Identification of Novel Genomic Regions for Bacterial Leaf Pustule (BLP) Resistance in Soybean (Glycine max L.) via Integrating Linkage Mapping and Association Analysis
Abstract
:1. Introduction
2. Results
2.1. The BLP Resistance of the Soybean RIL and Association Panel Lines and Their Relationship with Flowering Time
2.2. Genetic Linkage Map Construction and Linkage Mapping in the Soybean RIL Population
2.3. Population Structure and Linkage Disequilibrium (LD) Analyses in the Soybean Association Panel
2.4. Association Mapping in the Soybean Association Panel
2.5. Co–Location Regions between Linkage Mapping and GWAS Analysis
2.6. Effects of the Most Significant Alleles in Three QTNs Individually or in Combination on BLP Resistance in Multiple Environments
2.7. Prediction of Candidate BLP Resistance Gene in Soybean
2.8. Differential Expression Analysis of Candidate BLP Resistance Genes in Soybean
3. Discussion
4. Material and Methods
4.1. Plant Materials
4.2. Pathogen Inoculation
4.3. Disease Assessment
4.4. Phenotypic Data Analysis
4.5. Genetic Linkage Map Construction and Linkage Mapping in the Soybean RILs
4.6. Genotyping, Population Structure, and LD Analysis in the Soybean Association Panel
4.7. Association Analysis and Haplotype Block Analysis
4.8. Gene Annotation and Candidate Gene Prediction
4.9. qPCR
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BLP | bacterial leaf pustule |
Xag | Xanthornonas axonopodis pv. glycines |
GWAS | genome-wide association study |
QTLs/QTNs | quantitative trait loci/nucleotides |
MAS | marker-assisted selection |
Psg | Pseudomonas syringae pv. Glycinea |
RIL | recombinant inbred line |
YHSBLP | Yangtze–Huai soybean breeding germplasm population |
NA plate | nutrient agar plate |
NB | nutrient broth; MSG, multiplexed shotgun genotyping |
RAD–seq | restriction site-associated DNA sequencing |
SD | standard deviation |
CV% | coefficient of variation |
ANOVA | analysis of variance |
MCIM | mixed composite interval mapping |
Add | additive effects |
PVE | phenotypic variance explanation |
MAF | minor allele frequency |
MDR | missing data ratio |
PCA | principal component analysis |
LD | linkage disequilibrium |
MLM | mixed linear model |
K | kinship control |
Q–Qplot | quantile–quantile plots |
hpi | hours post-inoculation |
SD | standard deviation |
MR | moderately resistant |
NJZM–RIL | RIL population consisting of 289 F2:9 lines derived through single seed descent |
SSD | single seed descent; the method from F2 generation of Zhengyanghuangdou x Meng8206 cross |
HLP | Helix–loop–helix |
qPCR | real-time quantitative reverse-transcription PCR |
References
- Xu, Y.; Cheng, W.; Wu, H.; Zheng, L.; Zhao, T.; Gao, X. Identification of pathogen causing bacterial pustule spot of soybean and resistance evaluation of new soybean germplasm. Soybean Sci. 2015, 3, 463–469. [Google Scholar]
- Kim, D.H.; Kim, K.H.; Van, K.; Kim, M.Y.; Lee, S.H. Fine mapping of a resistance gene to bacterial leaf pustule in soybean. Theor. Appl. Genet. 2010, 120, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Kaewnum, S.; Prathuangwong, S.; Burr, T.J. Aggressiveness of Xanthomonas axonopodis pv. glycines isolates to soybean and hypersensitivity responses by other plants. Plant Pathol. 2005, 54, 409–415. [Google Scholar] [CrossRef]
