Breeding and Genomics Interventions for Developing Ascochyta Blight Resistant Grain Legumes
Abstract
:1. Introduction
2. Causal Organism of AB in Various Legumes, Symptoms, and Negative Impact
2.1. Causal Organism of AB in Chickpea, Symptoms, and Negative Impact
2.2. Causal Organism of AB in Faba Bean, Symptoms, and Negative Impact
2.3. Causal Organism of AB in Pea, Symptoms, and Negative Impact
2.4. Causal Organism of AB in Lentil, Symptoms, and Negative Impact
2.5. Causal Organism of AB in Grasspea, Symptoms, and Negative Impact
3. Ascochyta Blight Infection and Underlying Host Plant Resistance Mechanism
4. Genetics of AB Resistance
5. Legume Crop Diversity and Genetic Resource: Economic and Sustainable Approach for Developing AB Resistance
6. Identification of AB-Resistant QTL Using Biparental Mapping and Genome-Wide Association Studies
7. From Marker Assisted Selection to Genomic Selection Developing AB-Resistant Grain Legumes
8. Genome-Wide Association Mapping for Uncovering AB-Resistant Genomic Regions across the Whole Genome in Grain Legume
9. Functional Genomics
10. Proteomics Approach for Uncovering Key Proteins Contributing to AB Resistance
11. Host Plant Legume Genome Sequences and AB Pathogen Genome Sequence: Exploring Host–Pathogen Co-Evolution and Understanding AB Resistance
12. Phenomics: High-Throughput Phenotyping Approach for Capturing Plant and AB Disease Interaction Dynamics at the Multidimensional Level
13. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polak, R.; Phillips, E.M.; Campbell, A. Legumes: Health benefits and culinary approaches to increase intake. Clin. Diabetes 2015, 33, 198–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foyer, C.H.; Lam, H.M.; Nguyen, H.T.; Siddique, K.H.; Varshney, R.K.; Colmer, T.D.; Cowling, W.; Bramley, H.; Mori, T.A.; Hodgson, J.M.; et al. Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2016, 2, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Considine, M.J.; Siddique, K.H.; Foyer, C.H. Nature’s pulse power: Legumes, food security and climate change. J. Expt. Bot. 2017, 68, 1815–1818. [Google Scholar] [CrossRef] [PubMed]
- Akamatsu, H.O.; Chilvers, M.I.; Kaiser, W.J.; Peever, T.L. Karyotype polymorphism and chromosomal rearrangement in populations of the phytopathogenic fungus, Ascochyta rabiei. Fungal Biol. 2012, 116, 1119–1133. [Google Scholar] [CrossRef]
- Gossen, B.D.; Morrall, R. Effect of ascochyta blight on seed yield and quality of lentils. Can. J. Plant Pathol. 1983, 5, 168–173. [Google Scholar] [CrossRef]
- Nene, Y.L.; Reddy, M.V. Chickpea diseases and their control. In The Chickpea; Saxena, M.C., Singh, K.B., Eds.; CABI: Oxon, UK, 1987; pp. 233–270. [Google Scholar]
- Hanounik, S.B.; Robertson, L.D. Resistance in Vicia faba germ plasm to blight caused by Ascochyta fabae. Plant Dis. 1989, 73, 202–205. [Google Scholar] [CrossRef]
- Tivoli, B.; Banniza, S. Comparison of the epidemiology of ascochyta blights on grain legumes. Eur. J. Plant Pathol. 2007, 119, 59–76. [Google Scholar] [CrossRef]
- Tivoli, B.; Banniza, S. Comparison of the epidemiology of ascochyta blights on grain legumes. In Ascochyta Blights of Grain Legumes; Tivoli, B., Baranger, A., Muehlbauer, F.J., Cooke, B.M., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 59–76. [Google Scholar]
