Integrative Genomic and Transcriptomic Profiling Reveals a Differential Molecular Signature in Uterine Leiomyoma versus Leiomyosarcoma
Abstract
:1. Introduction
2. Results
2.1. Clinical Study Design
2.2. Identification of Differential Somatic Single Nucleotide Variants and Insertions/Deletions
2.3. Identification of Copy Number Variants
2.4. Proximal Expression Effects Inferred from Integration with CNVs
2.5. Structural Rearrangements Affect Specific Regions and Genes in LM and LMS
2.6. Differential Transcriptomic Characterization of LMS versus LM
2.7. Model Creation and Validation for Differential Molecular Diagnosis of LMS and LM
3. Discussion
4. Materials and Methods
4.1. Clinical Sample Collection
4.2. DNA Sequencing and Analysis
4.3. RNA Sequencing and Analysis
4.4. Integrative DNA/RNA Analysis
4.5. Building and Validating the Classification Model
4.6. Statistical Analyses
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNV | Copy Number Variant |
COSMIC | Catalogue of Somatic Mutations in Cancer |
CPM | Counts Per Million |
DEGs | Differentially Expressed Genes |
DNA | Deoxyribonucleic acid |
FDA | Food and Drug Administration |
FFPE | Formalin-fixed Paraffin-embedded |
GO | Gene Ontology |
Indel | Insertions/deletions |
IMT | Inflammatory Myofibroblastic Tumor |
IRB | Institutional Review Board |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
LM | Leiomyoma |
LMS | Leiomyosarcoma |
LogFC | Logarithm of Fold Change |
MSI | Microsatellite instability |
RNA | Ribonucleic acid |
ROC | Receiver Operating Characteristic Curve |
RT-qPCR | Real-time quantitative polymerase chain reaction |
SNV | Single nucleotide variant |
STUMP | Smooth uterine muscle of uncertain malignant potential |
WHO | World Health Organization |
Appendix A
References
- Baird, D.; Dunson, D.; Hill, M.; Cousins, D.; Schectman, J. High cumulative incidence of uterine leiomyoma in black and white women: Ultrasound evidence. Am. J. Obstet. Gynecol. 2003, 188, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Parker, W.; Berek, J.S.; Pritts, E.; Olive, D.; Kaunitz, A.M.; Chalas, E.; Clarke-Pearson, D.; Goff, B.; Bristow, R.; Taylor, H.S.; et al. An Open Letter to the Food and Drug Administration Regarding the Use of Morcellation Procedures in Women Having Surgery for Presumed Uterine Myomas. J. Minim. Invasive Gynecol. 2016, 23, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Halaska, M.J.; Haidopoulos, D.; Guyon, F.; Morice, P.; Zapardiel, I.; Kesic, V. European Society of Gynecological Oncology Statement on Fibroid and Uterine Morcellation. Int. J. Gynecol. Cancer 2017, 27, 189–192. [Google Scholar] [CrossRef]
- Mas, A.; Simon, C. Molecular differential diagnosis of uterine leiomyomas and leiomyosarcomas. Biol. Reprod. 2019, 101, 1115–1123. [Google Scholar] [CrossRef]
- Bhave Chittawar, P.; Franik, S.; Pouwer, A.W.; Farquhar, C. Minimally invasive surgical techniques versus open myomectomy for uterine fibroids. Cochrane Database Syst. Rev. 2014, 10, Cd004638. [Google Scholar] [CrossRef]
- Siedhoff, M.T.; Doll, K.M.; Clarke-Pearson, D.L.; Rutstein, S.E. Laparoscopic hysterectomy with morcellation vs abdominal hysterectomy for presumed fibroids: An updated dec.cision analysis following the 2014 Food and Drug Administration safety communications. Am. J. Obstet. Gynecol. 2017, 216, 259.e251–259.e256. [Google Scholar] [CrossRef] [Green Version]
- Seagle, B.L.; Alexander, A.L.; Strohl, A.E.; Shahabi, S. Discussing sarcoma risks during informed consent for nonhysterectomy management of fibroids: An unmet need. Am. J. Obstet. Gynecol. 2018, 218, 103.e1–103.e5. [Google Scholar] [CrossRef]
