girandon, L.; Fröhlich, M.; Oksman, K.; Mathew, A.P. 3-dimensional porous nanocomposite scaffolds based on cellulose nanofibers for cartilage tissue engineering: Tailoring of porosity and mechanical performance. Rsc Adv. 2016, 6, 5999–6007. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.; Li, Q.; Chen, W.; Yu, H. Composite aerogels based on dialdehyde nanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold. Compos. Sci. Technol. 2014, 94, 132–138. [Google Scholar] [CrossRef]
- Hickey, R.J.; Pelling, A.E. Cellulose biomaterials for tissue engineering. Front. Bioeng. Biotechnol. 2019, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Korhonen, O.; Budtova, T. All-cellulose composite aerogels and cryogels. Compos. Part A Appl. Sci. Manuf. 2020, 137, 106027. [Google Scholar] [CrossRef]
- Buchtová, N.; Pradille, C.; Bouvard, J.-L.; Budtova, T. Mechanical properties of cellulose aerogels and cryogels. Soft Matter 2019, 15, 7901–7908. [Google Scholar] [CrossRef] [PubMed]
- Baimenov, A.; Berillo, D.A.; Poulopoulos, S.G.; Inglezakis, V.J. A review of cryogels synthesis, characterization and applications on the removal of heavy metals from aqueous solutions. Adv. Colloid Interface Sci. 2020, 276, 102088. [Google Scholar] [CrossRef] [PubMed]
- Eggermont, L.J.; Rogers, Z.J.; Colombani, T.; Memic, A.; Bencherif, S.A. Injectable cryogels for biomedical applications. Trends Biotechnol. 2020, 38, 418–431. [Google Scholar] [CrossRef] [PubMed]
- Memic, A.; Colombani, T.; Eggermont, L.J.; Rezaeeyazdi, M.; Steingold, J.; Rogers, Z.J.; Navare, K.J.; Mohammed, H.S.; Bencherif, S.A. Latest advances in cryogel technology for biomedical applications. Adv. Ther. 2019, 2, 1800114. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, F.V.; Otoni, C.G.; Kevin, J.; Barud, H.S.; Lona, L.M.; Cranston, E.D.; Rojas, O.J. Porous nanocellulose gels and foams: Breakthrough status in the development of scaffolds for tissue engineering. Mater. Today 2020, 37, 126–141. [Google Scholar] [CrossRef]
- Trygg, J.; Fardim, P.; Gericke, M.; Mäkilä, E.; Salonen, J. Physicochemical design of the morphology and ultrastructure of cellulose beads. Carbohydr. Polym. 2013, 93, 291–299. [Google Scholar] [CrossRef]
- Pääkkö, M.; Vapaavuori, J.; Silvennoinen, R.; Kosonen, H.; Ankerfors, M.; Lindström, T.; Berglund, L.A.; Ikkala, O. Long and entangled native cellulose i nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 2008, 4, 2492–2499. [Google Scholar] [CrossRef]
- Buchtova, N.; Budtova, T. Cellulose aero-, cryo-and xerogels: Towards understanding of morphology control. Cellulose 2016, 23, 2585–2595. [Google Scholar] [CrossRef]
- Saylan, Y.; Denizli, A. Supermacroporous composite cryogels in biomedical applications. Gels 2019, 5, 20. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Xie, Y.; Zeng, G.; Tang, L.; Liang, J.; He, Q.; Zhao, F.; Zeng, Y.; Wu, Y. The dual effects of carboxymethyl cellulose on the colloidal stability and toxicity of nanoscale zero-valent iron. Chemosphere 2016, 144, 1682–1689. [Google Scholar] [CrossRef]
- Ganesan, K.; Dennstedt, A.; Barowski, A.; Ratke, L. Design of aerogels, cryogels and xerogels of cellulose with hierarchical porous structures. Mater. Des. 2016, 92, 345–355. [Google Scholar] [CrossRef]
- García-González, C.; Alnaief, M.; Smirnova, I. Polysaccharide-based aerogels—Promising biodegradable carriers for drug delivery systems. Carbohydr. Polym. 2011, 86, 1425–1438. [Google Scholar] [CrossRef]
- Ciolacu, D.; Rudaz, C.; Vasilescu, M.; Budtova, T. Physically and chemically cross-linked cellulose cryogels: Structure, properties and application for controlled release. Carbohydr. Polym. 2016, 151, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Budtova, T. Cellulose ii aerogels: A review. Cellulose 2019, 26, 81–121. [Google Scholar] [CrossRef]