- Shahid, A.A.; Husnain, T.; Riazuddin, S. Ascochyta blight of chickpea: Production of phytotoxins and disease management. Biotechnol. Adv. 2008, 26, 511–515. [Google Scholar] [CrossRef]
- Khan, T.N.; Timmerman-Vaughan, G.M.; Rubiales, D.; Warkentin, T.D.; Siddique, K.H.M.; Erskine, W.; Barbetti, M.J. Didymella pinodes and its management in eld pea: Challenges and opportunities. Field Crops Res. 2013, 148, 61–77. [Google Scholar] [CrossRef] [Green Version]
- Clulow, S.A.; Lewis, B.G.; Parker, M.L.; Matthews, P. Infection of pea epicotyls by Mycosphaerella pinodes. Mycol. Res. 1991, 95, 817–820. [Google Scholar] [CrossRef]
- Clulow, S.A.; Matthews, P.; Lewis, B.G. Genetic-analysis of resistance to Mycosphaerella-pinodes in pea-seedlings. Euphytica 1991, 58, 183–189. [Google Scholar] [CrossRef]
- Carrillo, E.; Rubiales, D.; Peŕez-de-Luque, A.; Fondevilla, S. Characterization of mechanisms of resistance against Didymella pinodes in Pisum spp. Eur. J. Plant Pathol. 2013, 135, 761–769. [Google Scholar] [CrossRef]
- Fondevilla, S.; Krezdorn, N.; Rotter, B.; Kahl, G.; Winter, P. In planta Identification of Putative Pathogenicity Factors from the Chickpea Pathogen Ascochyta rabiei by De novo Transcriptome Sequencing Using RNA-Seq and Massive Analysis of cDNA Ends. Front. Microbiol. 2015, 6, 1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, S.; Gazara, R.K.; Nizam, S.; Parween, S.; Chattopadhyay, D.; Verma, P.K. Draft genome sequencing and secretome analysis of fungal phytopathogen Ascochyta rabiei provides insight into the necrotrophic effector repertoire. Sci. Rep. 2016, 6, 24638. [Google Scholar] [CrossRef] [PubMed]
- Zipfel, C.; Robatzek, S. Pathogen-associated molecular pattern triggered immunity: Veni, vidi...? Plant Physiol. 2010, 154, 551–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, H.; Tsuda, K.; Parker, J.E. Effector-triggered immunity: From pathogen perception to robust defense. Annu. Rev. Plant Biol. 2015, 66, 487–511. [Google Scholar] [CrossRef]
- Singh, K.B.; Reddy, M.V. Genetics of Resistance to Ascochyta Blight in Four Chickpea Lines. Crop Sci. 1989, 29, 657–659. [Google Scholar] [CrossRef]
- Ford, R.; Pang, E.C.K.; Taylor, P.W.J. Genetics of resistance to ascochyta blight (Ascochyta lentis) of lentil and the identification of closely linked RAPD markers. Theor. Appl. Genet. 1999, 98, 93–98. [Google Scholar] [CrossRef]
- Tay, J.; Slinkard, A.E. Transgressive segregation for Ascochyta resistance in lentil. Can. J. Plant Sci. 1989, 69, 547. [Google Scholar]
- Tay, J. Inheritance of Resistance to Ascochyta Blight of Lentil. MSc Thesis, Dept of Crop Science and Plant Ecology, Univ. of Saskatchewan, Saskatoon, SK, Canada, 1989. [Google Scholar]
- Ye, G.; McNeil, D.L.; Hill, G.D. Inheritance of resistance to Ascochyta blight in lentil. N. Z. Plant Prot. 2001, 54, 198–201. [Google Scholar] [CrossRef] [Green Version]
- Sakr, B. Inheritance and Linkzage of Morphological Markers and Resistance to Ascochyta Blight in Lentil. Ph.D. Thesis, Washington State Univ., Pullman, WA, USA, 1994. [Google Scholar]
