Review of Liquid Chromatography-Mass Spectrometry-Based Proteomic Analyses of Body Fluids to Diagnose Infectious Diseases
Abstract
:1. Introduction
- (1)
- Pure-cultured pathogens: the proteomic analysis of pathogens grown under pure culture conditions has several advantages regarding the characterization of pathogens. First, this approach provides accurate translational information of each gene at the genome-wide level. Second, it is easy to control the cell culture conditions of pathogens and acquire their proteomic responses. However, the pure-culture conditions of pathogens are different from real infection conditions. In general, host systems infected with pathogens provide more severe and diverse culture conditions. Additionally, many pathogens related to human diseases cannot be cultured in laboratory environments [8].
- (2)
- Infected host proteome: the host proteome infected with pathogens is another important target for proteomic analysis. This approach can provide valuable information on host–pathogen interactions, the infection mechanisms of pathogens (pathogenic bacteria or viruses), and the pathological symptoms of hosts. The study of the interactions between microbial pathogens and their hosts is called “infectomics”; it constitutes a growing area of interest in proteomics. Infection sites within a host are also diverse, including the respiratory system, digestive system, nerve systems, skin, and body fluid. Therefore, many clinical samples are available. However, though host-derived biomarkers are useful for monitoring disease status, they are limited for discerning between similar diseases [9].
- (3)
- Pathogens in the infected host: detecting pathogens (pathogenic bacteria or viruses) from an infected host is the most direct method for the diagnosis, prognosis, treatment, and clinical characterization of infectious diseases. Body fluids can be useful samples for this analysis.
2. Using Body Fluids for the Proteomic Analysis of Infectious Diseases
2.1. Body Fluids as Valuable Clinical Samples for Proteomic Analysis
2.2. Increase in Applications of Body Fluids for Proteomics of Infectious Diseases
3. Application of LC-MS Proteomic Analysis for Identification of Pathogens Using Body Fluids Associated with Infectious Diseases
3.1. Application of DDA for Proteomics of Infectious Diseases
3.2. Application of DIA for Proteomics of Infectious Diseases
3.3. Application of Targeted-MS for Proteomics of Infectious Diseases
3.4. Application of LC-MS/MS for COVID-19 Diagnosis
4. Concluding Remarks and Future Outlook
4.1. Data Deposition and Sharing Using Public Repositories
4.2. Expanding Community-Level Spectral Libraries
Author Contributions
Funding
Conflicts of Interest
References
- Chen, B.; Zhang, D.; Wang, X.; Ma, W.; Deng, S.; Zhang, P.; Zhu, H.; Xu, N.; Liang, S. Proteomics progresses in microbial physiology and clinical antimicrobial therapy. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 403–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloom, D.E.; Cadarette, D. Infectious disease threats in the twenty-first century: Strengthening the global response. Front. Immunol. 2019, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Afzal, A. Molecular diagnostic technologies for COVID-19: Limitations and challenges. J. Adv. Res. 2020, 26, 149–159. [Google Scholar] [CrossRef]
- Excler, J.L.; Saville, M.; Berkley, S.; Kim, J.H. Vaccine development for emerging infectious diseases. Nat. Med. 2021, 27, 591–600. [Google Scholar] [CrossRef]
- Badiee, P. Evaluation of human body fluids for the diagnosis of fungal infections. BioMed Res. Int. 2013, 2013, 8325. [Google Scholar] [CrossRef] [Green Version]
- Camerini, S.; Mauri, P. The role of protein and peptide separation before mass spectrometry analysis in clinical proteomics. J. Chromatogr. A 2015, 1381, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Güzel, C.; Govorukhina, N.I.; Stingl, C.; Dekker, L.J.M.; Boichenko, A.; van der Zee, A.G.J.; Bischoff, R.P.H.; Luider, T.M. Comparison of Targeted Mass Spectrometry Techniques with an Immunoassay: A Case Study for HSP90α. Proteom. Clin. Appl. 2018, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Li, R.; Shi, J.; Tan, P.; Zhang, R.; Li, J. Liquid biopsy for infectious diseases: A focus on microbial cell-free DNA sequencing. Theranostics 2020, 10, 5501–5513. [Google Scholar] [CrossRef]
- Ko, E.R.; Yang, W.E.; McClain, M.T.; Woods, C.W.; Ginsburg, G.S.; Tsalik, E.L. What was old is new again: Using the host response to diagnose infectious disease. Expert Rev. Mol. Diagn. 2015, 15, 1143–1158. [Google Scholar] [CrossRef]
- Qureshi, A.; Niazi, J.H. Biosensors for detecting viral and bacterial infections using host biomarkers: A review. Analyst 2020, 145, 7825–7848. [Google Scholar] [CrossRef]
- Wuen Ma, J.Y.; Sze, Y.H.O.N.; Bian, J.F.; Lam, T.C. Critical role of mass spectrometry proteomics in tear biomarker discovery for multifactorial ocular diseases (Review). Int. J. Mol. Med. 2021, 47, 4916. [Google Scholar] [CrossRef]
- Hu, S.; Loo, J.A.; Wong, D.T. Human body fluid proteome analysis. Proteomics 2006, 6, 6326–6353. [Google Scholar] [CrossRef] [PubMed]
- Sataloff, R.T.; Johns, M.M.; Kost, K.M. Integration of Omics Approaches and Systems Biology for Clinical Applications; Vlahou, A., Mischak, H., Zoidakis, J., Magni, F., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2018; ISBN 9781119183952. [Google Scholar]
- Lygirou, V.; Makridakis, M.; Vlahou, A. Biological sample collection for clinical proteomics: Existing SOPs. In Methods in Molecular Biology; Humana Press: New York, NY, USA, 2015; Volume 1243, pp. 3–27. ISBN 978-1-4939-1872-0. [Google Scholar]
- Kroksveen, A.C.; Opsahl, J.A.; Aye, T.T.; Ulvik, R.J.; Berven, F.S. Proteomics of human cerebrospinal fluid: Discovery and verification of biomarker candidates in neurodegenerative diseases using quantitative proteomics. J. Proteom. 2011, 74, 371–388. [Google Scholar] [CrossRef]