- Kladsuwan, L.; Athinuwat, D.; Prathuangwong, S. Diversity of Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule of soybean and specific primer for detection. J. Agric. 2018, 34, 77–87. [Google Scholar]
- Narvel, J.M.; Jakkula, L.R.; Phillips, D.V.; Wang, T.; Lee, S.H.; Boerma, H.R. Molecular mapping of Rxp conditioning reaction to bacterial pustule in soybean. J. Hered. 2001, 92, 267–270. [Google Scholar] [CrossRef] [Green Version]
- Heitkamp, E.C.; Lamppa, R.S.; Lambrecht, P.A.; Harveson, R.M.; Mathew, F.M.; Markell, S.G. First report of bacterial pustule on soybeans in North Dakota. Plant Health Prog. 2014, 15, 155–156. [Google Scholar] [CrossRef]
- Zinsou, V.A.; Afouda, L.A.C.; Zoumarou-Wallis, N.; Pate-Bata, T.; Dossou, L.; Götz, M.; Winter, S. Occurrence and characterisation of Xanthomonas axonopodis pv. glycines, causing bacterial pustules on soybean in Guinea Savanna of Benin. Afr. Crop Sci. J. 2015, 23, 203–210. [Google Scholar]
- Hayward, A.C. The hosts of Xanthomonas. In Xanthomonas; Swings, J.G., Civerolo, E.L., Eds.; Chapman & Hall: London, UK, 1993; pp. 1–119. [Google Scholar]
- Zou, J.; Zhang, Z.; Yu, S.; Kang, Q.; Shi, Y.; Wang, J.; Zhu, R.; Ma, C.; Chen, L.; Wang, J.; et al. Responses of soybean genes in the substituted segments of segment substitution lines following a Xanthomonas infection. Front. Plant Sci. 2020, 11, 972. [Google Scholar] [CrossRef]
- Prathuangwong, S.; Amnuaykit, K. Studies on tolerance and rate–reducing bacterial pustule of soybean cultivars/lines. Agric. Nat. Resour. 1987, 21, 408–426. [Google Scholar]
- Jones, S.B.; Fett, W.F. Bacterial pustule disease of soybean: Microscopy of pustule development in a susceptible cultivar. Phytopathology 1987, 77, 266–274. [Google Scholar] [CrossRef]
- Mundt, C.C. Durable resistance: A key to sustainable management of pathogens and pests. Infect. Genet. Evol. 2014, 27, 446–455. [Google Scholar] [CrossRef]
- Hartwig, E.E.; Lehman, S.G. Inheritance of resistance to the bacterial pustule disease in soybean. Agron. J. 1951, 43, 226–229. [Google Scholar] [CrossRef]
- Van, K.J.; Ha, B.K.; Kim, M.Y.; Moon, J.K.; Paek, N.C.; Heu, S.G.; Lee, S.H. SSR mapping of genes conditioning soybean resistance to six isolates of Xanthomonas axonopodis pv. glycines. Genes Genom. 2004, 26, 47–54. [Google Scholar]
- Bernard, R.L.; Weiss, M.G. Qualitative Genetics. In Soybeans Improvement, Production, and Uses; Caldwell, B.E., Ed.; American Society of Agronomy Press: Madison, WI, USA, 1973; pp. 117–154. [Google Scholar]
- Palmer, R.G.; Lim, S.M.; Hedges, B.R. Testing for linkage between the Rxp locus and nine isozyme loci in soybean. Crop Sci. 1992, 32, 681–683. [Google Scholar] [CrossRef]
- Chang, H.X.; Lipka, A.E.; Domier, L.L.; Hartman, G.L. Characterization of disease resistance loci in the USDA soybean germplasm collection using genome–wide association studies. Phytopathology 2016, 106, 1139–1151. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Kang, Y.J.; Kim, D.H.; Yoon, M.Y.; Moon, J.K.; Kim, M.Y.; Van, K.; Lee, S.H. RNA–Seq analysis of a soybean near–isogenic line carrying bacterial leaf pustule-resistant and -susceptible alleles. DNA Res. 2011, 18, 483–497. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Park, J.H.; Kim, M.Y.; Heu, S.; Lee, S.H. Genetic mapping of novel symptom in response to soybean bacterial leaf pustule in PI 96188. J. Crop Sci. Biotechnol. 2011, 14, 119–123. [Google Scholar] [CrossRef]