- Ricci, S.; Stone, R.L.; Fader, A.N. Uterine leiomyosarcoma: Epidemiology, contemporary treatment strategies and the impact of uterine morcellation. Gynecol. Oncol. 2017, 145, 208–216. [Google Scholar] [CrossRef]
- Hodgson, B. AAGL practice report: Morcellation during uterine tissue extraction. J. Minim. Invasive Gynecol. 2014, 21, 517–530. [Google Scholar] [CrossRef]
- Amant, F.; Van den Bosch, T.; Vergote, I.; Timmerman, D. Morcellation of uterine leiomyomas: A plea for patient triage. Lancet Oncol. 2015, 16, 1454–1456. [Google Scholar] [CrossRef]
- Quade, B.J.; Wang, T.Y.; Sornberger, K.; Dal Cin, P.; Mutter, G.L.; Morton, C.C. Molecular pathogenesis of uterine smooth muscle tumors from transcriptional profiling. Genes Chromosomes Cancer 2004, 40, 97–108. [Google Scholar] [CrossRef]
- Makinen, N.; Kampjarvi, K.; Frizzell, N.; Butzow, R.; Vahteristo, P. Characterization of MED12, HMGA2, and FH alterations reveals molecular variability in uterine smooth muscle tumors. Mol. Cancer 2017, 16, 101. [Google Scholar] [CrossRef] [Green Version]
- Garcia, N.; Al-Hendy, A.; Baracat, E.; Carvalho, K.; Yang, Q. Targeting Hedgehog Pathway and DNA Methyltransferases in Uterine Leiomyosarcoma Cells. Cells 2020, 10, 53. [Google Scholar] [CrossRef]
- WHO Classification of Tumours Editorial Board. Female Genital Tumours, 5th ed.; Herrington, C., Ed.; International Agency for Research on Cancer: Lyon, France, 2020; Volume 4.
- Forbes, S.; Beare, D.; Boutselakis, H.; Bamford, S.; Bindal, N.; Tate, J.; Cole, C.; Ward, S.; Dawson, E.; Ponting, L.; et al. COSMIC: Somatic cancer genetics at high-resolution. Nucleic Acids Res. 2017, 45, D777–D783. [Google Scholar] [CrossRef] [PubMed]
- Letouzé, E.; Shinde, J.; Renault, V.; Couchy, G.; Blanc, J.; Tubacher, E.; Bayard, Q.; Bacq, D.; Meyer, V.; Semhoun, J.; et al. Mutational signatures reveal the dynamic interplay of risk factors and cellular processes during liver tumorigenesis. Nat. Commun. 2017, 8, 1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almal, S.; Padh, H. Implications of gene copy-number variation in health and diseases. J. Hum. Genet. 2012, 57, 6–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobashi, Y.; Noguchi, T.; Nasuno, S.; Katayama, K.; Kameya, T. CDK-inhibitors-associated kinase activity: A possible determinant of malignant potential in smooth muscle tumors of the external soft tissue. Int. J. Cancer 2001, 94, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Liau, J.Y.; Tsai, J.H.; Jeng, Y.M.; Lee, J.C.; Hsu, H.H.; Yang, C.Y. Leiomyosarcoma with alternative lengthening of telomeres is associated with aggressive histologic features, loss of ATRX expression, and poor clinical outcome. Am. J. Surg. Pathol. 2015, 39, 236–244. [Google Scholar] [CrossRef]
- Ahvenainen, T.; Mäkinen, N.; von Nandelstadh, P.; Vahteristo, M.; Pasanen, A.; Bützow, R.; Vahteristo, P. Loss of ATRX/DAXX expression and alternative lengthening of telomeres in uterine leiomyomas. Cancer 2018, 124, 4650–4656. [Google Scholar] [CrossRef] [Green Version]
- Mehine, M.; Kaasinen, E.; Heinonen, H.R.; Mäkinen, N.; Kämpjärvi, K.; Sarvilinna, N.; Aavikko, M.; Vähärautio, A.; Pasanen, A.; Bützow, R.; et al. Integrated data analysis reveals uterine leiomyoma subtypes with distinct driver pathways and biomarkers. Proc. Natl. Acad. Sci. USA 2016, 113, 1315–1320. [Google Scholar] [CrossRef] [Green Version]
