Proteomic Analysis of Microorganisms
Funding
Conflicts of Interest
References
- Retana Moreira, L.; Prescilla-Ledezma, A.; Cornet-Gomez, A.; Linares, F.; Jodar-Reyes, A.B.; Fernandez, J.; Ibarrola Vannucci, A.K.; De Pablos, L.M.; Osuna, A. Biophysical and Biochemical Comparison of Extracellular Vesicles Produced by Infective and Non-Infective Stages of Trypanosoma cruzi. Int. J. Mol. Sci. 2021, 22, 5183. [Google Scholar] [CrossRef] [PubMed]
- Savinova, O.S.; Glazunova, O.A.; Moiseenko, K.V.; Begunova, A.V.; Rozhkova, I.V.; Fedorova, T.V. Exoproteome Analysis of Antagonistic Interactions between the Probiotic Bacteria Limosilactobacillus reuteri LR1 and Lacticaseibacillus rhamnosus F and Multidrug Resistant Strain of Klebsiella pneumonia. Int. J. Mol. Sci. 2021, 22, 10999. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Liu, B.; Gong, Z.; Qu, Z.; Cai, J. Phosphoproteomic Comparison of Four Eimeria tenella Life Cycle Stages. Int. J. Mol. Sci. 2021, 22, 12110. [Google Scholar] [CrossRef] [PubMed]
- Hamitouche, F.; Armengaud, J.; Dedieu, L.; Duport, C. Cysteine Proteome Reveals Response to Endogenous Oxidative Stress in Bacillus cereus. Int. J. Mol. Sci. 2021, 22, 7550. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, S.I. Review of Liquid Chromatography-Mass Spectrometry-Based Proteomic Analyses of Body Fluids to Diagnose Infectious Diseases. Int. J. Mol. Sci. 2022, 23, 2187. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, Z.; Li, M.; Zheng, N.; Zhao, S.; Wang, J. Activity- and Enrichment-Based Metaproteomics Insights into Active Urease from the Rumen Microbiota of Cattle. Int. J. Mol. Sci. 2022, 23, 817. [Google Scholar] [CrossRef]
- Chateau, A.; Alpha-Bazin, B.; Armengaud, J.; Duport, C. Heme A Synthase Deficiency Affects the Ability of Bacillus cereus to Adapt to a Nutrient-Limited Environment. Int. J. Mol. Sci. 2022, 23, 1033. [Google Scholar] [CrossRef] [PubMed]
- Shikov, A.E.; Malovichko, Y.V.; Lobov, A.A.; Belousova, M.E.; Nizhnikov, A.A.; Antonets, K.S. The Distribution of Several Genomic Virulence Determinants Does Not Corroborate the Established Serotyping Classification of Bacillus thuringiensis. Int. J. Mol. Sci. 2021, 22, 2244. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.I. Proteomic Analysis of Microorganisms. Int. J. Mol. Sci. 2022, 23, 4329. https://doi.org/10.3390/ijms23084329
Kim SI. Proteomic Analysis of Microorganisms. International Journal of Molecular Sciences. 2022; 23(8):4329. https://doi.org/10.3390/ijms23084329
Chicago/Turabian StyleKim, Seung Il. 2022. "Proteomic Analysis of Microorganisms" International Journal of Molecular Sciences 23, no. 8: 4329. https://doi.org/10.3390/ijms23084329
APA StyleKim, S. I. (2022). Proteomic Analysis of Microorganisms. International Journal of Molecular Sciences, 23(8), 4329. https://doi.org/10.3390/ijms23084329