- Abdul Khalil, H.; Adnan, A.; Yahya, E.B.; Olaiya, N.; Safrida, S.; Hossain, M.; Balakrishnan, V.; Gopakumar, D.A.; Abdullah, C.; Oyekanmi, A. A review on plant cellulose nanofibre-based aerogels for biomedical applications. Polymers 2020, 12, 1759. [Google Scholar] [CrossRef]
- Klemm, D.; Philpp, B.; Heinze, T.; Heinze, U.; Wagenknecht, W. Comprehensive Cellulose Chemistry: Fundamentals and Analytical Methods; Wiley-VCH Verlag GmbH: Weinheim, Germany, 1998; Volume 1. [Google Scholar]
- Koyama, M.; Helbert, W.; Imai, T.; Sugiyama, J.; Henrissat, B. Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc. Natl. Acad. Sci. USA 1997, 94, 9091–9095. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, J.; Sufoka, A.; Ohkita, J.; Watanabe, S. The confirmation of existences of cellulose iiii, iiiii, ivi, and ivii by the X-ray method. J. Polym. Sci. Polym. Lett. Ed. 1975, 13, 23–27. [Google Scholar] [CrossRef]
- Gardiner, E.S.; Sarko, A. Packing analysis of carbohydrates and polysaccharides. 16. The crystal structures of celluloses ivi and ivii. Can. J. Chem. 1985, 63, 173–180. [Google Scholar] [CrossRef]
- Atalla, R.H.; Vanderhart, D.L. Native cellulose: A composite of two distinct crystalline forms. Science 1984, 223, 283–285. [Google Scholar] [CrossRef]
- Nisizawa, K. Mode of action of cellulases. J. Ferment. Technol. 1973, 51, 267–304. [Google Scholar]
- Budtova, T.; Navard, P. Cellulose in naoh–water based solvents: A review. Cellulose 2016, 23, 5–55. [Google Scholar] [CrossRef] [Green Version]
- Roy, C.; Budtova, T.; Navard, P. Rheological properties and gelation of aqueous cellulose−Naoh solutions. Biomacromolecules 2003, 4, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Heinze, T.; Koschella, A. Solvents applied in the field of cellulose chemistry: A mini review. Polímeros 2005, 15, 84–90. [Google Scholar] [CrossRef]
- Henniges, U.; Schiehser, S.; Rosenau, T.; Potthast, A. Cellulose solubility: Dissolution and analysis of ‘‘problematic’’cellulose pulps in the solvent system DMAc/LiCl. ACS Symp. Ser. 2010, 1033, 165–177. [Google Scholar]
- Rosenau, T.; Potthast, A.; Adorjan, I.; Hofinger, A.; Sixta, H.; Firgo, H.; Kosma, P. Cellulose solutions in n-methylmorpholine-n-oxide (nmmo)–degradation processes and stabilizers. Cellulose 2002, 9, 283–291. [Google Scholar] [CrossRef]
- Rosenau, T.; Potthast, A.; Sixta, H.; Kosma, P. The chemistry of side reactions and byproduct formation in the system nmmo/cellulose (lyocell process). Prog. Polym. Sci. 2001, 26, 1763–1837. [Google Scholar] [CrossRef]
- Rosenau, T.; French, A.D. N-methylmorpholine-n-oxide (nmmo): Hazards in practice and pitfalls in theory. Cellulose 2021, 28, 5985–5990. [Google Scholar] [CrossRef]
- Cuissinat, C.; Navard, P. Swelling and dissolution of cellulose part 1: Free floating cotton and wood fibres in n-methylmorpholine-n-oxide–water mixtures. Macromol. Symp. 2006, 244, 1–18. [Google Scholar] [CrossRef]
- Hermanutz, F.; Gähr, F.; Uerdingen, E.; Meister, F.; Kosan, B. New developments in dissolving and processing of cellulose in ionic liquids. Macromol. Symp. 2008, 262, 23–27. [Google Scholar] [CrossRef]
- Wang, H.; Gurau, G.; Rogers, R.D. Ionic liquid processing of cellulose. Chem. Soc. Rev. 2012, 41, 1519–1537. [Google Scholar] [CrossRef]
- Pircher, N.; Carbajal, L.; Schimper, C.; Bacher, M.; Rennhofer, H.; Nedelec, J.-M.; Lichtenegger, H.C.; Rosenau, T.; Liebner, F. Impact of selected solvent systems on the pore and solid structure of cellulose aerogels. Cellulose 2016, 23, 1949–1966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Wu, J.; Yu, J.; Zhang, X.; He, J.; Zhang, J. Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: State of the art and future trends. Mater. Chem. Front. 2017, 1, 1273–1290. [Google Scholar] [CrossRef]