- Dey, S.K.; Singh, G. Resistance to Ascochyta blight in chickpea-Genetic basis. Euphytica 1993, 68, 147–153. [Google Scholar] [CrossRef]
- Ahmad, M.; Fautrier, A.G.; McNeil, D.L. Identification and genetic characterization of different resistance sources to Ascochyta blight within the genus Lens. Euphytica 1996, 97, 311–315. [Google Scholar] [CrossRef]
- Rastogi, K.B.; Saini, S.S. Inheritance of seed shape and resistance to Ascochyta blight in pea (Pisum sativum L.). J. Agric. Sci. 1984, 103, 523–525. [Google Scholar] [CrossRef]
- Murray, G.; Brennan, J. The Current and Potential Costs from Diseases of Pulse Crops in Australia; GRDC Research Code: CER00002; Grains Research and Development Corporation: Barton, Australia, 2012. [Google Scholar]
- Udupa, S.M.; Weigand, F.; Saxena, M.C.; Kahl, G. Genotyping with RAPD and microsatellite markers resolves pathotype diversity in the Ascochyta blight pathogen of chickpea. Theor. Appl. Genet. 1998, 97, 299–307. [Google Scholar] [CrossRef]
- Jamil, F.F.; Sarvar, N.; Sarvar, M.; Khan, J.A.; Geistlinger, J.; Kahl, G. Genetic and pathogenic diversity within Ascochyta rabiei (Pass.) Lab. populations in Pakistan causing blight of chickpea (Cicer arietinum L.). Physiol. Mol. Plant Pathol. 2000, 57, 243–254. [Google Scholar] [CrossRef]
- Bencheqroun, S.K.; Ahmed, S.; Imtiaz, M.; Hamwieh, A.; Udupa, S.M.; Sahri, A.; Aouzal, S.; Kehel, Z. Pathogen diversity and mating types of Didymella rabiei isolates collected from Morocco. Curr. Plant Biol. 2022, 29, 100231. [Google Scholar] [CrossRef]
- Imtiaz, M.; Abang, M.M.; Malhotra, R.S.; Ahmed, S.; Bayaa, B.; Udupa, S.M.; Baum, M. Pathotype IV, a new and highly virulent pathotype of Didymella rabiei, causing Ascochyta blight in chickpea in Syria. Plant Dis. 2011, 95, 1192. [Google Scholar] [CrossRef]
- Vir, S.; Grewal, J.S. Physiological specialization in Ascochyta rabiei, the causal organism of gram blight. Indian Phytopathol. 1974, 27, 265–266. [Google Scholar]
- Pande, S.; Siddique, K.H.M.; Kishore, G.K.; Bayaa, B.; Gaur, P.M.; Gowda, C.L.L.; Bretag, T.W.; Crouch, J.H. Ascochyta blight of chickpea (Cicer arietinum L.): A review of biology, pathogenicity, and disease management. Austr. J. Agric. Res. 2005, 56, 317–332. [Google Scholar] [CrossRef]
- Rashid, K.; Bernier, C.C.; Conner, R.L. Evaluation of fava bean for resistance to Ascochyta fabae and development of host differentials for race identification. Plant Dis. 1991, 75, 852–855. [Google Scholar] [CrossRef]
- Sprague, R. Host range and life history studies of some leguminous Ascochytae. Phytopathol. 1929, 19, 917–932. [Google Scholar]
- Kaiser, W.J.; Wang, B.C.; Rogers, J.D. Ascochyta fabae and A. lentis: Host specificity, teleomorphs (Didymella), hybrid analysis, and taxonomic status. Plant Dis. 1997, 81, 809–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, S.; Morrall, R.A.A.; Sheard, J.W. Distribution of mating types of Ascochyta fabae f. sp. lentis. Can. J. Plant Pathol. 1996, 18, 347–353. [Google Scholar] [CrossRef]
- Masi, M.; Nocera, P.; Boari, A.; Cimmino, A.; Zonno, M.C.; Infantino, A.; Vurro, M.; Evidente, A. Lathyroxins A and B, phytotoxic monosubstituted phenols isolated from Ascochyta lentis var. lathyri, a fungal pathogen of grass pea (Lathyrus sativus). J. Nat. Prod. 2018, 81, 1093–1097. [Google Scholar] [CrossRef]