- Adams, C.L.; Dimitrova, I.; Post, M.D.; Gibson, L.; Spillman, M.A.; Behbakht, K.; Bradford, A.P. Identification of a novel diagnostic gene expression signature to discriminate uterine leiomyoma from leiomyosarcoma. Exp. Mol. Pathol. 2019, 110, 104284. [Google Scholar] [CrossRef] [PubMed]
- Kun, E.; Tsang, Y.; Lin, S.; Pan, S.; Medapalli, T.; Malpica, A.; Richards, J.; Gershenson, D.; Wong, K. Differences in gynecologic tumor development in Amhr2-Cre mice with KRAS G12D or KRAS G12V mutations. Sci. Rep. 2020, 10, 20678. [Google Scholar] [CrossRef] [PubMed]
- Tien, A.C.; Lin, M.H.; Su, L.J.; Hong, Y.R.; Cheng, T.S.; Lee, Y.C.; Lin, W.J.; Still, I.H.; Huang, C.Y. Identification of the substrates and interaction proteins of aurora kinases from a protein-protein interaction model. Mol. Cell. Proteom. 2004, 3, 93–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twu, N.F.; Yuan, C.C.; Yen, M.S.; Lai, C.R.; Chao, K.C.; Wang, P.H.; Wu, H.H.; Chen, Y.J. Expression of Aurora kinase A and B in normal and malignant cervical tissue: High Aurora A kinase expression in squamous cervical cancer. Eur. J. Obstet. Gynecol. Reprod. Biol. 2009, 142, 57–63. [Google Scholar] [CrossRef]
- Gritsko, T.M.; Coppola, D.; Paciga, J.E.; Yang, L.; Sun, M.; Shelley, S.A.; Fiorica, J.V.; Nicosia, S.V.; Cheng, J.Q. Activation and overexpression of centrosome kinase BTAK/Aurora-A in human ovarian cancer. Clin. Cancer Res. 2003, 9, 1420–1426. [Google Scholar]
- Shan, W.; Akinfenwa, P.Y.; Savannah, K.B.; Kolomeyevskaya, N.; Laucirica, R.; Thomas, D.G.; Odunsi, K.; Creighton, C.J.; Lev, D.C.; Anderson, M.L. A small-molecule inhibitor targeting the mitotic spindle checkpoint impairs the growth of uterine leiomyosarcoma. Clin. Cancer Res. 2012, 18, 3352–3365. [Google Scholar] [CrossRef] [Green Version]
- Seagle, B.L.; Sobecki-Rausch, J.; Strohl, A.E.; Shilpi, A.; Grace, A.; Shahabi, S. Prognosis and treatment of uterine leiomyosarcoma: A National Cancer Database study. Gynecol. Oncol. 2017, 145, 61–70. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; Genome Project Data Processing, S. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Borresen-Dale, A.L.; et al. Signatures of mutational processes in human cancer. Nature 2013, 500, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Pagin, A.; Zerimech, F.; Leclerc, J.; Wacrenier, A.; Lejeune, S.; Descarpentries, C.; Escande, F.; Porchet, N.; Buisine, M.P. Evaluation of a new panel of six mononucleotide repeat markers for the detection of DNA mismatch repair-deficient tumours. Br. J. Cancer 2013, 108, 2079–2087. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
Characteristics | LMS | LM | |
---|---|---|---|
Demographic variables | Age | ||
≤30 years | - | 2 (3.57%) | |
31–40 years | 7 (14.89%) | 17 (30.36%) | |
41–50 years | 11 (23.41%) | 33 (58.93%) | |
51–60 years | 20 (42.55%) | 2 (3.57%) | |
≥61 years | 9 (19.15%) | - | |
Not available (n) | - | 2 (3.57%) | |
Median (years) | 53 | 44 | |
Range (years | 35–75 | 28–55 | |
Ethnicity | |||
Caucasian | 36 (76.59%) | 41 (73.21%) | |
African American | 1(2.13%) | 1 (1.79%) | |
Latin | 4 (8.51%) | 6 (10.71%) | |
Asian | 1(2.13%) | - | |
Arabic | 1(2.13%) | - | |
Not available | 4 (8.51%) | 8 (14.29%) | |
Body mass index (kg/m2) | |||
Median | 27.15 | 24 | |
Range | 21.5–34.9 | 18.20–34.63 | |
Not available (n) | 21 | 13 | |
Gynecologic background | Parity | ||
Yes | 23 (48.94%) | 27 (48.21%) | |
No | - | 1 (1.79%) | |
Not available | 24 (51.06%) | 28 (50.00%) | |
Miscarriage | |||
Yes | 7 (14.89%) | 15 (26.79%) | |
No | 16 (34.05%) | 13 (23.21%) | |
Not available | 24 (51.06%) | 28 (50.00%) | |
Menopausal status | |||