- Tyshkunova, I.V.; Chukhchin, D.G.; Gofman, I.V.; Poshina, D.N.; Skorik, Y.A. Cellulose cryogels prepared by regeneration from phosphoric acid solutions. Cellulose 2021, 28, 4975–4989. [Google Scholar] [CrossRef]
- Egal, M.; Budtova, T.; Navard, P. Structure of aqueous solutions of microcrystalline cellulose/sodium hydroxide below 0 c and the limit of cellulose dissolution. Biomacromolecules 2007, 8, 2282–2287. [Google Scholar] [CrossRef]
- Sehaqui, H.; Zhou, Q.; Berglund, L.A. High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (nfc). Compos. Sci. Technol. 2011, 71, 1593–1599. [Google Scholar] [CrossRef]
- Medronho, B.; Romano, A.; Miguel, M.G.; Stigsson, L.; Lindman, B. Rationalizing cellulose (in) solubility: Reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 2012, 19, 581–587. [Google Scholar] [CrossRef]
- Yahya, E.B.; Alzalouk, M.M.; Alfallous, K.A.; Abogmaza, A.F. Antibacterial cellulose-based aerogels for wound healing application: A review. Biomed. Res. Ther. 2020, 7, 4032–4040. [Google Scholar] [CrossRef]
- Savina, I.N.; Zoughaib, M.; Yergeshov, A.A. Design and assessment of biodegradable macroporous cryogels as advanced tissue engineering and drug carrying materials. Gels 2021, 7, 79. [Google Scholar] [CrossRef]
- Shiekh, P.A.; Andrabi, S.M.; Singh, A.; Majumder, S.; Kumar, A. Designing cryogels through cryostructuring of polymeric matrices for biomedical applications. Eur. Polym. J. 2021, 144, 110234. [Google Scholar] [CrossRef]
- Beaumont, M.; König, J.; Opietnik, M.; Potthast, A.; Rosenau, T. Drying of a cellulose ii gel: Effect of physical modification and redispersibility in water. Cellulose 2017, 24, 1199–1209. [Google Scholar] [CrossRef] [Green Version]
- Haseley, P.; Oetjen, G.-W. Freeze-Drying, 3rd ed.; John Wiley & Sons: Newark, NJ, USA, 2017. [Google Scholar]
- Sehaqui, H.; Salajková, M.; Zhou, Q.; Berglund, L.A. Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose i nanofiber suspensions. Soft Matter 2010, 6, 1824–1832. [Google Scholar] [CrossRef]
- Plieva, F.M.; Karlsson, M.; Aguilar, M.-R.; Gomez, D.; Mikhalovsky, S.; Galaev, I.Y. Pore structure in supermacroporous polyacrylamide based cryogels. Soft Matter 2005, 1, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Henderson, T.M.; Ladewig, K.; Haylock, D.N.; McLean, K.M.; O’Connor, A.J. Cryogels for biomedical applications. J. Mater. Chem. B 2013, 1, 2682–2695. [Google Scholar] [CrossRef]
- Okay, O. Polymeric Cryogels: Macroporous Gels with Remarkable Properties; Springer: Berlin/Heidelberg, Germany, 2014; Volume 263. [Google Scholar]
- Koshy, S.T.; Ferrante, T.C.; Lewin, S.A.; Mooney, D.J. Injectable, porous, and cell-responsive gelatin cryogels. Biomaterials 2014, 35, 2477–2487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackova, H.; Plichta, Z.k.; Hlidkova, H.; Sedláček, O.; Konefal, R.; Sadakbayeva, Z.; Duskova-Smrckova, M.; Horak, D.; Kubinova, S. Reductively degradable poly (2-hydroxyethyl methacrylate) hydrogels with oriented porosity for tissue engineering applications. ACS Appl. Mater. Interfaces 2017, 9, 10544–10553. [Google Scholar] [CrossRef]
- Bölgen, N.; Plieva, F.; Galaev, I.Y.; Mattiasson, B.; Pişkin, E. Cryogelation for preparation of novel biodegradable tissue-engineering scaffolds. J. Biomater. Sci. Polym. Ed. 2007, 18, 1165–1179. [Google Scholar] [CrossRef]
- Dispinar, T.; Van Camp, W.; De Cock, L.J.; De Geest, B.G.; Du Prez, F.E. Redox-responsive degradable peg cryogels as potential cell scaffolds in tissue engineering. Macromol. Biosci. 2012, 12, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhou, L.; Zhang, W. Control of scaffold degradation in tissue engineering: A review. Tissue Eng. Part B Rev. 2014, 20, 492–502. [Google Scholar] [CrossRef]
- Petrov, P.D.; Tsvetanov, C.B. Cryogels via uv irradiation. Polym. Cryogels 2014, 263, 199–222. [Google Scholar]