- Schulz, B.L.; Cooper-White, J.; Punyadeera, C.K. Saliva proteome research: Current status and future outlook. Crit. Rev. Biotechnol. 2013, 33, 246–259. [Google Scholar] [CrossRef] [PubMed]
- Sabounchi-Schütt, F.; Åström, J.; Hellman, U.; Eklund, A.; Grunewald, J. Changes in bronchoalveolar lavage fluid proteins in sarcoidosis: A proteomics approach. Eur. Respir. J. 2003, 21, 414–420. [Google Scholar] [CrossRef] [Green Version]
- Filip, S.; Zoidakis, J. Proteomics of Body Fluids. In Integration of Omics Approaches and Systems Biology for Clinical Applications; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 93–112. [Google Scholar]
- Rai, A.J.; Gelfand, C.A.; Haywood, B.C.; Warunek, D.J.; Yi, J.; Schuchard, M.D.; Mehigh, R.J.; Cockrill, S.L.; Scott, G.B.I.; Tammen, H.; et al. HUPO Plasma Proteome Project specimen collection and handling: Towards the standardization of parameters for plasma proteome samples. Proteomics 2005, 5, 3262–3277. [Google Scholar] [CrossRef]
- Kim, M.-R.; Kim, C.-W. Human blood plasma preparation for two-dimensional gel electrophoresis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 849, 203–210. [Google Scholar] [CrossRef]
- Di Domenico, M.; Scumaci, D.; Grasso, S.; Gaspari, M.; Curcio, A.; Oliva, A.; Ausania, F.; Di Nunzio, C.; Ricciardi, C.; Santini, A.C.; et al. Biomarker discovery by plasma proteomics in familial Brugada Syndrome. Front. Biosci. Landmark Ed. 2013, 18, 564–571. [Google Scholar] [CrossRef] [Green Version]
- Teunissen, C.E.; Petzold, A.; Bennett, J.L.; Berven, F.S.; Brundin, L.; Comabella, M.; Franciotta, D.; Frederiksen, J.L.; Fleming, J.O.; Furlan, R.; et al. A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking. Neurology 2009, 73, 1914–1922. [Google Scholar] [CrossRef] [Green Version]
- Ray, S.; Reddy, P.J.; Jain, R.; Gollapalli, K.; Moiyadi, A.; Srivastava, S. Proteomic technologies for the identification of disease biomarkers in serum: Advances and challenges ahead. Proteomics 2011, 11, 2139–2161. [Google Scholar] [CrossRef]
- Zhu, P.; Bowden, P.; Zhang, D.; Marshall, J.G. Mass spectrometry of peptides and proteins from human blood. Mass Spectrom. Rev. 2011, 30, 685–732. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.Y.; Choi, Y.R.; Lee, J.H.; Lim, J.M.; Lee, S.; Kim, K.P.; Kim, J.Y.; Lee, S.H.; Kim, M. In-Depth Proteomic Analysis of Human Bronchoalveolar Lavage Fluid toward the Biomarker Discovery for Lung Cancers. Proteom. Clin. Appl. 2019, 13, 1900028. [Google Scholar] [CrossRef] [PubMed]
- Lausted, C.; Lee, I.; Zhou, Y.; Qin, S.; Sung, J.; Price, N.D.; Hood, L.; Wang, K. Systems approach to neurodegenerative disease biomarker discovery. Annu. Rev. Pharmacol. Toxicol. 2014, 54, 457–481. [Google Scholar] [CrossRef] [PubMed]
- Filip, S.; Zoidakis, J.; Vlahou, A.; Mischak, H. Advances in urinary proteome analysis and applications in systems biology. Bioanalysis 2014, 6, 2549–2569. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Frankel, A.H.; Tam, F.W.K. Urine proteomics and biomarkers in renal disease. Nephron Exp. Nephrol. 2011, 119, e1–e7. [Google Scholar] [CrossRef]
- Kashino, S.S.; Pollock, N.; Napolitano, D.R.; Rodrigues, V.; Campos-Neto, A. Identification and characterization of Mycobacterium tuberculosis antigens in urine of patients with active pulmonary tuberculosis: An innovative and alternative approach of antigen discovery of useful microbial molecules. Clin. Exp. Immunol. 2008, 153, 56–62. [Google Scholar] [CrossRef]
- Pollock, N.R.; Macovei, L.; Kanunfre, K.; Dhiman, R.; Restrepo, B.I.; Zarate, I.; Pino, P.A.; Mora-Guzman, F.; Fujiwara, R.T.; Michel, G.; et al. Validation of Mycobacterium tuberculosis Rv1681 protein as a diagnostic marker of active pulmonary tuberculosis. J. Clin. Microbiol. 2013, 51, 1367–1373. [Google Scholar] [CrossRef] [Green Version]
- Young, B.L.; Mlamla, Z.; Gqamana, P.P.; Smit, S.; Roberts, T.; Peter, J.; Theron, G.; Govender, U.; Dheda, K.; Blackburn, J. The identification of tuberculosis biomarkers in human urine samples. Eur. Respir. J. 2014, 43, 1719–1729. [Google Scholar] [CrossRef] [Green Version]
- Osbak, K.K.; Van Raemdonck, G.A.; Dom, M.; Cameron, C.E.; Meehan, C.J.; Deforce, D.; Van Ostade, X.; Kenyon, C.R.; Dhaenens, M. Candidate Treponema pallidum biomarkers uncovered in urine from individuals with syphilis using mass spectrometry. Future Microbiol. 2018, 13, 1497–1510. [Google Scholar] [CrossRef]
- Roux-Dalvai, F.; Gotti, C.; Leclercq, M.; Hélie, M.C.; Boissinot, M.; Arrey, T.N.; Dauly, C.; Fournier, F.; Kelly, I.; Marcoux, J.; et al. Fast and accurate bacterial species identification in urine specimens using LC-MS/MS mass spectrometry and machine learning. Mol. Cell. Proteom. 2019, 18, 2492–2505. [Google Scholar] [CrossRef] [Green Version]
- Spielmann, N.; Wong, D. Saliva: Diagnostics and therapeutic perspectives. Oral Dis. 2011, 17, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Duan, Y. Saliva: A potential media for disease diagnostics and monitoring. Oral Oncol. 2012, 48, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.S.; Kim, Y.G.; Shin, Y.J.; Ko, B.J.; Kim, S.; Kim, H.D. Deep sequencing salivary proteins for periodontitis using proteomics. Clin. Oral Investig. 2019, 23, 3571–3580. [Google Scholar] [CrossRef]
- Tu, C.; Rudnick, P.A.; Martinez, M.Y.; Cheek, K.L.; Stein, S.E.; Slebos, R.J.C.; Liebler, D.C. Depletion of Abundant Plasma Proteins and Limitations of Plasma Proteomics. J. Proteom. Res. 2010, 9, 4982–4991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afkarian, M.; Bhasin, M.; Dillon, S.T.; Guerrero, M.C.; Nelson, R.G.; Knowler, W.C.; Thadhani, R.; Libermann, T.A. Optimizing a proteomics platform for urine biomarker discovery. Mol. Cell. Proteom. 2010, 9, 2195–2204. [Google Scholar] [CrossRef] [Green Version]