- Aveskamp, M.M.; de Gruyter, J.; Woudenberg, J.H.C.; Verkley, G.J.M.; Crous, P.W. Highlights of the didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera. Stud. Mycol. 2010, 65, 1–60. [Google Scholar] [CrossRef]
- Barilli, E.; Cobos, M.J.; Rubiales, D. Clarification on host range of Didymella pinodes the causal agent of pea Ascochyta blight. Front. Plant Sci. 2016, 7, 592. [Google Scholar] [CrossRef]
- Davidson, J.A.; Hartley, D.; Priest, M.; Krysinska-Kaczmarek, M.; McKay, H.A.; Scott, E.S. A new species of Phoma causes Ascochyta blight symptoms on field peas (Pisum sativum) in South Australia. Mycologia 2009, 101, 120–128. [Google Scholar] [CrossRef]
- Li, Y.P.; You, M.P.; Khan, T.N.; Finnegan, P.M.; Barbetti, M.J. First report of Phoma herbarum on dry peas (Pisum sativum) in Australia. Plant Dis. 2011, 95, 1590. [Google Scholar] [CrossRef]
- Tran, H.S.; You, M.P.; Lanoiselet, V.; Khan, T.N.; Barbetti, M.J. First report of Phoma glomerata associated with the Ascochyta blight complex on field pea (Pisum sativum) in Australia. Plant Dis. 2014, 98, 427. [Google Scholar] [CrossRef]
- Bretag, T.W.; Keane, P.J.; Price, T.V. The epidemiology and control of ascochyta blight in field peas: A review. Aust. J. Agr. Res. 2006, 57, 883–902. [Google Scholar] [CrossRef]
- Salam, M.U.; Galloway, J.; MacLeod, W.J.; Davidson, J.A.; Seymour, M.; Pritchard, I.; Salam, K.P.; Diggle, A.J.; Maling, T. G1 Blackspot Manager model predicts the maturity and release of ascospores in relation to Ascochyta blight on field pea. Austr. Plant Pathol. 2011, 40, 621–631. [Google Scholar] [CrossRef]
- Bretag, T.W.; Ramsey, M.D. Foliar Diseases Caused by Fungi: Ascochyta spp. In Compendium of Pea Diseases and Pests; Kraft, J.M., Pfleger, F.L., Eds.; American Phytopathological Society: St. Paul, MN, USA, 2001; pp. 24–28. [Google Scholar]
- Tran, H.S.; You, M.P.; Khan, T.N.; Barbetti, M.J. Relative host resistance to black spot disease in field pea (Pisum sativum) is determined by individual pathogens. Plant Dis. 2015, 99, 580–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trapero-Casas, A.; Navas-Cortes, J.A.; Jimenez-Diaz, R.M. Airborne ascospores of Didymella rabiei as a major primary inoculum for Ascochyta blight epidemics in chickpea crops in southern Spain. Eur. J. Plant Pathol. 1996, 102, 237–245. [Google Scholar] [CrossRef]
- Armstrong, C.L.; Chongo, G.; Gossen, B.D.; Duczek, L.J. Mating type distribution and incidence of the teleomorph of Ascochyta rabiei (Didymella rabiei) in Canada. Canad. J. Plant Pathol. 2001, 23, 110–113. [Google Scholar] [CrossRef]
- Ahmad, S.; Khan, M.A.; Sahi, S.T.; Ahmad, R. Identification of resistant sources in chickpea against chickpea blight disease. Arch. Phytopathol. Plant Prot. 2014, 47, 1885–1892. [Google Scholar] [CrossRef]
- Bahr, L.; Castelli, M.V.; Barolo, M.I.; Mostacero, N.R.; Tosello, M.E.; López, S.N. Ascochyta blight: Isolation, characterization, and development of a rapid method to detect inhibitors of the chickpea fungal pathogen Ascochyta rabiei. Fungal Biol. 2016, 120, 424–432. [Google Scholar] [CrossRef]