- Meena, L.K.; Raval, P.; Kedaria, D.; Vasita, R. Study of locust bean gum reinforced cyst-chitosan and oxidized dextran based semi-ipn cryogel dressing for hemostatic application. Bioact. Mater. 2018, 3, 370–384. [Google Scholar] [CrossRef]
- Plieva, F.M.; Karlsson, M.; Aguilar, M.R.; Gomez, D.; Mikhalovsky, S.; Galaev, I.Y.; Mattiasson, B. Pore structure of macroporous monolithic cryogels prepared from poly (vinyl alcohol). J. Appl. Polym. Sci. 2006, 100, 1057–1066. [Google Scholar] [CrossRef]
- Vrana, N.E.; Cahill, P.A.; McGuinness, G.B. Endothelialization of pva/gelatin cryogels for vascular tissue engineering: Effect of disturbed shear stress conditions. J. Biomed. Mater. Res. Part A 2010, 94, 1080–1090. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, A.; Despang, F.; Lode, A.; Demmler, A.; Hanke, T.; Gelinsky, M. Proliferation and osteogenic differentiation of human bone marrow stromal cells on alginate–gelatine–hydroxyapatite scaffolds with anisotropic pore structure. J. Tissue Eng. Regen. Med. 2009, 3, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Beluns, S.; Gaidukovs, S.; Platnieks, O.; Gaidukova, G.; Mierina, I.; Grase, L.; Starkova, O.; Brazdausks, P.; Thakur, V.K. From wood and hemp biomass wastes to sustainable nanocellulose foams. Ind. Crops Prod. 2021, 170, 113780. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F.; Wu, J. Physically crosslinked hydrogels from polysaccharides prepared by freeze–thaw technique. React. Funct. Polym. 2013, 73, 923–928. [Google Scholar] [CrossRef]
- Qin, X.; Lu, A.; Zhang, L. Gelation behavior of cellulose in naoh/urea aqueous system via cross-linking. Cellulose 2013, 20, 1669–1677. [Google Scholar] [CrossRef]
- Chang, C.; Zhang, L.; Zhou, J.; Zhang, L.; Kennedy, J.F. Structure and properties of hydrogels prepared from cellulose in naoh/urea aqueous solutions. Carbohydr. Polym. 2010, 82, 122–127. [Google Scholar] [CrossRef]
- Bagri, L.; Bajpai, J.; Bajpai, A. Cryogenic designing of biocompatible blends of polyvinyl alcohol and starch with macroporous architecture. J. Macromol. Sci.® Part A Pure Appl. Chem. 2009, 46, 1060–1068. [Google Scholar] [CrossRef]
- Heath, L.; Thielemans, W. Cellulose nanowhisker aerogels. Green Chem. 2010, 12, 1448–1453. [Google Scholar] [CrossRef]
- Martoïa, F.; Cochereau, T.; Dumont, P.J.; Orgéas, L.; Terrien, M.; Belgacem, M. Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Mater. Des. 2016, 104, 376–391. [Google Scholar] [CrossRef]
- Teraoka, I. Polymer Solutions: An Introduction to Physical Properties; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Ceylan, S.; Demir, D.; Gül, G.; Bölgen, N. Effect of polymer concentration in cryogelation of gelatin and poly (vinyl alcohol) scaffolds. Biomater. Biomech. Bioeng. 2019, 4, 1–8. [Google Scholar]
- Tripathi, A.; Kathuria, N.; Kumar, A. Elastic and macroporous agarose–gelatin cryogels with isotropic and anisotropic porosity for tissue engineering. J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2009, 90, 680–694. [Google Scholar] [CrossRef] [PubMed]
- Van Vlierberghe, S.; Dubruel, P.; Lippens, E.; Cornelissen, M.; Schacht, E. Correlation between cryogenic parameters and physico-chemical properties of porous gelatin cryogels. J. Biomater. Sci. Polym. Ed. 2009, 20, 1417–1438. [Google Scholar] [CrossRef] [PubMed]
- Tyshkunova, I.V.; Chukhchin, D.G.; Gofman, I.V.; Pavlova, E.N.; Ushakov, V.A.; Vlasova, E.N.; Poshina, D.N.; Skorik, Y.A. Chitin cryogels prepared by regeneration from phosphoric acid solutions. Materials 2021, 14, 5191. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.V.; Ozmen, M.M.; Dragan, E.S.; Okay, O. Freezing as a path to build macroporous structures: Superfast responsive polyacrylamide hydrogels. Polymer 2007, 48, 195–204. [Google Scholar] [CrossRef]