- Kladsuwan, L.; Athinuwat, D.; Bogdanove, A.J.; Prathuangwong, S. AvrBs3-like genes and TAL effectors specific to race structure in Xanthomonas axonopodis pv. glycines. Thai. J. Agric. Sci. 2017, 50, 121–145. [Google Scholar]
- Hu, Y.; Zhang, J.; Jia, H.; Sosso, D.; Li, T.; Frommer, W.B.; Yang, B.; White, F.F.; Wang, N.; Jones, J.B. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proc. Natl. Acad. Sci. USA 2014, 111, E521–E529. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, M.; Ge, D.; Akhter Bhat, J.; Li, Y.; Kong, J.; Liu, K.; Zhao, T. Hydroperoxide lyase modulates defense response and confers lesion-mimic leaf phenotype in soybean (Glycine max (L.) Merr.). Plant J. 2020, 104, 1315–1333. [Google Scholar] [CrossRef]
- Yan, W.; Karikari, B.; Chang, F.; Zhao, F.; Zhang, Y.; Li, D.; Zhao, T.; Jiang, H. Genome-wide association study to map genomic regions related to the initiation time of four growth stage traits in Soybean. Front. Genet. 2021, 12, 715529. [Google Scholar] [CrossRef]
- Karikari, B.; Wang, Z.; Zhou, Y.; Yan, W.; Feng, J.; Zhao, T. Identification of quantitative trait nucleotides and candidate genes for soybean seed weight by multiple models of genome–wide association study. BMC Plant Biol. 2020, 20, 1–14. [Google Scholar] [CrossRef]
- Zhao, F.; Maren, N.A.; Kosentka, P.Z.; Liao, Y.Y.; Lu, H.; Duduit, J.R.; Huang, D.; Ashrafi, H.; Zhao, T.; Huerta, A.I.; et al. An optimized protocol for stepwise optimization of real-time RT-PCR analysis. Hort. Res. 2021, 8, 179. [Google Scholar] [CrossRef]
- Li, S.; Cao, Y.; He, J.; Zhao, T.; Gai, J. Detecting the QTL-allele system conferring flowering date in a nested association mapping population of soybean using a novel procedure. Theor. Appl. Genet. 2017, 130, 2297–2314. [Google Scholar] [CrossRef]
- Yu, X.; Mulkey, S.E.; Zuleta, M.C.; Arellano, C.; Ma, B.; Milla-Lewis, S.R. Quantitative trait loci associated with gray leaf spot resistance in St. Augustinegrass. Plant Dis. 2020, 104, 2799–2806. [Google Scholar] [CrossRef]
- Sonah, H.; O’Donoughue, L.; Cober, E.; Rajcan, I.; Belzile, F. Identification of loci governing eight agronomic traits using a GBS–GWAS approach and validation by QTL mapping in soya bean. Plant Biotechnol. J. 2015, 13, 211–221. [Google Scholar] [CrossRef]
- Chang, F.; Guo, C.; Sun, F.; Zhang, J.; Wang, Z.; Kong, J.; He, Q.; Sharmin, R.A.; Zhao, T. Genome-wide association studies for dynamic plant height and number of nodes on the main stem in summer sowing soybeans. Front. Plant Sci. 2018, 9, 1184. [Google Scholar] [CrossRef] [Green Version]
- Miao, L.; Yang, S.; Zhang, K.; He, J.; Wu, C.; Ren, Y.; Gai, J.; Li, Y. Natural variation and selection in GmSWEET39 affect soybean seed oil content. New Phytol. 2020, 225, 1651–1666. [Google Scholar] [CrossRef]
- Stram, D.O. Tag SNP selection for association studies. Genet. Epidemiol. 2004, 27, 365–374. [Google Scholar] [CrossRef]
- Hendricks, A.E.; Zhu, Y.; Dupuis, J. Genome–wide association and linkage analysis of quantitative traits: Comparison of likelihood–ratio test and conditional score statistic. BMC Proc. 2009, 3, S100. [Google Scholar] [CrossRef] [Green Version]