- Kullolli, M.; Warren, J.; Arampatzidou, M.; Pitteri, S.J. Performance evaluation of affinity ligands for depletion of abundant plasma proteins. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013, 939, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Filip, S.; Vougas, K.; Zoidakis, J.; Latosinska, A.; Mullen, W.; Spasovski, G.; Mischak, H.; Vlahou, A.; Jankowski, J. Comparison of depletion strategies for the enrichment of low-Abundance proteins in urine. PLoS ONE 2015, 10, e0133773. [Google Scholar] [CrossRef]
- Waas, M.; Bhattacharya, S.; Chuppa, S.; Wu, X.; Jensen, D.R.; Omasits, U.; Wollscheid, B.; Volkman, B.F.; Noon, K.R.; Gundry, R.L. Combine and conquer: Surfactants, solvents, and chaotropes for robust mass spectrometry based analyses of membrane proteins. Anal. Chem. 2014, 86, 1551–1559. [Google Scholar] [CrossRef]
- Ding, H.; Fazelinia, H.; Spruce, L.A.; Weiss, D.A.; Zderic, S.A.; Seeholzer, S.H. Urine Proteomics: Evaluation of Different Sample Preparation Workflows for Quantitative, Reproducible, and Improved Depth of Analysis. J. Proteom. Res. 2020, 19, 1857–1862. [Google Scholar] [CrossRef]
- Sielaff, M.; Kuharev, J.; Bohn, T.; Hahlbrock, J.; Bopp, T.; Tenzer, S.; Distler, U. Evaluation of FASP, SP3, and iST Protocols for Proteomic Sample Preparation in the Low Microgram Range. J. Proteom. Res. 2017, 16, 4060–4072. [Google Scholar] [CrossRef]
- Müller, T.; Kalxdorf, M.; Longuespée, R.; Kazdal, D.N.; Stenzinger, A.; Krijgsveld, J. Automated sample preparation with SP 3 for low-input clinical proteomics. Mol. Syst. Biol. 2020, 16, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Ly, L.; Wasinger, V.C. Protein and peptide fractionation, enrichment and depletion: Tools for the complex proteome. Proteomics 2011, 11, 513–534. [Google Scholar] [CrossRef] [PubMed]
- Nakayasu, E.S.; Gritsenko, M.; Piehowski, P.D.; Gao, Y.; Orton, D.J.; Schepmoes, A.A.; Fillmore, T.L.; Frohnert, B.I.; Rewers, M.; Krischer, J.P.; et al. Tutorial: Best practices and considerations for mass-spectrometry-based protein biomarker discovery and validation. Nat. Protoc. 2021, 16, 3737–3760. [Google Scholar] [CrossRef] [PubMed]
- El Rassi, Z.; Puangpila, C. Liquid-phase based separation systems for depletion, prefractionation, and enrichment of proteins in biological fluids and matrices for in-depth proteomics analysis-An update covering the period 2014–2016. Electrophoresis 2017, 38, 150–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macklin, A.; Khan, S.; Kislinger, T. Recent advances in mass spectrometry based clinical proteomics: Applications to cancer research. Clin. Proteom. 2020, 17, 1–25. [Google Scholar] [CrossRef]
- Hughes, C.S.; Moggridge, S.; Müller, T.; Sorensen, P.H.; Morin, G.B.; Krijgsveld, J. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc. 2019, 14, 68–85. [Google Scholar] [CrossRef] [PubMed]
- Andersen, R.F.; Palmfeldt, J.; Jespersen, B.; Gregersen, N.; Rittig, S. Plasma and urine proteomic profiles in childhood idiopathic nephrotic syndrome. Proteom. Clin. Appl. 2012, 6, 382–393. [Google Scholar] [CrossRef] [PubMed]
- Kulak, N.A.; Pichler, G.; Paron, I.; Nagaraj, N.; Mann, M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat. Methods 2014, 11, 319–324. [Google Scholar] [CrossRef]
- Wiśniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 2009, 6, 359–362. [Google Scholar] [CrossRef]
- HaileMariam, M.; Eguez, R.V.; Singh, H.; Bekele, S.; Ameni, G.; Pieper, R.; Yu, Y. S-Trap, an Ultrafast Sample-Preparation Approach for Shotgun Proteomics. J. Proteom. Res. 2018, 17, 2917–2924. [Google Scholar] [CrossRef]
- Bekker-Jensen, D.B.; Kelstrup, C.D.; Batth, T.S.; Larsen, S.C.; Haldrup, C.; Bramsen, J.B.; Sørensen, K.D.; Høyer, S.; Ørntoft, T.F.; Andersen, C.L.; et al. An Optimized Shotgun Strategy for the Rapid Generation of Comprehensive Human Proteomes. Cell Syst. 2017, 4, 587–599.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vizcaíno, J.A.; Deutsch, E.W.; Wang, R.; Csordas, A.; Reisinger, F.; Ríos, D.; Dianes, J.A.; Sun, Z.; Farrah, T.; Bandeira, N.; et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 2014, 32, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, E.W.; Csordas, A.; Sun, Z.; Jarnuczak, A.; Perez-Riverol, Y.; Ternent, T.; Campbell, D.S.; Bernal-Llinares, M.; Okuda, S.; Kawano, S.; et al. The ProteomeXchange consortium in 2017: Supporting the cultural change in proteomics public data deposition. Nucleic Acids Res. 2017, 45, D1100–D1106. [Google Scholar] [CrossRef] [PubMed]
- Liebler, D.C.; Zimmerman, L.J. Targeted quantitation of proteins by mass spectrometry. Biochemistry 2013, 52, 3797–3806. [Google Scholar] [CrossRef]
- Wolf-Yadlin, A.; Hu, A.; Noble, W.S. Technical advances in proteomics: New developments in data-independent acquisition. F1000Research 2016, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Krasny, L.; Huang, P.H. Data-independent acquisition mass spectrometry (DIA-MS) for proteomic applications in oncology. Mol. Omi 2021, 17, 29–42. [Google Scholar] [CrossRef]
- Bruderer, R.; Bernhardt, O.M.; Gandhi, T.; Miladinović, S.M.; Cheng, L.-Y.; Messner, S.; Ehrenberger, T.; Zanotelli, V.; Butscheid, Y.; Escher, C.; et al. Extending the Limits of Quantitative Proteome Profiling with Data-Independent Acquisition and Application to Acetaminophen-Treated Three-Dimensional Liver Microtissues. Mol. Cell. Proteom. 2015, 14, 1400–1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIlwain, S.; Tamura, K.; Kertesz-Farkas, A.; Grant, C.E.; Diament, B.; Frewen, B.; Howbert, J.J.; Hoopmann, M.R.; Käll, L.; Eng, J.K.; et al. Crux: Rapid open source protein tandem mass spectrometry analysis. J. Proteom. Res. 2014, 13, 4488–4491. [Google Scholar] [CrossRef] [Green Version]
- Sinitcyn, P.; Hamzeiy, H.; Salinas Soto, F.; Itzhak, D.; McCarthy, F.; Wichmann, C.; Steger, M.; Ohmayer, U.; Distler, U.; Kaspar-Schoenefeld, S.; et al. MaxDIA enables library-based and library-free data-independent acquisition proteomics. Nat. Biotechnol. 2021, 21, 968. [Google Scholar] [CrossRef]