- Hwang, Y.; Zhang, C.; Varghese, S. Poly (ethylene glycol) cryogels as potential cell scaffolds: Effect of polymerization conditions on cryogel microstructure and properties. J. Mater. Chem. 2010, 20, 345–351. [Google Scholar] [CrossRef]
- Gang, E.J.; Jeong, J.A.; Hong, S.H.; Hwang, S.H.; Kim, S.W.; Yang, I.H.; Ahn, C.; Han, H.; Kim, H. Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells 2004, 22, 617–624. [Google Scholar] [CrossRef] [Green Version]
- Ozmen, M.M.; Dinu, M.V.; Dragan, E.S.; Okay, O. Preparation of macroporous acrylamide-based hydrogels: Cryogelation under isothermal conditions. J. Macromol. Sci. Part A Pure Appl. Chem. 2007, 44, 1195–1202. [Google Scholar] [CrossRef]
- Erlandsson, J.; Pettersson, T.; Ingverud, T.; Granberg, H.; Larsson, P.A.; Malkoch, M.; Wågberg, L. On the mechanism behind freezing-induced chemical crosslinking in ice-templated cellulose nanofibril aerogels. J. Mater. Chem. A 2018, 6, 19371–19380. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Yu, H.; Li, Q.; Liu, Y.; Li, J. Ultralight and highly flexible aerogels with long cellulose i nanofibers. Soft Matter 2011, 7, 10360–10368. [Google Scholar] [CrossRef]
- Lozinsky, V.; Vainerman, E.; Ivanova, S.; Titova, E.; Shtil’man, M.; Belavtseva, E.; Rogozhin, S. Study of cryostructurization of polymer systems. Vi. The influence of the process temperature on the dynamics of formation and structure of cross-linked polyacrylamide cryogels. Acta Polym. 1986, 37, 142–146. [Google Scholar] [CrossRef]
- Ivanov, R.V.; Lozinsky, V.I.; Noh, S.K.; Lee, Y.R.; Han, S.S.; Lyoo, W.S. Preparation and characterization of polyacrylamide cryogels produced from a high-molecular-weight precursor. Ii. The influence of the molecular weight of the polymeric precursor. J. Appl. Polym. Sci. 2008, 107, 382–390. [Google Scholar] [CrossRef]
- Otoni, C.G.; Figueiredo, J.S.; Capeletti, L.B.; Cardoso, M.B.; Bernardes, J.S.; Loh, W. Tailoring the antimicrobial response of cationic nanocellulose-based foams through cryo-templating. ACS Appl. Bio Mater. 2019, 2, 1975–1986. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Nandgaonkar, A.G.; Habibi, Y.; Krause, W.E.; Wei, Q.; Lucia, L.A. An environmentally benign approach to achieving vectorial alignment and high microporosity in bacterial cellulose/chitosan scaffolds. RSC Adv. 2017, 7, 13678–13688. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Yao, K.; Shen, S.; Yun, J. Chemical engineering science: Freezing characteristics of acrylamide-based aqueous solution used for the preparation of supermacroporous cryogels via cryo-copolymerization. Cell. Polym. 2007, 26, 145–147. [Google Scholar]
- Elsherbiny, D.A.; Abdelgawad, A.M.; El-Naggar, M.E.; El-Sherbiny, R.A.; El-Rafie, M.H.; El-Sayed, I.E.-T. Synthesis, antimicrobial activity, and sustainable release of novel α-aminophosphonate derivatives loaded carrageenan cryogel. Int. J. Biol. Macromol. 2020, 163, 96–107. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Zhang, L.; Xu, Z.; Dai, H.; Wu, W. Nanocellulose/gelatin composite cryogels for controlled drug release. ACS Sustain. Chem. Eng. 2019, 7, 6381–6389. [Google Scholar] [CrossRef]
- Lozinsky, V.; Galaev, I.Y.; Plieva, F.M.; Savina, I.N.; Jungvid, H.; Mattiasson, B. Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol. 2003, 21, 445–451. [Google Scholar] [CrossRef]
- Mikhalovsky, S.; Savina, I.; Dainiak, M.; Ivanov, A.; Galaev, I. 5.03-Biomaterials/Cryogels, 2nd ed.; Moo-Young, M., Ed.; Academic Press: Burlington, MA, USA, 2011; pp. 11–22. [Google Scholar]
- Chen, W.; Yuan, S.; Shen, J.; Chen, Y.; Xiao, Y. A composite hydrogel based on pectin/cellulose via chemical cross-linking for hemorrhage. Front. Bioeng. Biotechnol. 2020, 8, 627351. [Google Scholar] [CrossRef]