- Bond, D.A.; Pope, M. Ascochyta fabae on winter beans (Vicia faba): Pathogen spread and variation in host resistance. Plant Pathol. 1980, 29, 59–65. [Google Scholar] [CrossRef]
- Omeri, B.N.; Le May, C.; Mlayeh, O.; Kharrat, M. First report of Didymella fabae, teleomorph of Ascochyta fabae, on faba bean crop debris in Tunisia. Phytopathol. Mediterr. 2012, 51, 369–373. [Google Scholar]
- Tivoli, B.; Baranger, A.; Avila, C.M.; Banniza, S.; Barbetti, M.; Chen, W.; Davidson, J.; Lindeck, K.; Kharrat, M.; Rubiales, D.; et al. Screening techniques and sources of resistance to foliar diseases caused by major necrotrophic fungi in grain legumes. Euphytica 2006, 147, 223–253. [Google Scholar] [CrossRef]
- Ocaña-Moral, S.; Gutiérrez, N.; Torres, A.M.; Madrid, E. Saturation mapping of regions determining resistance to Ascochyta blight and broomrape in faba bean using transcriptome-based SNP genotyping. Theor. Appl. Genet. 2017, 130, 2271–2282. [Google Scholar] [CrossRef]
- Atienza, S.G.; Palomino, C.; Gutiérrez, N.; Alfaro, C.M.; Rubiales, D.; Torres, A.M.; Ávila, C.M. QTLs for ascochyta blight resistance in faba bean (Vicia faba L.): Validation in field and controlled conditions. Crop Pasture Sci. 2016, 67, 216–224. [Google Scholar] [CrossRef]
- Rubiales, D.; Avila, C.M.; Sillero, J.C.; Hybl, M.; Narits, L.; Sass, O.; Flores, F. Identification and multi-environment validation of resistance to Ascochyta fabae in faba bean (Vicia faba). Field Crops Res. 2012, 126, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Šišić, A.; Oberhänsli, T.; Baćanović-Šišić, J.; Hohmann, P.; Finckh, M.R. A Novel Real Time PCR Method for the Detection and Quantification of Didymella pinodella in Symptomatic and Asymptomatic Plant Hosts. J. Fungi 2022, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Owati, A.; Agindotan, B.; Burrows, M. Characterization of Fungal Species Associated with Ascochyta Blight of Dry Pea in Montana and North America and Development of a Differential Medium for Their Detection. Plant Health Prog. 2020, 21, 262–271. [Google Scholar] [CrossRef]
- Kraft, J.M.; Dunne, B.; Goulden, D.; Armstrong, S. A search for resistance in peas to Mycosphaerella pinodes. Plant Dis. 1998, 82, 251–253. [Google Scholar] [CrossRef] [Green Version]
- Tivoli, B.; Beasse, C.; Lemarchand, E.; Masson, E. Effect of Ascochyta blight (Mycosphaerella pinodes) on yield components of single pea (Pisum sativum) plants under field conditions. Ann. Appl. Biol. 1996, 129, 207–216. [Google Scholar] [CrossRef]
- Xue, A.G.; Warkentin, T.D.; Kenaschuk, E.O. Mycosphaerella blight of field pea-potential damage and fungicide control. In Proceedings of the 3rd Manitoba Agri-Forum, Winnipeg, MB, Canada, 18 February 1996; pp. 5–6. [Google Scholar]
- Liu, N.; Xu, S.; Yao, X.; Zhang, G.; Mao, W.; Hu, Q.; Feng, Z.; Gong, Y. Studies on the Control of Ascochyta Blight in Field Peas (Pisum sativum L.) Caused by Ascochyta pinodes in Zhejiang Province, China. Front. Microbiol. 2016, 7, 481. [Google Scholar] [CrossRef] [Green Version]
- Beasse, C.; Ney, B.; Tivoli, B. Effects of pod infection by Mycosphaerella pinodes on yield components of pea. Ann. Appl. Biol. 1999, 135, 359–367. [Google Scholar] [CrossRef]