- Deutsch, E.W.; Mendoza, L.; Shteynberg, D.; Farrah, T.; Lam, H.; Tasman, N.; Sun, Z.; Nilsson, E.; Pratt, B.; Prazen, B.; et al. A guided tour of the Trans-Proteomic Pipeline. Proteomics 2010, 10, 1150–1159. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Hou, J.; Tanner, J.J.; Cheng, J. Bioinformatics methods for mass spectrometry-based proteomics data analysis. Int. J. Mol. Sci. 2020, 21, 2873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnet, J.; Garcia, C.; Leger, T.; Couquet, M.P.; Vignoles, P.; Vatunga, G.; Ndung’u, J.; Boudot, C.; Bisser, S.; Courtioux, B. Proteome characterization in various biological fluids of Trypanosoma brucei gambiense-infected subjects. J. Proteom. 2019, 196, 150–161. [Google Scholar] [CrossRef]
- Venkatesh, A.; Lahiri, A.; Reddy, P.J.; Shastri, J.; Bankar, S.; Patankar, S.; Srivastava, S. Identification of Highly Expressed Plasmodium Vivax Proteins from Clinical Isolates Using Proteomics. Proteom. Clin. Appl. 2018, 12, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kruh-Garcia, N.A.; Murray, M.; Prucha, J.G.; Dobos, K.M. Antigen 85 variation across lineages of Mycobacterium tuberculosis-Implications for vaccine and biomarker success. J. Proteom. 2014, 97, 141–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruh-Garcia, N.A.; Wolfe, L.M.; Chaisson, L.H.; Worodria, W.O.; Nahid, P.; Schorey, J.S.; Davis, J.L.; Dobos, K.M. Detection of Mycobacterium tuberculosis peptides in the exosomes of patients with active and latent M. tuberculosis infection using MRM-MS. PLoS ONE 2014, 9, e0103811. [Google Scholar] [CrossRef]
- Mehaffy, C.; Dobos, K.M.; Nahid, P.; Kruh-Garcia, N.A. Second generation multiple reaction monitoring assays for enhanced detection of ultra-low abundance Mycobacterium tuberculosis peptides in human serum. Clin. Proteom. 2017, 14, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, R.; Gonzales-Siles, L.; Gomila, M.; Busquets, A.; Salvà-Serra, F.; Jaén-Luchoro, D.; Jakobsson, H.E.; Karlsson, A.; Boulund, F.; Kristiansson, E.; et al. Proteotyping bacteria: Characterization, differentiation and identification of pneumococcus and other species within the Mitis Group of the genus Streptococcus by tandem mass spectrometry proteomics. PLoS ONE 2018, 13, e0208804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlsson, R.; Thorsell, A.; Gomila, M.; Salvà-Serra, F.; Jakobsson, H.E.; Gonzales-Siles, L.; Jaén-Luchoro, D.; Skovbjerg, S.; Fuchs, J.; Karlsson, A.; et al. Discovery of species-unique peptide biomarkers of bacterial pathogens by tandem mass spectrometry-based proteotyping. Mol. Cell. Proteom. 2020, 19, 518–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Drake, S.K.; Yong, C.; Gucek, M.; Lyes, M.A.; Rosenberg, A.Z.Z.; Soderblom, E.; Moseley, M.A.; Dekker, J.P.; Suffredini, A.F. A genoproteomic approach to detect peptide markers of bacterial respiratory pathogens. Clin. Chem. 2017, 63, 1398–1408. [Google Scholar] [CrossRef]
- Bardet, C.; Barraud, O.; Clavel, M.; Fortin, T.; Charrier, J.P.; Rodrigue, M.; François, B.; Yugueros-Marcos, J.; Lemoine, J.; Ploy, M.C.; et al. Early and specific targeted mass spectrometry-based identification of bacteria in endotracheal aspirates of patients suspected with ventilator-associated pneumonia. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1291–1301. [Google Scholar] [CrossRef]
- Gouveia, D.; Grenga, L.; Gaillard, J.; Gallais, F.; Bellanger, L.; Pible, O.; Armengaud, J. Shortlisting SARS-CoV-2 Peptides for Targeted Studies from Experimental Data-Dependent Acquisition Tandem Mass Spectrometry Data. Proteomics 2020, 20, 2000107. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, D.; Miotello, G.; Gallais, F.; Gaillard, J.C.; Debroas, S.; Bellanger, L.; Lavigne, J.P.; Sotto, A.; Grenga, L.; Pible, O.; et al. Proteotyping SARS-CoV-2 Virus from Nasopharyngeal Swabs: A Proof-of-Concept Focused on a 3 Min Mass Spectrometry Window. J. Proteom. Res. 2020, 19, 4407–4416. [Google Scholar] [CrossRef]
- Singh, P.; Chakraborty, R.; Marwal, R.; Radhakrishan, V.S.; Bhaskar, A.K.; Vashisht, H.; Dhar, M.S.; Pradhan, S.; Ranjan, G.; Imran, M.; et al. A rapid and sensitive method to detect SARS-CoV-2 virus using targeted-mass spectrometry. J. Proteins Proteom. 2020, 11, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Cardozo, K.H.M.; Lebkuchen, A.; Okai, G.G.; Schuch, R.A.; Viana, L.G.; Olive, A.N.; Lazari, C.D.S.; Fraga, A.M.; Granato, C.F.H.; Pintão, M.C.T.; et al. Establishing a mass spectrometry-based system for rapid detection of SARS-CoV-2 in large clinical sample cohorts. Nat. Commun. 2020, 11, 6201. [Google Scholar] [CrossRef]
- Renuse, S.; Vanderboom, P.M.; Maus, A.D.; Kemp, J.V.; Gurtner, K.M.; Madugundu, A.K.; Chavan, S.; Peterson, J.A.; Madden, B.J.; Mangalaparthi, K.K.; et al. A mass spectrometry-based targeted assay for detection of SARS-CoV-2 antigen from clinical specimens. EBioMedicine 2021, 69, 103465. [Google Scholar] [CrossRef] [PubMed]
- Yates, J.R. 3rd Mass spectrometry and the age of the proteome. J. Mass Spectrom. 1998, 33, 1–19. [Google Scholar] [CrossRef]
- Stahl, D.C.; Swiderek, K.M.; Davis, M.T.; Lee, T.D. Data-controlled automation of liquid chromatography/tandem mass spectrometry analysis of peptide mixtures. J. Am. Soc. Mass Spectrom. 1996, 7, 532–540. [Google Scholar] [CrossRef] [Green Version]
- Tariq, M.U.; Haseeb, M.; Aledhari, M.; Razzak, R.; Parizi, R.M.; Saeed, F. Methods for Proteogenomics Data Analysis, Challenges, and Scalability Bottlenecks: A Survey. IEEE Access 2021, 9, 5497–5516. [Google Scholar] [CrossRef]
- Michalski, A.; Cox, J.; Mann, M. More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. J. Proteom. Res. 2011, 10, 1785–1793. [Google Scholar] [CrossRef]
- Distler, U.; Kuharev, J.; Navarro, P.; Levin, Y.; Schild, H.; Tenzer, S. Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics. Nat. Methods 2014, 11, 167–170. [Google Scholar] [CrossRef]