- Bozova, N.; Petrov, P.D. Highly elastic super-macroporous cryogels fabricated by thermally induced crosslinking of 2-hydroxyethylcellulose with citric acid in solid state. Molecules 2021, 26, 6370. [Google Scholar]
- Petrov, P.; Mokreva, P.; Kostov, I.; Uzunova, V.; Tzoneva, R. Novel electrically conducting 2-hydroxyethylcellulose/polyaniline nanocomposite cryogels: Synthesis and application in tissue engineering. Carbohydr. Polym. 2016, 140, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Serex, L.; Braschler, T.; Filippova, A.; Rochat, A.; Béduer, A.; Bertsch, A.; Renaud, P. Pore size manipulation in 3D printed cryogels enables selective cell seeding. Adv. Mater. Technol. 2018, 3, 1700340. [Google Scholar] [CrossRef]
- Odabas, S. Collagen–carboxymethyl cellulose–Tricalcium phosphate multi-lamellar cryogels for tissue engineering applications: Production and characterization. J. Bioact. Compat. Polym. 2016, 31, 411–422. [Google Scholar] [CrossRef]
- Santos, G.d.S.d.; Santos, N.R.R.d.; Pereira, I.C.S.; Andrade, A.J.d.; Lima, E.M.B.; Minguita, A.P.; Rosado, L.H.G.; Moreira, A.P.D.; Middea, A.; Prudencio, E.R. Layered cryogels laden with brazilian honey intended for wound care. Polímeros 2020, 30, e2020031. [Google Scholar] [CrossRef]
- Cai, H.; Sharma, S.; Liu, W.; Mu, W.; Liu, W.; Zhang, X.; Deng, Y. Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold. Biomacromolecules 2014, 15, 2540–2547. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, F.; Grénman, H.; Spoljaric, S.; Seppälä, J.; Eriksson, J.E.; Willför, S.; Xu, C. Development of nanocellulose scaffolds with tunable structures to support 3D cell culture. Carbohydr. Polym. 2016, 148, 259–271. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Souza, L.; Martins, T.M.M.; Lopes, J.H.; Mattos, B.D.; Mariano, M.; Pinheiro, I.F.; Valverde, T.M.; Livi, S.; Camilli, J.A.; et al. Nanocellulose/bioactive glass cryogels as scaffolds for bone regeneration. Nanoscale 2019, 11, 19842–19849. [Google Scholar] [CrossRef] [Green Version]
- Ghafari, R.; Jonoobi, M.; Amirabad, L.M.; Oksman, K.; Taheri, A.R. Fabrication and characterization of novel bilayer scaffold from nanocellulose based aerogel for skin tissue engineering applications. Int. J. Biol. Macromol. 2019, 136, 796–803. [Google Scholar] [CrossRef]
- Zhang, F.; Wu, W.; Zhang, X.; Meng, X.; Tong, G.; Deng, Y. Temperature-sensitive poly-nipam modified cellulose nanofibril cryogel microspheres for controlled drug release. Cellulose 2016, 23, 415–425. [Google Scholar] [CrossRef]
- Guiza, K.; Ben Arfi, R.; Mougin, K.; Vaulot, C.; Michelin, L.; Josien, L.; Schrodj, G.; Ghorbal, A. Development of novel and ecological keratin/cellulose-based composites for absorption of oils and organic solvents. Environ. Sci. Pollut. Res. 2021, 28, 46655–46668. [Google Scholar] [CrossRef]
- Kunz Lazzari, L.d.; Perondi, D.; Zattera, A.J.; Campomanes Santana, R.M. Cellulose/biochar cryogels: A study of adsorption kinetics and isotherms. Langmuir 2021, 37, 3180–3188. [Google Scholar] [CrossRef] [PubMed]
- Toledo, P.V.; Martins, B.F.; Pirich, C.L.; Sierakowski, M.R.; Neto, E.T.; Petri, D.F. Cellulose based cryogels as adsorbents for organic pollutants. Macromol. Symp. 2019, 383, 1800013. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Zhang, X.; Feng, X.; Zhang, J.; Zhong, T. Shapeable and underwater super-elastic cellulose nanofiber/alginate cryogels by freezing-induced oxa-michael reaction for efficient protein purification. Carbohydr. Polym. 2021, 272, 118498. [Google Scholar] [CrossRef] [PubMed]
- Lazzari, L.K.; Zampieri, V.B.; Zanini, M.; Zattera, A.J.; Baldasso, C. Sorption capacity of hydrophobic cellulose cryogels silanized by two different methods. Cellulose 2017, 24, 3421–3431. [Google Scholar] [CrossRef]
Solvent | Advantages | Disadvantages | Reference |
---|---|---|---|