Premenopausal | 15 (38.30%) | 46 (82.14%) | |
Postmenopausal | 18 (31.91%) | 2 (3.57%) | |
Not available | 14 (29.79%) | 8 (14.29%) | |
Symptoms | Pelvic mass | ||
Yes | 25 (53.19%) | 28 (50.00%) | |
No | 7 (14.89%) | 20 (35.71%) | |
Not available | 15 (31.92%) | 8 (14.29%) | |
Abnormal uterine bleeding | |||
Yes | 17 (36.17%) | 26 (46.43%) | |
No | 11 (23.40%) | 21 (37.50%) | |
Not available | 19 (40.43%) | 9 (16.07%) | |
Abdominal pain | |||
Yes | 16 (34.04%) | 14 (25.00%) | |
No | 11 (23.41%) | 32 (57.14%) | |
Not available | 20 (42.55%) | 10 (17.86%) | |
Imaging | CT | ||
Yes | 14 (29.79%) | 7 (12.50%) | |
No | 16 (34.04%) | 42 (75.00%) | |
Not available | 17 (36.17%) | 7 (12.50%) | |
MRI | |||
Yes | 5 (10.64%) | 5 (8.93%) | |
No | 22 (46.81%) | 44 (78.57%) | |
Not available | 20 (42.55%) | 7 (12.50%) | |
Ultrasound | |||
Yes | 31 (65.96%) | 49 (87.50%) | |
No | - | - | |
Not available | 16 (34.04%) | 7 (12.50%) | |
Tumor size (cm) | |||
Median | 13 | 7.4 | |
Range | mar-24 | 0.25–25 | |
Not available (n) | 17 | 10 | |
Suspected uterine sarcoma | |||
Yes | 15 (31.91%) | 5 (8.93%) | |
No | 15 (31.91%) | 44 (78.57%) | |
NA | 17 (36.18%) | 7 (12.50%) | |
Surgical treatment | Endometrial biopsy | ||
Yes | 15 (31.91%) | 39 (69.64%) | |
No | 17 (27.66%) | 10 (17.86%) | |
Not available | 19 (40.43%) | 7 (12.50%) | |
Primary surgery | |||
Laparoscopic hysterectomy | 1 (2.13%) | 12 (21.43%) | |
Laparoscopic myomectomy | - | 5 (8.93%) | |
Laparotomic hysterectomy | 33 (70.21%) | 21 (37.50%) | |
Laparotomic myomectomy | - | 11 (19.64%) | |
Not available | 13 (27.66%) | 7 (12.50%) | |
Clinical follow-up | Recurrence | ||
Yes | 19 (40.43%) | 49 (87.50%) | |
No | 9 (19.16%) | - | |
Not available | 19 (40.43%) | 7 (12.50%) | |
Status | |||
Alive | 12 (25.53%) | 48 (85.71%) | |
Deceased | 12 (25.53%) | - | |
Not available | 23 (48.84%) | 8 (14.29%) | |
Follow-up (months) | |||
Median | 24 | - | |
Range | 8–116 | - | |
Not available (n) | 29 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado-Lopez, A.; Alonso, R.; Lago, V.; Jimenez-Almazan, J.; Garcia, M.; Monleon, J.; Lopez, S.; Barcelo, F.; Torroba, A.; Ortiz, S.; et al. Integrative Genomic and Transcriptomic Profiling Reveals a Differential Molecular Signature in Uterine Leiomyoma versus Leiomyosarcoma. Int. J. Mol. Sci. 2022, 23, 2190. https://doi.org/10.3390/ijms23042190
Machado-Lopez A, Alonso R, Lago V, Jimenez-Almazan J, Garcia M, Monleon J, Lopez S, Barcelo F, Torroba A, Ortiz S, et al. Integrative Genomic and Transcriptomic Profiling Reveals a Differential Molecular Signature in Uterine Leiomyoma versus Leiomyosarcoma. International Journal of Molecular Sciences. 2022; 23(4):2190. https://doi.org/10.3390/ijms23042190
Chicago/Turabian StyleMachado-Lopez, Alba, Roberto Alonso, Victor Lago, Jorge Jimenez-Almazan, Marta Garcia, Javier Monleon, Susana Lopez, Francisco Barcelo, Amparo Torroba, Sebastian Ortiz, and et al. 2022. "Integrative Genomic and Transcriptomic Profiling Reveals a Differential Molecular Signature in Uterine Leiomyoma versus Leiomyosarcoma" International Journal of Molecular Sciences 23, no. 4: 2190. https://doi.org/10.3390/ijms23042190
APA StyleMachado-Lopez, A., Alonso, R., Lago, V., Jimenez-Almazan, J., Garcia, M., Monleon, J., Lopez, S., Barcelo, F., Torroba, A., Ortiz, S., Domingo, S., Simon, C., & Mas, A. (2022). Integrative Genomic and Transcriptomic Profiling Reveals a Differential Molecular Signature in Uterine Leiomyoma versus Leiomyosarcoma. International Journal of Molecular Sciences, 23(4), 2190. https://doi.org/10.3390/ijms23042190