- Skoglund, L.G.; Harveson, R.M.; Chen, W.; Dugan, F.; Schwartz, H.F.; Markell, S.G.; Porter, L.; Burrows, M.L.; Goswami, R. Ascochyta blight of peas. Plant Health Prog. 2011, 12, 1. [Google Scholar] [CrossRef] [Green Version]
- Erskine, W.; Tufail, M.; Russell, A.; Tyagi, M.C.; Rahman, M.M.; Saxena, M.C. Current and future strategies in breeding lentil for resistance to biotic and abiotic stresses. Euphytica 1994, 73, 127–135. [Google Scholar] [CrossRef]
- Ye, G.; McNeil, D.L.; Hill, G.D. Breeding for resistance to lentil Ascochyta blight. Plant Breed. 2002, 121, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Gossen, B.D.; Sheppard, J.W.; Beauchamp, C.J.; Morrall, R.A.A. Ascochyta lentis renamed Ascochyta fabae f. sp. lentis. Can. J. Plant Pathol. 1986, 8, 154–160. [Google Scholar] [CrossRef]
- Khorramdelazad, M.; Bar, I.; Whatmore, P.; Smetham, G.; Bhaaskaria, V.; Yang, Y.; Bai, S.H.; Mantri, N.; Zhou, Y.; Ford, R.; et al. Transcriptome proling of lentil (Lens culinaris) through the first 24 hours of Ascochyta lentis infection reveals key defence response genes. BMC Genom. 2018, 19, 108. [Google Scholar] [CrossRef]
- Maurya, R.; Singh, Y.; Sinha, M.; Singh, K.; Mishra, P.; Singh, S.K.; Verma, S.; Prabha, K.; Kumar, K.; Verma, P.K. Transcript profiling reveals potential regulators for oxidative stress response of a necrotrophic chickpea pathogen Ascochyta rabiei. 3 Biotech. 2020, 10, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhou, J.M. Plant immunity triggered by microbial molecular signatures. Mol. Plant. 2010, 3, 783–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boller, T.; He, S.Y. Innate immunity in plants: An arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 2009, 324, 742–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagami, H.; Pitzschke, A.; Hirt, H. Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci. 2005, 10, 339–346. [Google Scholar] [CrossRef]
- Sagi, M.S.; Deokar, A.A.; Tar’an, B. Genetic Analysis of NBS-LRR Gene Family in Chickpea and Their Expression Profiles in Response to Ascochyta Blight Infection. Front. Plant Sci. 2017, 8, 838. [Google Scholar] [CrossRef] [Green Version]
- Garg, V.; Khan, A.W.; Kudapa, H.; Kale, S.M.; Chitikineni, A.; Qiwei, S.; Sharma, M.; Li, C.; Zhang, B.; Xin, L.; et al. Integrated transcriptome, small RNA and degradome sequencing approaches provide insights into Ascochyta blight resistance in chickpea. Plant Biotechnol. J. 2019, 17, 914–931. [Google Scholar] [CrossRef] [Green Version]
- Yuan, M.H.; Ngou, B.P.M.; Ding, P.T.; Xiu-Fan, X. PTI-ETI crosstalk: An integrative view of plant immunity. Curr. Opin. Plant Biol. 2021, 62, 102030. [Google Scholar] [CrossRef]
- Ali, S.; Ganai, B.A.; Kamili, A.N.; Bhat, A.A.; Mir, Z.A.; Bhat, J.A.; Tyagi, A.; Islam, S.T.; Mushtaq, M.; Yadav, P.; et al. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol. Res. 2018, 212, 29–37. [Google Scholar] [CrossRef]
- Parker, J.E.; Hessler, G.; Cui, H. A new biochemistry connecting pathogen detection to induced defense in plants. New Phytol. 2022; early view. [Google Scholar]