LiCl/DMAc | It does not cause any destruction of the cellulose, provided that destructive pretreatments are avoided (such as heating over 80 °C). | The difficulty of removing LiCl from the final products. | [45] |
Ionic liquids | They completely dissolve the material’s components. | Ionic liquids do not evaporate, have low volatility, which complicates their regeneration. | [50,51,52,53] |
7–9%NaOH/water (7%NaOH/12%urea/water) | Cellulose gels can be obtained. | The thermodynamic quality of the solvent decreases with increasing temperature, as the number of cellulose–cellulose interactions increases more rapidly than the number of cellulose–solvent interactions; Na+ ions penetrate deeply into the cellulose structure, making it difficult to remove alkali. | [26,42,43] |
Complexing compounds of Cu with ethylenediamine (or Cd-ethylenediamine complexes) | Commonly used to determine the molecular weight of cellulose. | The difficulty of removing from the final products. | [44] |
N-methyl-morpholine-N-oxide monohydrate | Direct solvent of cellulose: N-methylmorpholine-N-oxide (NMMO) is a cellulose solvent used industrially for the spinning of cellulosic fibers (the Lyocell process). NMMO is known to change the highly crystalline structure of cellulose after dissolution and regeneration. | In theory, this dissolution process is merely physical, but in practice many side reactions might occur. | [46,47,48,49] |
Concentrated phosphoric acid | Rapid dissolution, easily removed and regenerated. | Causes significant destruction of macromolecules. | [54] |
Polymer | Production | Characteristics | Application | Reference |
---|---|---|---|---|
MCC | Calcium thiocyanate tetrahydrate and water (117 °C) | Porosity 94.3% Density 84.1 kg/m3 Surface area 23 m2/g E 13.27 ± 1.5 МРа | New filter types, various biomedical applications. | [31] |
MCC | 8 wt% NaOH-water (cross-linking with epichlorohydrin) | Pore size up to 200 µm Density 0.04–0.121 g/cm3 | Drug release, materials with controlled morphology and porosity. | [33] |
MCC/pectin | 1-Allyl-3-methylimidazolium chloride | Dense network structure | Hemostatic material (had no effect on cell proliferation but offered favorable properties in liver hemostasis). | [104] |
HEC | Cryogenic treatment with citric acid, freeze-drying | Interconnected pores 100–180 µm | Matrices for immobilized enzymes and cells, readily degraded in acidic conditions | [105] |
HEC/polyaniline | Stirred at 40 °C in water for 20 min, sonicated | tissue engineering scaffolds, high survival and proliferation in electric field, good adhesion, spreading, and rearrangement onto materials. | [106] | |
CMC | Dissolved in deionized water and crosslinking with adipic acid dihydrazide and a small excess of the carbodiimide at −20 °C. | E 4.2 ± 1.4 MPa | Neural tissue engineering, cell delivery (restoration of brain tissue through delivery to the neural network). | [16] |
CMC/Col | Mixing two streams: CMC solution (2%) in deionized water with adipic acid dihydrazide, buffer solution and solution N-(3-dimethylaminopopyl)-N′-ethylcarbodiimide chloridate (EDC, in deionized water). The resulting cryogels were soaked in the collagen solution, and then soaked in the EDC solution to fix the collagen. | Porosity > 90% Uniform density | Tissue engineering, spreading and proliferation of NOR-10 fibroblasts. | [107] |
CMC/Col CMC/Col/TCP | Mixing two solutions (1:2)-CMC solution (distilled water), Col solution (acetic acid). TCP was added to the final solution. | Average lamellar spaces 204 ± 95 µm (Col/CMC) and 195 ± 21 µm (Col/CMC/TCP) E 309 ± 18 kPa (Col/CMC) and 481 ± 27 kPa (Col/CMC/TCP) | Regeneration of hard tissues, non-toxic and compatible with blood. | [108] |
CMC/PVA/honey | Solvent water, each layer was applied alternately with preliminary freezing of the previous. | Wound healing, showed activity against S. aureus compared to their counterparts without honey. | [109] | |