- Thompson, A.; Schäfer, J.; Kuhn, K.; Kienle, S.; Schwarz, J.; Schmidt, G.; Neumann, T.; Hamon, C. Tandem Mass Tags: A Novel Quantification Strategy for Comparative Analysis of Complex Protein Mixtures by MS/MS. Anal. Chem. 2003, 75, 1895–1904. [Google Scholar] [CrossRef] [PubMed]
- Wiese, S.; Reidegeld, K.A.; Meyer, H.E.; Warscheid, B. Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research. Proteomics 2007, 7, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, E.J.; Bereman, M.S.; Durand, S.; Valaskovic, G.A.; MacCoss, M.J. Effects of column and gradient lengths on peak capacity and peptide identification in nanoflow LC-MS/MS of complex proteomic samples. J. Am. Soc. Mass Spectrom. 2013, 24, 148–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moruz, L.; Pichler, P.; Stranzl, T.; Mechtler, K.; Käll, L. Optimized nonlinear gradients for reversed-phase liquid chromatography in shotgun proteomics. Anal. Chem. 2013, 85, 7777–7785. [Google Scholar] [CrossRef]
- Deutsch, E.W.; Perez-Riverol, Y.; Chalkley, R.J.; Wilhelm, M.; Tate, S.; Sachsenberg, T.; Walzer, M.; Käll, L.; Delanghe, B.; Böcker, S.; et al. Expanding the Use of Spectral Libraries in Proteomics. J. Proteom. Res. 2018, 17, 4051–4060. [Google Scholar] [CrossRef]
- Griss, J. Spectral library searching in proteomics. Proteomics 2016, 16, 729–740. [Google Scholar] [CrossRef]
- Hentschker, C.; Maaß, S.; Junker, S.; Hecker, M.; Hammerschmidt, S.; Otto, A.; Becher, D. Comprehensive Spectral Library from the Pathogenic Bacterium Streptococcus pneumoniae with Focus on Phosphoproteins. J. Proteom. Res. 2020, 19, 1435–1446. [Google Scholar] [CrossRef]
- Venable, J.D.; Dong, M.-Q.; Wohlschlegel, J.; Dillin, A.; Yates, J.R. Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat. Methods 2004, 1, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Gillet, L.C.; Navarro, P.; Tate, S.; Röst, H.; Selevsek, N.; Reiter, L.; Bonner, R.; Aebersold, R. Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis. Mol. Cell. Proteom. 2012, 11, O111.016717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barkovits, K.; Pacharra, S.; Pfeiffer, K.; Steinbach, S.; Eisenacher, M.; Marcus, K.; Uszkoreit, J. Reproducibility, Specificity and Accuracy of Relative Quantification Using Spectral Library-based Data-independent Acquisition. Mol. Cell. Proteom. 2020, 19, 181–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwig, C.; Gillet, L.; Rosenberger, G.; Amon, S.; Collins, B.C.; Aebersold, R. Data-independent acquisition-based SWATH-MS for quantitative proteomics: A tutorial. Mol. Syst. Biol. 2018, 14, 1–23. [Google Scholar] [CrossRef]
- Doerr, A. DIA mass spectrometry. Nat. Methods 2015, 12, 35. [Google Scholar] [CrossRef]
- Reubsaet, L.; Sweredoski, M.J.; Moradian, A. Data-Independent Acquisition for the Orbitrap Q Exactive HF: A Tutorial. J. Proteom. Res. 2019, 18, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Messner, C.B.; Demichev, V.; Wendisch, D.; Michalick, L.; White, M.; Freiwald, A.; Textoris-Taube, K.; Vernardis, S.I.; Egger, A.S.; Kreidl, M.; et al. Ultra-High-Throughput Clinical Proteomics Reveals Classifiers of COVID-19 Infection. Cell Syst. 2020, 11, 11–24.e4. [Google Scholar] [CrossRef] [PubMed]
- Picotti, P.; Bodenmiller, B.; Mueller, L.N.; Domon, B.; Aebersold, R. Full Dynamic Range Proteome Analysis of S. cerevisiae by Targeted Proteomics. Cell 2009, 138, 795–806. [Google Scholar] [CrossRef] [Green Version]
- Peterson, A.C.; Russell, J.D.; Bailey, D.J.; Westphall, M.S.; Coon, J.J. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol. Cell. Proteom. 2012, 11, 1475–1488. [Google Scholar] [CrossRef] [Green Version]
- Bauer, M.; Ahrné, E.; Baron, A.P.; Glatter, T.; Fava, L.L.; Santamaria, A.; Nigg, E.A.; Schmidt, A. Evaluation of data-dependent and -independent mass spectrometric workflows for sensitive quantification of proteins and phosphorylation sites. J. Proteom. Res. 2014, 13, 5973–5988. [Google Scholar] [CrossRef]
- Schnatbaum, K.; Zerweck, J.; Nehmer, J.; Wenschuh, H.; Schutkowski, M.; Reimer, U. SpikeTidesTM—Proteotypic peptides for large-scale MS-based proteomics. Nat. Methods 2011, 8, 1–23. [Google Scholar] [CrossRef]
- Lam, H.; Deutsch, E.W.; Eddes, J.S.; Eng, J.K.; King, N.; Stein, S.E.; Aebersold, R. Development and validation of a spectral library searching method for peptide identification from MS/MS. Proteomics 2007, 7, 655–667. [Google Scholar] [CrossRef]
- Kim, Y.; Jeon, J.; Mejia, S.; Yao, C.Q.; Ignatchenko, V.; Nyalwidhe, J.O.; Gramolini, A.O.; Lance, R.S.; Troyer, D.A.; Drake, R.R.; et al. Targeted proteomics identifies liquid-biopsy signatures for extracapsular prostate cancer. Nat. Commun. 2016, 7, 1–10. [Google Scholar] [CrossRef]
- Hoofnagle, A.N.; Whiteaker, J.R.; Carr, S.A.; Kuhn, E.; Liu, T.; Massoni, S.A.; Thomas, S.N.; Reid Townsend, R.; Zimmerman, L.J.; Boja, E.; et al. Recommendations for the generation, quantification, storage, and handling of peptides used for mass spectrometry-based assays. Clin. Chem. 2016, 62, 48–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kockmann, T.; Trachsel, C.; Panse, C.; Wahlander, A.; Selevsek, N.; Grossmann, J.; Wolski, W.E.; Schlapbach, R. Targeted proteomics coming of age–SRM, PRM and DIA performance evaluated from a core facility perspective. Proteomics 2016, 16, 2183–2192. [Google Scholar] [CrossRef] [PubMed]
- Cross, T.G.; Hornshaw, M.P. Can LC and LC-MS ever replace immunoassays? J. Appl. Bioanal. 2016, 2, 108–116. [Google Scholar] [CrossRef]
- Zecha, J.; Lee, C.Y.; Bayer, F.P.; Meng, C.; Grass, V.; Zerweck, J.; Schnatbaum, K.; Michler, T.; Pichlmair, A.; Ludwig, C.; et al. Data, Reagents, Assays and Merits of Proteomics for SARS-CoV-2 Research and Testing. Mol. Cell. Proteom. 2020, 19, 1503–1522. [Google Scholar] [CrossRef] [PubMed]
- Bezstarosti, K.; Lamers, M.M.; Doff, W.A.S.; Wever, P.C.; Thai, K.T.D.; van Kampen, J.J.A.; Haagmans, B.L.; Demmers, J.A.A. Targeted proteomics as a tool to detect SARS-CoV-2 proteins in clinical specimens. PLoS ONE 2021, 16, e0259165. [Google Scholar] [CrossRef]