- Naveed, Z.A.; Wei, X.; Chen, J.; Mubeen, H.; Ali, G.S. The PTI to ETI Continuum in Phytophthora-Plant Interactions. Front. Plant Sci. 2020, 11, 593905. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Zhang, X.C.; Neece, D.; Ramonell, K.M.; Clough, S.; Kim, S.; Stacey, M.G.; Stacey, G. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 2008, 20, 471–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinchilla, D.; Zipfel, C.; Robatzek, S.; Kemmerling, B.; Nürnberger, T.; Jones, J.D.G.; Felix, G.; Boller, T. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 2007, 448, 497–500. [Google Scholar] [CrossRef] [PubMed]
- Ye, G.; McNeil, D.L.; Hill, G.D. Genetic variation for minor gene conditioning Ascochyta blight resistance in lentils. In Proceedings of the 4th European Conference on Grain Legumes, Cracow, Poland, 8–12 July 2001; pp. 240–241. [Google Scholar]
- Singh, K.B.; Reddy, M.V. Inheritance of resistance to Ascochyta blight in chickpea. Crop Sci. 1983, 23, 9–10. [Google Scholar] [CrossRef]
- Fondevilla, S.; Cubero, J.I.; Rubiales, D. Inheritance of resistance to Ascochyta pinodes in two wild accessions of Pisum. Eur. J. Plant Pathol. 2007, 119, 53–58. [Google Scholar] [CrossRef]
- Vir, S.; Grewal, J.S.; Gupta, V.P. Inheritance of resistance to Ascochyta blight in chickpea. Euphytica 1975, 24, 209–211. [Google Scholar] [CrossRef]
- Tewari, S.K.; Pandey, M.P. Genetics of resistance to ascochyta blight in chickpea (Cicer arietinum L.). Euphytica 1986, 35, 211–215. [Google Scholar] [CrossRef]
- Danehloueipour, N.; Yan, G.; Clarke, H.; Siddique, K. Diallel analyses reveal the genetic control of resistance to Ascochyta blight in diverse chickpea and wild Cicer species. Euphytica 2007, 154, 195–205. [Google Scholar] [CrossRef]
- Andrahennadi, C.P. Genetics and Linkage of Isozyme Markers and Resistance to Seedborne Ascochyta Infection in Lentil. MSc Thesis, Univ. of Saskatchewan, Saskatoon, SK, Canada, 1994. [Google Scholar]
- Parh, D.K. Interspecific Mapping of the Ascochyta Gene (s) of Lentil (Lens Culinaris Medikus) Using RAPD Technology. MSc Thesis, Lincoln University, Canterbury, New Zealand, 1998. [Google Scholar]
- Nguyen, T.T.; Taylor, P.W.J.; Brouwer, J.B.; Pang, E.C.K.; Ford, R. A novel source of resistance in lentil (Lens culinaris ssp. culinaris) to ascochyta blight caused by Ascochyta lentis. Australas. Plant Pathol. 2001, 30, 211–215. [Google Scholar] [CrossRef]
- Kohpina, S.; Knight, R.; Stoddard, F.L. Genetics of resistance to ascochyta blight in two populations of faba bean. Euphytica 2000, 112, 101–107. [Google Scholar] [CrossRef]
- Maurin, N.; Tivoli, B. Variation in the resistance of Vicia faba to Ascochyta fabae in relation to disease development in field trials. Plant Pathol. 1992, 41, 737–744. [Google Scholar] [CrossRef]
- Maurin, N.; Gourret, J.P.; Tivoli, B. Histopathology of the interaction between Ascochyta fabae and Vicia faba: Comparison of susceptible and resistant reactions. Agronomie 1993, 13, 921–927. [Google Scholar] [CrossRef]
- Wroth, J.M. Evidence suggests that Mycosphaerella pinodes infection of Pisum sativum is inherited as a quantitative trait. Euphytica 1999, 107, 193–204. [Google Scholar] [CrossRef]
- Zhang, R.; Hwang, S.F.; Gossen, B.D.; Chang, K.F.; Turnbull, D.G. A quantitative analysis of resistance to Mycosphaerella blight in field pea. Crop Sci. 2007, 47, 162–167. [Google Scholar] [CrossRef]