- Korir, P.C.; Zhang, J.; Wu, K.; Zhao, T.; Gai, J. Association mapping combined with linkage analysis for aluminum tolerance among soybean cultivars released in Yellow and Changjiang River Valleys in China. Theor. Appl. Genet. 2013, 126, 1659–1675. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, S.; Wang, Z.; Chang, F.; Kong, J.; Gai, J.; Zhao, T. Identification of major quantitative trait loci for seed oil content in soybeans by combining linkage and genome-wide association mapping. Front. Plant Sci. 2017, 8, 1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.C.; Panstruga, R.; Elliott, C.; Muller, J.; Devoto, A.; Yoon, H.W.; Park, H.C.; Cho, M.J.; Schulze-Lefert, P. Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature 2002, 416, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, C.Y.; Pattison, D.L.; Gray, W.M.; Gibson, S.I. Sugar-insensitive3, a ring e3 ligase, is a new player in plant sugar response. Plant Physiol. 2010, 152, 1889–1900. [Google Scholar] [CrossRef]
- Ascencio-Ibáñez, J.T.; Sozzani, R.; Lee, T.J.; Chu, T.M.; Wolfinger, R.D.; Cella, R.; Hanley-Bowdoin, L. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol. 2008, 148, 436–454. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.J.; Li, P.; Shimono, M.; Corrion, A.; Day, B. Arabidopsis calcium-dependent protein kinase 3 regulates actin cytoskeleton organization and immunity. Nat. Commun. 2020, 11, 6234. [Google Scholar] [CrossRef]
- Cheng, W. Germplasm evaluation and QTL Mapping of Resistance to Bacteria Strains of Leaf Pustule and Blight in Soybean Breeding Lines from Yangtze-Huai River Valley. Master’s Thesis, Nanjing Agriculture University, Nanjing, China, 2016. [Google Scholar]
- Guo, Y.H.; Xu, Z.G.; Yang, G. Resistance of soybean varieties to bacterial pustule spot. Soybean Sci. 2011, 30, 263–271. [Google Scholar]
- Nyquist, W.E.; Baker, R.J. Estimation of heritability and prediction of selection response in plant populations. Crit. Rev. Plant Sci. 1991, 10, 235–322. [Google Scholar] [CrossRef]
- Miller, M.R.; Dunham, J.P.; Amores, A.; Cresko, W.A.; Johnson, E.A. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res. 2007, 17, 240–248. [Google Scholar] [CrossRef] [Green Version]
- Murray, M.G.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4325. [Google Scholar] [CrossRef] [Green Version]
- Schmutz, J.; Cannon, S.B.; Schlueter, J.; Ma, J.; Mitros, T.; Nelson, W.; Hyten, D.L.; Song, Q.; Thelen, J.J.; Cheng, J.; et al. Genome sequence of the palaeopolyploid soybean. Nature 2010, 463, 178–183. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Yu, C.; Li, Y.; Lam, T.W.; Yiu, S.M.; Kristiansen, K.; Wang, J. SOAP2: An improved ultrafast tool for short read alignment. Bioinformatics 2009, 25, 1966–1967. [Google Scholar] [CrossRef] [Green Version]
- Yi, X.; Liang, Y.; Huerta-Sanchez, E.; Jin, X.; Cuo, Z.X.; Pool, J.E.; Xu, X.; Jiang, H.; Vinckenbosch, N.; Korneliussen, T.S. Sequencing of 50 human exomes reveals adaptation to high altitude. Science 2010, 329, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Feng, Q.; Qian, Q.; Zhao, Q.; Wang, L.; Wang, A.; Guan, J.; Fan, D.; Weng, Q.; Huang, T. High-throughput genotyping by whole-genome resequencing. Genome Res. 2009, 19, 1068–1076. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Hu, Y.; Mao, B.; Xiang, H.; Shao, Y.; Pan, Y.; Sheng, X.; Li, Y.; Ni, X.; Xia, Y. Genetic analysis for rice grain quality traits in the YVB stable variant line using RAD-seq. Mol. Genet. Genom. 2016, 291, 297–307. [Google Scholar] [CrossRef]
- Van Oijen, J.M. JoinMap, Version 4.0. Software for the Calculation of Genetic Linkage Maps in Experimental Populations. Kyazma BV: Wageningen, The Netherlands, 2006.