- Cazares, L.H.; Chaerkady, R.; Samuel Weng, S.H.; Boo, C.C.; Cimbro, R.; Hsu, H.E.; Rajan, S.; Dall’acqua, W.; Clarke, L.; Ren, K.; et al. Development of a Parallel Reaction Monitoring Mass Spectrometry Assay for the Detection of SARS-CoV-2 Spike Glycoprotein and Nucleoprotein. Anal. Chem. 2020, 92, 13813–13821. [Google Scholar] [CrossRef] [PubMed]
- Rajczewski, A.T.; Mehta, S.; Nguyen, D.D.A.; Grüning, B.; Johnson, J.E.; McGowan, T.; Griffin, T.J.; Jagtap, P.D. A rigorous evaluation of optimal peptide targets for MS-based clinical diagnostics of Coronavirus Disease 2019 (COVID-19). Clin. Proteom. 2021, 18, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Nikolaev, E.N.; Indeykina, M.I.; Brzhozovskiy, A.G.; Bugrova, A.E.; Kononikhin, A.S.; Starodubtseva, N.L.; Petrotchenko, E.V.; Kovalev, G.I.; Borchers, C.H.; Sukhikh, G.T. Mass-Spectrometric Detection of SARS-CoV-2 Virus in Scrapings of the Epithelium of the Nasopharynx of Infected Patients via Nucleocapsid N Protein. J. Proteom. Res. 2020, 19, 4393–4397. [Google Scholar] [CrossRef] [PubMed]
- Rivera, B.; Leyva, A.; Portela, M.M.; Moratorio, G.; Moreno, P.; Durán, R.; Lima, A. Quantitative proteomic dataset from oro- and naso-pharyngeal swabs used for COVID-19 diagnosis: Detection of viral proteins and host’s biological processes altered by the infection. Data BR 2020, 32, 106121. [Google Scholar] [CrossRef]
- Nachtigall, F.M.; Pereira, A.; Trofymchuk, O.S.; Santos, L.S. Detection of SARS-CoV-2 in nasal swabs using MALDI-MS. Nat. Biotechnol. 2020, 38, 1168–1173. [Google Scholar] [CrossRef]
- Ihling, C.; Tänzler, D.; Hagemann, S.; Kehlen, A.; Hüttelmaier, S.; Arlt, C.; Sinz, A. Mass Spectrometric Identification of SARS-CoV-2 Proteins from Gargle Solution Samples of COVID-19 Patients. J. Proteom. Res. 2020, 19, 4389–4392. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, P.; Chowdhry, A.; Kharbanda, O.P.; Bablani Popli, D.; Gautam, K.; Saini, V. Exploring salivary diagnostics in COVID-19: A scoping review and research suggestions. BDJ Open 2021, 7, 8. [Google Scholar] [CrossRef]
- Fernandes, L.L.; Pacheco, V.B.; Borges, L.; Athwal, H.K.; de Paula Eduardo, F.; Bezinelli, L.; Correa, L.; Jimenez, M.; Dame-Teixeira, N.; Lombaert, I.M.A.; et al. Saliva in the Diagnosis of COVID-19: A Review and New Research Directions. J. Dent. Res. 2020, 99, 1435–1443. [Google Scholar] [CrossRef] [PubMed]
- Kipping, M.; Tänzler, D.; Sinz, A. A rapid and reliable liquid chromatography/mass spectrometry method for SARS-CoV-2 analysis from gargle solutions and saliva. Anal. Bioanal. Chem. 2021, 413, 6503–6511. [Google Scholar] [CrossRef] [PubMed]
- Praissman, J.L.; Wells, L. Proteomics-Based Insights Into the SARS-CoV-2–Mediated COVID-19 Pandemic: A Review of the First Year of Research. Mol. Cell. Proteom. 2021, 20, 100103. [Google Scholar] [CrossRef]
- Rais, Y.; Fu, Z.; Drabovich, A.P. Mass spectrometry-based proteomics in basic and translational research of SARS-CoV-2 coronavirus and its emerging mutants. Clin. Proteom. 2021, 18, 1–16. [Google Scholar] [CrossRef]
- Messner, C.B.; Demichev, V.; Bloomfield, N.; Yu, J.S.L.; White, M.; Kreidl, M.; Egger, A.S.; Freiwald, A.; Ivosev, G.; Wasim, F.; et al. Ultra-fast proteomics with Scanning SWATH. Nat. Biotechnol. 2021, 39, 846–854. [Google Scholar] [CrossRef]
- Bian, Y.; Zheng, R.; Bayer, F.P.; Wong, C.; Chang, Y.-C.; Meng, C.; Zolg, D.P.; Reinecke, M.; Zecha, J.; Wiechmann, S.; et al. Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS. Nat. Commun. 2020, 11, 157. [Google Scholar] [CrossRef]
- Chambers, A.G.; Percy, A.J.; Yang, J.; Borchers, C.H. Multiple reaction monitoring enables precise quantification of 97 proteins in dried blood spots. Mol. Cell. Proteom. 2015, 14, 3094–3104. [Google Scholar] [CrossRef] [Green Version]
- Lenčo, J.; Vajrychová, M.; Pimková, K.; Prokšová, M.; Benková, M.; Klimentová, J.; Tambor, V.; Soukup, O. Conventional-Flow Liquid Chromatography-Mass Spectrometry for Exploratory Bottom-Up Proteomic Analyses. Anal. Chem. 2018, 90, 5381–5389. [Google Scholar] [CrossRef]
- Kuster, B.; Bian, Y.; Bayer, F.P.; Chang, Y.C.; Meng, C.; Hoefer, S.; Deng, N.; Zheng, R.; Boychenko, O. Robust microflow LC-MS/MS for proteome analysis: 38 000 runs and counting. Anal. Chem. 2021, 93, 3686–3690. [Google Scholar] [CrossRef]
- Desiere, F.; Deutsch, E.W.; Nesvizhskii, A.I.; Mallick, P.; King, N.L.; Eng, J.K.; Aderem, A.; Boyle, R.; Brunner, E.; Donohoe, S.; et al. Integration with the human genome of peptide sequences obtained by high-throughput mass spectrometry. Genome Biol. 2005, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Desiere, F.; Deutsch, E.W.; King, N.L.; Nesvizhskii, A.I.; Mallick, P.; Eng, J.; Chen, S.; Eddes, J.; Loevenich, S.N.; Aebersold, R. The PeptideAtlas project. Nucleic Acids Res. 2006, 34, 655–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deutsch, E.W.; Sun, Z.; Campbell, D.; Kusebauch, U.; Chu, C.S.; Mendoza, L.; Shteynberg, D.; Omenn, G.S.; Moritz, R.L. State of the human proteome in 2014/2015 As viewed through peptideatlas: Enhancing accuracy and coverage through the atlas prophet. J. Proteom. Res. 2015, 14, 3461–3473. [Google Scholar] [CrossRef] [Green Version]
- Martens, L.; Hermjakob, H.; Jones, P.; Adamsk, M.; Taylor, C.; States, D.; Gevaert, K.; Vandekerckhove, J.; Apweiler, R. PRIDE: The proteomics identifications database. Proteomics 2005, 5, 3537–3545. [Google Scholar] [CrossRef]
- Vizcaíno, J.A.; Csordas, A.; Del-Toro, N.; Dianes, J.A.; Griss, J.; Lavidas, I.; Mayer, G.; Perez-Riverol, Y.; Reisinger, F.; Ternent, T.; et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016, 44, D447–D456. [Google Scholar] [CrossRef]
- Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Llinares, M.; Hewapathirana, S.; Kundu, D.J.; Inuganti, A.; Griss, J.; Mayer, G.; Eisenacher, M.; et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019, 47, D442–D450. [Google Scholar] [CrossRef]