CNF (bleached softwood kraft pulp) | Mechanical defibrillation in deionized water, sonication to obtain the nanofibril aqueous gel, which then sprayed and atomized at 40 MPa, frozen in liquid nitrogen and freeze-dried. | Density 0.0018 g/cm3 Surface area 389 m2/g | Tissue engineering, evaluated using 3T3 NIH cells. | [110] |
CNF (bleached birch Kraft Pulp) | Solvent-TEMPO, sodium bromide, NaOH. TEMPO-oxidized cellulose fibers (NaClO) were precipitated in ethanol. CNF hydrogels were obtained from the CNF films followed by solvent exchange from ethanol to tertbutanol, frozen in liquid nitrogen, and freeze-dried. | Porosity 88.0–99.7% Pore size 10–200 µm Density 0.004–0.180 g/cm3 Surface area 158–308 m2/g E 28–104.4 kPa | Tissue engineering, evaluated using HeLa and Jurkat cells. | [111] |
CNF (cellulose powder) | CNF powder in deionized water dispersed by sonication, crosslinked with glyoxal solutions, frozen in liquid nitrogen, freeze-dried. | For CNF cryogel 35 ± 9 µm, for crosslinked cryogel 60 ± 20 µm 0.003–0.11 g/cm3 for CNF cryogel, 0.003–0.09 g/cm3 for crosslinked cryogel Up to 1 m2/g 0.1 MPa for CNF cryogel, 50.8 ± 8 MPa for crosslinked cryogel | Bone tissue engineering, assayed in vitro with MG-63 cells. | [15] |
CNF/Col (wood powder of 60–80 meshes) | NCFs were sonicated, oxidized by NaIO4. The dialdehyde NCFs were mixed with collagen 1:1, frozen and freeze-dried. | Porosity 90–95% Density 0.02–0.03 g/cm3 | Tissue engineering, supported fibroblast proliferation. | [18] |
CNF/gelatin/chitosan (high-purity softwood cellulose) | Crosslinking in situ with genipin, frozen and freeze-dried. | Porosity 95% Pore size 75–200 µm Density 0.06–0.09 g/cm3 E 1–3 MPa | Cartilage tissue engineering (ASC and L929 cells) | [17] |
CNF/ bioactive glass | Cellulose nanofibrils (CNF) are introduced. | High porosity Pore size 96–168 µm E 24 ± 1 kPa | Bone tissue engineering (MC3T3-E1 cells and calvarial bone defect in rats in vivo) | [112] |
CNF/PVA (commercial CNF) | Crosslinking with polyamide-epichlorohydrin, frozen in liquid nitrogen, freeze-dried. | Porosity 88.5–95.3%Pore size 90 and 20 µm Density 0.006–0.05 g/cm3 Compressive strength 5–220 kPa E 0.04–8.3 kPa | Skin tissue engineering, supported fibroblast cells. | [113] |
CNF)/ NIPAm (commercial bleached softwood kraft pulp) | Crosslinked and sonicated, frozen in liquid nitrogen, freeze-dried. | Density 0.01–0.14 g/m3 | Drug release. | [114] |
Cellulose (wood dust from the plywood sanding) | Nanocellulose suspension from alkaline treated wood waste powders was redispersed in deionized water, frozen and freeze-dried. | Porosity 97.8–99.8% Pore diameter 3.7–8.3 nm Density 0.004–0.036 g/m3 Surface area 419–457 m2/g, E 7–165 kPa, Thermal performance 34–44 mW/m⋅K | Biomedicine, pollution filtering, thermal insulation. | [77] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyshkunova, I.V.; Poshina, D.N.; Skorik, Y.A. Cellulose Cryogels as Promising Materials for Biomedical Applications. Int. J. Mol. Sci. 2022, 23, 2037. https://doi.org/10.3390/ijms23042037
Tyshkunova IV, Poshina DN, Skorik YA. Cellulose Cryogels as Promising Materials for Biomedical Applications. International Journal of Molecular Sciences. 2022; 23(4):2037. https://doi.org/10.3390/ijms23042037
Chicago/Turabian StyleTyshkunova, Irina V., Daria N. Poshina, and Yury A. Skorik. 2022. "Cellulose Cryogels as Promising Materials for Biomedical Applications" International Journal of Molecular Sciences 23, no. 4: 2037. https://doi.org/10.3390/ijms23042037
APA StyleTyshkunova, I. V., Poshina, D. N., & Skorik, Y. A. (2022). Cellulose Cryogels as Promising Materials for Biomedical Applications. International Journal of Molecular Sciences, 23(4), 2037. https://doi.org/10.3390/ijms23042037