- Wang, S.; Basten, C.J.; Zeng, Z.B. Windows QTL Cartographer; Version 2.5; Department of Statistics, North Carolina State University: Raleigh, NC, USA, 2012. [Google Scholar]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- He, J.; Meng, S.; Zhao, T.; Xing, G.; Yang, S.; Li, Y.; Guan, R.; Lu, J.; Wang, Y.; Xia, Q.; et al. An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding. Theor. Appl. Genet. 2017, 130, 2327–2343. [Google Scholar] [CrossRef]
- Turner, S.D. qqman: An R package for visualizing GWAS results using Q-Q and manhattan plots. JOSS 2018, 3, 731. [Google Scholar] [CrossRef] [Green Version]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Population | Environment | Infection Response a | Range | CV (%) b | FG c | FE d | FG × E e | h2 (%) f |
---|---|---|---|---|---|---|---|---|
RIL | 2014JP-spray | 5.65 ± 2.62 | 1–9 | 46.53 | 7.97 ** | 116 ** | 1.62 * | 79.81 |
2015JP-spray | 4.08 ± 2.71 | 1–9 | 66.49 | |||||
Association panel | 2014JP-spray | 3.64 ± 1.76 | 1–9 | 48.41 | 104.51 ** | 7.79 ** | 1.27 ** | 91.63 |
2015JP-spray | 3.62 ± 2.33 | 1–9 | 64.58 | |||||
2016JP-spray | 2.76 ± 1.54 | 1–8 | 55.98 | |||||
Association panel | 2018JP-natural | 4.33 ± 1.88 | 1–9 | 43.39 | 1425.04 ** | 9.60 ** | 2.56 ** | 87.43 |
2018DT-natural | 2.54 ± 1.72 | 1–8 | 68.00 |
QTL | Chromosome | Genetic Position (cM) | LOD | Additive | R2 (%) a | Confidence Interval (cM) | Physical Position (bp) | Environment |
---|---|---|---|---|---|---|---|---|
qrxp_5_1 | 5 | 0.01 | 4.17 | −0.74 | 7.26 | 0.00~0.50 | 1~1,169,356 | 2015JP-spray |
qrxp_17_1 | 17 | 26.91 | 9.08 | 1.32 | 22.26 | 24.60~27.90 | 5,158,677~5,994,063 | 2015JP-spray |
qrxp_17_2 | 17 | 34.81 | 33.01 | 2.29 | 74.33 | 33.50~36.60 | 6,777,393~6,883,854 | 2014JP-spray |
32.81 | 15.99 | 1.67 | 34.68 | 31.60~34.80 | 6,293,843~6,883,854 | 2015JP-spray |
QTNs | Chromosome | Physical Position (bp) | −log10p a | r2 (%) b | Environment | Significant Associated Region |
---|---|---|---|---|---|---|
Gm05_7667820 | 5 | 7,667,820 | 4.06 | 3.30 | 2016JP-spray | 6,277,820–9,057,820 |
4.21 | 3.42 | 2018DT-natural | ||||
Gm05_7668047 | 5 | 7,668,047 | 4.06 | 3.30 | 2016JP-spray | |
4.21 | 3.42 | 2018DT-natural | ||||
Gm09_36501019 | 9 | 36,501,019 | 4.65 | 3.87 | 2014JP-spray | 35,111,019–37,891,019 |
4.24 | 3.48 | 2015JP-spray | ||||
Gm17_5628119 | 17 | 5,628,119 | 4.64 | 3.86 | 2016JP-spray | 4,238,119–7,018,119 |
4.45 | 3.65 | 2018DT-natural | ||||
Gm17_5628133 | 17 | 5,628,133 | 4.64 | 3.86 | 2016JP-spray | |
4.45 | 3.65 | 2018DT-natural | ||||
Gm17_7603802 | 17 | 7,603,802 | 4.14 | 3.39 | 2014JP-spray | 6,213,802–8,993,802 |
4.99 | 4.20 | 2015JP-spray | ||||
6.87 | 6.04 | 2016JP-spray | ||||
8.74 | 7.88 | 2018DT-natural | ||||
Gm17_7604008 | 17 | 7,604,008 | 5.04 | 4.24 | 2016JP-spray | |
6.76 | 5.89 | 2018DT-natural | ||||
Gm17_7603992 | 17 | 7,603,992 | 4.14 | 3.39 | 2014JP-spray | |
4.99 | 4.20 | 2015JP-spray | ||||