- Deutsch, E.W.; Bandeira, N.; Sharma, V.; Perez-Riverol, Y.; Carver, J.J.; Kundu, D.J.; García-Seisdedos, D.; Jarnuczak, A.F.; Hewapathirana, S.; Pullman, B.S.; et al. The ProteomeXchange consortium in 2020: Enabling “big data” approaches in proteomics. Nucleic Acids Res. 2020, 48, D1145–D1152. [Google Scholar] [CrossRef] [Green Version]
- Smyth, G.K. limma: Linear models for microarray data. In Bioinformatics and Computational Biology Solutions Using R and Bioconductor; Springer: New York, NY, USA, 2005; pp. 397–420. ISBN 978-0-387-29362-2. [Google Scholar]
- Navarro, P.; Kuharev, J.; Gillet, L.C.; Bernhardt, O.M.; MacLean, B.; Röst, H.L.; Tate, S.A.; Tsou, C.C.; Reiter, L.; Distler, U.; et al. A multicenter study benchmarks software tools for label-free proteome quantification. Nat. Biotechnol. 2016, 34, 1130–1136. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2009, 26, 139–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahlmann-Eltze, C.; Anders, S. proDA: Probabilistic Dropout Analysis for Identifying Differentially Abundant Proteins in Label-Free Mass Spectrometry. bioRxiv 2020, 14, 661496. [Google Scholar] [CrossRef]
- Zhang, Z.; Burke, M.; Mirokhin, Y.A.; Tchekhovskoi, D.V.; Markey, S.P.; Yu, W.; Chaerkady, R.; Hess, S.; Stein, S.E. Reverse and Random Decoy Methods for False Discovery Rate Estimation in High Mass Accuracy Peptide Spectral Library Searches. J. Proteom. Res. 2018, 17, 846–857. [Google Scholar] [CrossRef]
- Burke, M.C.; Mirokhin, Y.A.; Tchekhovskoi, D.V.; Markey, S.P.; Heidbrink Thompson, J.; Larkin, C.; Stein, S.E. The Hybrid Search: A Mass Spectral Library Search Method for Discovery of Modifications in Proteomics. J. Proteom. Res. 2017, 16, 1924–1935. [Google Scholar] [CrossRef]
- Cho, J.-Y.; Lee, H.-J.; Jeong, S.-K.; Paik, Y.-K. Epsilon-Q: An Automated Analyzer Interface for Mass Spectral Library Search and Label-Free Protein Quantification. J. Proteom. Res. 2017, 16, 4435–4445. [Google Scholar] [CrossRef]
- Guan, S.; Taylor, P.P.; Han, Z.; Moran, M.F.; Ma, B. Data Dependent-Independent Acquisition (DDIA) Proteomics. J. Proteom. Res. 2020, 19, 3230–3237. [Google Scholar] [CrossRef]
- Fernández-Costa, C.; Martínez-Bartolomé, S.; McClatchy, D.B.; Saviola, A.J.; Yu, N.K.; Yates, J.R. Impact of the Identification Strategy on the Reproducibility of the DDA and DIA Results. J. Proteom. Res. 2020, 19, 3153–3161. [Google Scholar] [CrossRef]
- Shiferaw, G.A.; Vandermarliere, E.; Hulstaert, N.; Gabriels, R.; Martens, L.; Volders, P.J. COSS: A Fast and User-Friendly Tool for Spectral Library Searching. J. Proteom. Res. 2020, 19, 2786–2793. [Google Scholar] [CrossRef]
- Liu, J.; Bell, A.W.; Bergeron, J.J.M.; Yanofsky, C.M.; Carrillo, B.; Beaudrie, C.E.H.; Kearney, R.E. Methods for peptide identification by spectral comparison. Proteome Sci. 2007, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Kwon, M.S.; Lee, H.J.; Paik, Y.K.; Tang, H.; Lee, J.K.; Park, T. Enhanced peptide quantification using spectral count clustering and cluster abundance. BMC Bioinform. 2011, 12, 423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Wang, J.; Carver, J.; Pullman, B.S.; Cha, S.W.; Bandeira, N. Assembling the Community-Scale Discoverable Human Proteome. Cell Syst. 2018, 7, 412–421.e5. [Google Scholar] [CrossRef] [Green Version]
- Zauber, H.; Kirchner, M.; Selbach, M. Picky: A simple online PRM and SRM method designer for targeted proteomics. Nat. Methods 2018, 15, 156–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsou, C.C.; Avtonomov, D.; Larsen, B.; Tucholska, M.; Choi, H.; Gingras, A.C.; Nesvizhskii, A.I. DIA-Umpire: Comprehensive computational framework for data-independent acquisition proteomics. Nat. Methods 2015, 12, 258–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwary, S.; Levy, R.; Gutenbrunner, P.; Salinas Soto, F.; Palaniappan, K.K.; Deming, L.; Berndl, M.; Brant, A.; Cimermancic, P.; Cox, J. High-quality MS/MS spectrum prediction for data-dependent and data-independent acquisition data analysis. Nat. Methods 2019, 16, 519–525. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, X.; Shen, C.; Lin, Y.; Yang, P.; Qiao, L. In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Searle, B.C.; Swearingen, K.E.; Barnes, C.A.; Schmidt, T.; Gessulat, S.; Küster, B.; Wilhelm, M. Generating high quality libraries for DIA MS with empirically corrected peptide predictions. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lou, R.; Tang, P.; Ding, K.; Li, S.; Tian, C.; Li, Y.; Zhao, S.; Zhang, Y.; Shui, W. Hybrid Spectral Library Combining DIA-MS Data and a Targeted Virtual Library Substantially Deepens the Proteome Coverage. iScience 2020, 23, 100903. [Google Scholar] [CrossRef] [Green Version]
- Gessulat, S.; Schmidt, T.; Zolg, D.P.; Samaras, P.; Schnatbaum, K.; Zerweck, J.; Knaute, T.; Rechenberger, J.; Delanghe, B.; Huhmer, A.; et al. Prosit: Proteome-wide prediction of peptide tandem mass spectra by deep learning. Nat. Methods 2019, 16, 509–518. [Google Scholar] [CrossRef]
Sample Type | Blood | BALF a | CSF b | Urine | Saliva | Ref. | |
---|---|---|---|---|---|---|---|
Characteristics | |||||||
Non-invasive collection | Moderate | Moderate | No | Yes | Yes | [13] | |
Expert required | Moderate | Yes (local anesthesia) | Yes (local anesthesia) | No | No | [14] | |
Protein concentration (mg/mL) | 60–80 | 0.05–0.2 | 0.2–0.8 | 0.08 c | 0.5–2 | [14,15,16,17] | |
Complexity | Highest | High | High | Moderate | High | [18] | |
Proposed * SOPs for collection | Yes | Yes | Yes | Yes | Yes | [14,19,20,21,22] |
Factors | Description | Ref. |
---|---|---|
Immunodepletion | Immunodepletion is generally applied to remove high-abundance proteins and enrich low-abundance proteins. | [37,38,39,40] |
Solubility of target proteins | MS-grade detergent can be applied to target low-abundance and hydrophobic proteins, such as membrane proteins. | [41] |