6.87 | 6.04 | 2016JP-spray | ||||
Gm17_7712768 | 17 | 7,712,768 | 5.13 | 4.35 | 2015JP-spray | |
6.77 | 5.94 | 2018DT-natural | ||||
8.17 | 7.30 | 2018JP-natural | ||||
4.13 | 3.31 | 2015JP-spray | ||||
Gm17_7721556 | 17 | 7,721,556 | 4.95 | 4.17 | 2016JP-spray | |
6.46 | 5.64 | 2018DT-natural | ||||
8.32 | 7.45 | 2015JP-spray | ||||
Gm17_7736150 | 17 | 7,736,150 | 4.33 | 3.58 | 2016JP-spray | |
5.19 | 4.39 | 2018DT-natural | ||||
6.68 | 5.81 | 2014JP-spray | ||||
Gm17_7754016 | 17 | 7,754,016 | 4.05 | 3.30 | 2015JP-spray | |
5.11 | 4.32 | 2016JP-spray | ||||
6.66 | 5.83 | 2018DT-natural | ||||
8.14 | 7.26 | 2014JP-spray | ||||
Gm17_7754048 | 17 | 7,754,048 | 4.05 | 3.30 | 2015JP-spray | |
5.11 | 4.32 | 2016JP-spray | ||||
6.66 | 5.83 | 2018DT-natural | ||||
8.14 | 7.26 |
Wm82.a2.1 | Homolog in A. thaliana | Gene Name | Reference |
---|---|---|---|
Glyma.17G086300 | AT5G63090 | Lateral organ boundaries (LOB) domain-containing protein 25 | Kladsuwan et al., 2017 |
Glyma.17G090100 | AT2G36330 | CASP-like protein 4A3 | Kim et al., 2010; Chang et al., 2016 |
Glyma.17G090200 | AT3G47990 | E3 ubiquitin-protein ligase SIS3-like | Kim et al., 2010; Chang et al., 2016 |
Glyma.17G090400 | AT4G23650 | N.A. | Chang et al., 2016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, F.; Cheng, W.; Wang, Y.; Gao, X.; Huang, D.; Kong, J.; Antwi-Boasiako, A.; Zheng, L.; Yan, W.; Chang, F.; et al. Identification of Novel Genomic Regions for Bacterial Leaf Pustule (BLP) Resistance in Soybean (Glycine max L.) via Integrating Linkage Mapping and Association Analysis. Int. J. Mol. Sci. 2022, 23, 2113. https://doi.org/10.3390/ijms23042113
Zhao F, Cheng W, Wang Y, Gao X, Huang D, Kong J, Antwi-Boasiako A, Zheng L, Yan W, Chang F, et al. Identification of Novel Genomic Regions for Bacterial Leaf Pustule (BLP) Resistance in Soybean (Glycine max L.) via Integrating Linkage Mapping and Association Analysis. International Journal of Molecular Sciences. 2022; 23(4):2113. https://doi.org/10.3390/ijms23042113
Chicago/Turabian StyleZhao, Fangzhou, Wei Cheng, Yanan Wang, Xuewen Gao, Debao Huang, Jiejie Kong, Augustine Antwi-Boasiako, Lingyi Zheng, Wenliang Yan, Fangguo Chang, and et al. 2022. "Identification of Novel Genomic Regions for Bacterial Leaf Pustule (BLP) Resistance in Soybean (Glycine max L.) via Integrating Linkage Mapping and Association Analysis" International Journal of Molecular Sciences 23, no. 4: 2113. https://doi.org/10.3390/ijms23042113
APA StyleZhao, F., Cheng, W., Wang, Y., Gao, X., Huang, D., Kong, J., Antwi-Boasiako, A., Zheng, L., Yan, W., Chang, F., Kong, K., Liao, Y. -Y., Huerta, A. I., Liu, W., Zhang, M., & Zhao, T. (2022). Identification of Novel Genomic Regions for Bacterial Leaf Pustule (BLP) Resistance in Soybean (Glycine max L.) via Integrating Linkage Mapping and Association Analysis. International Journal of Molecular Sciences, 23(4), 2113. https://doi.org/10.3390/ijms23042113