Efficiency of protein preparation | The applicability of automation of protein isolation methods or extraction efficiency is critical to large-scale projects. | [42,43,44] |
Peptide prefractionation or enrichment | Enrichment methods based on affinity binding require large starting protein amounts. | [18,45,46] |
Acquisition Methods | DDA a | MRM/PRM b | DIA c | Ref. | |
---|---|---|---|---|---|
Characteristics | |||||
Requirement for high-quality instruments | High | Moderate/High | Highest | [57] | |
Accuracy of protein quantification | Low | Highest | High | [58,59] | |
Reproducibility between replicates | Low | Highest | High | [59,60] | |
Depth of protein identification | Highest | Low | High | [58,59] | |
Ease of data analysis | Easy | Moderate | Hard | [61,62,63,64] |
Body Fluid | Study Groups | Sample Size | Target Pathogen | Major Findings | Method | Instrument | Ref. |
---|---|---|---|---|---|---|---|
Urine | Active pulmonary tuberculosis (TB) | 9, 21 | Mycobacterium tuberculosis | Four mycobacterial proteins were identified from the urine of nine patients. One of the candidate proteins was reconfirmed in urine from 21 clinical samples. | DDA | LCQ | [29,30] |
Urine | Active TB vs. latent TB vs. non-TB | 21 vs. 24 vs. 18 | Mycobacterium tuberculosis | Ten mycobacterial proteins of active TB and six mycobacterial proteins of latent TB were identified. | DDA | LTQ-Orbitrap Velos Pro | [31] |
CSF, Urine, Serum, and Saliva | Sleeping sickness early-stage vs. late-stage vs. uninfected | 3 vs. 4 vs. 3 | Trypanosoma brucei gambiense | Parasite proteins were identified but not further analyzed because of a lack of validity. | DDA | Q Exactive | [65] |
Urine | Syphilis patient vs. Healthy | 54 vs. 6 | Treponema pallidum | The 26 unique peptides derived from 4 unique T. pallidum proteins were identified. These proteins have low sequence similarity to the human protein. | DDA, DIA | Synapt MS | [32] |
Blood | Malaria patient | 7 | Plasmodium vivax | Five parasite-derived proteins of P. vivax were identified in 80% of patients. | DDA | 6550 iFunnel Q-TOF | [66] |
Urine | Urinary tract infection (UTI) patient | 27 | 15 bacterial species a | Eighty-two peptides were selected using machine learning classification and used for finding predominant pathogens from UTI patients. | DIA, PRM | Orbitrap Fusion, Q Exactive HF-X | [33] |
Serum | pulmonary TB vs. extrapulmonary TB vs. latent TB vs. non-TB | 31 vs. 10 vs. 9 vs. 9, 40 | Mycobacterium tuberculosis | Twenty mycobacterial proteins were identified in the serum exosome of TB patients. The MRM assay can detect targets in the range of attomolar to femtomolar combined with isotope labeling. | MRM | Xevo TQ-S, LTQ-Orbitrap Velos | [67,68,69] |
Nasopharyngeal and nasal swab | Respiratory tract infections patients | 218 | 4 respiratory tract infection (RTI)-related bacterial species b | Top 16–18 peptide biomarker candidates were selected for each of the four pathogens and verified using clinical samples. | PRM | Q Exactive, Q Exactive HF | [70,71] |
BALF | Pneumonia patients | 1 | 5 RTI-related bacterial species c | Five unique peptides for each pathogen were selected according to abundance and applied for direct detection of pathogens. | MRM | Q-Exactive, Xevo TQ-S | [72] |
endotracheal aspirate | VAP patients | 37 | 6 RTI-related bacterial species d | Ninety-seven species-specific peptides of the six pathogens, selected based on the proteotypicity and high ionization yield, were monitored and verified in clinical samples. The targeted proteomics assay showed 76% sensitivity and 100% specificity. | MRM | TripleTOF®5600 MS | [73] |
nasopharyngeal swab | COVID-19 patient | 9 | SARS-CoV-2 | To develop an assay, nasopharyngeal swabs with different quantities of viral material were used. The two peptides of N protein were selected. They can be obtained within 3 min of elution. | DDA | Q Exactive HF | [74,75] |
nasopharyngeal swab | COVID-19 patient | 103 | SARS-CoV-2 | The two peptides of the S protein were selected and monitored. The targeted assay showed 90.5% sensitivity and 100% specificity in a 2-min gradient run. | MRM | TripleTOF 6600 | [76] |
nasopharyngeal swab | COVID-19 patient | 985 | SARS-CoV-2 | Fully automated sample preparation (SP3) and sample-cleanup methods (turbulent flow) were applied. The two peptides of the N protein were validated in a qualitative (Tier 3) and quantitative (Tier 1) manner. The targeted assay showed 84% sensitivity and 97% specificity in a 2.5-min gradient run. | PRM | Q Exactive HF-X | [77] |
nasopharyngeal swab | COVID-19 patient vs. Healthy | 88 vs. 88 | SARS-CoV-2 | Automated immunoaffinity-based sampling was applied. The two peptides of the N protein were selected for the targeted assay. The targeted assay was qualified using the ensemble method and showed 98% sensitivity and 100% specificity in a 5-min gradient run. | PRM | Orbitrap Exploris 480 | [78] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Kim, S.I. Review of Liquid Chromatography-Mass Spectrometry-Based Proteomic Analyses of Body Fluids to Diagnose Infectious Diseases. Int. J. Mol. Sci. 2022, 23, 2187. https://doi.org/10.3390/ijms23042187
Lee H, Kim SI. Review of Liquid Chromatography-Mass Spectrometry-Based Proteomic Analyses of Body Fluids to Diagnose Infectious Diseases. International Journal of Molecular Sciences. 2022; 23(4):2187. https://doi.org/10.3390/ijms23042187
Chicago/Turabian StyleLee, Hayoung, and Seung Il Kim. 2022. "Review of Liquid Chromatography-Mass Spectrometry-Based Proteomic Analyses of Body Fluids to Diagnose Infectious Diseases" International Journal of Molecular Sciences 23, no. 4: 2187. https://doi.org/10.3390/ijms23042187
APA StyleLee, H., & Kim, S. I. (2022). Review of Liquid Chromatography-Mass Spectrometry-Based Proteomic Analyses of Body Fluids to Diagnose Infectious Diseases. International Journal of Molecular Sciences, 23(4), 2187. https://doi.org/10.3390/ijms23042187