- Siddique, K.H.M.; Erskine, W.; Hobson, K.; Knights, E.J.; Leonforte, A.; Khan, T.N.; Paull, J.G.; Redden, R.; Materne, M. Cool-season grain legume improvement in Australia—Use of genetic resources. Crop Pasture Sci. 2013, 64, 347–360. [Google Scholar] [CrossRef]
- Bayaa, B.; Erskine, W. Response of wild lentil to Ascochyta fabae f. sp. lentis from Syria. Genet. Crop Evol. 1994, 41, 61–65. [Google Scholar] [CrossRef]
- Collard, B.C.-Y.; Ades, P.; Pang, E.; Brouwer, J.; Taylor, P. Prospecting for sources of resistance to Ascochyta blight in wild Cicer species. Australas. Plant Pathol. 2001, 30, 271–276. [Google Scholar] [CrossRef]
- Fondevilla, S.; Avila, C.M.; Cubero, J.I.; Rubiales, D. Response to Mycosphaerella pinodes in a germplasm collection of Pisum spp. Plant Breed. 2005, 124, 313–315. [Google Scholar] [CrossRef]
- Singh, K.B. Experiences, difficulties and prospects of disease resistance breeding in chickpea. In Durability of Disease Resistance; Jacobs, T.H., Parlevliet, J.E., Eds.; Kluwer Academic Publ.: Dordrecht, The Netherlands, 1993; pp. 241–248. [Google Scholar]
- Kimurto, P.K.; Towett, B.K.; Mulwa, R.S.; Njogu, N.; Jeptanui, L.J.; Rao, G.N.V.P.R.; Silim, S.; Kaloki, P.; Korir, P.; Macharia, J.K. Evaluation of chickpea genotypes for resistance to Ascochyta blight (Ascochyta rabiei) disease in the dry highlands of Kenya. Phytopathol. Mediterr. 2013, 52, 212–221. [Google Scholar]
- Pande, S.; Sharma, M.; Gaur, P.M.; Basandrai, A.K.; Kaur, L.; Hooda, K.S.; Basandrai, D.; Kiran Babu, T.; Jain, S.K.; Rathore, A. Biplot analysis of genotype × environment interactions and identification of stable sources of resistance to Ascochyta blight in chickpea (Cicer arietinum L.). Australas. Plant Pathol. 2013, 42, 561–571. [Google Scholar] [CrossRef]
- Benzohra, I.E.; Bendahmane, B.S.; Benkada, M.Y.; Labdi, M. Screening of 15 chickpea germplasm accessions for resistance to Ascochyta rabiei in North West of Algeria. Am.-Eurasian J. Agric. Environ. Sci. 2015, 15, 109–114. [Google Scholar]
- Gayacharan; Rani, U.; Singh, S.; Basandrai, A.K.; Rathee, V.K.; Tripathi, K.; Singh, N.; Dixit, G.P.; Rana, J.C.; Pandey, S.; et al. Identification of novel resistant sources for ascochyta blight (Ascochyta rabiei) in chickpea. PLoS ONE 2020, 15, e0240589. [Google Scholar] [CrossRef]
- Singh, K.; Reddy, M. Sources of resistance to Ascochyta blight in wild Cicer species. Neth. J. Plant Pathol. 1993, 99, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Dubey, S.C.; Singh, B. Evaluation of chickpea genotypes against Ascochyta blight. Indian Phytopath. 2003, 56, 505. [Google Scholar]
- Chen, W.; Coyne, T.C.J.; Peever, T.L.; Muehlbauer, F.J. Characterization of chickpea differentials for pathogenicity assay of Ascochyta blight and identification of chickpea accessions resistant to Didymella rabiei. Plant Pathol. 2004, 53, 759–769. [Google Scholar] [CrossRef]
- Rubio, J.; Moreno, M.T.; Moral, A.; Rubiales, D.; Gil, J. Registration of RIL58-ILC72/Cr5, a chickpea germplasm line with rust and Ascochyta blight resistance. Crop Sci. 2006, 46, 2331–2332. [Google Scholar] [CrossRef] [Green Version]
- Chandirasekaran, R.; Warkentin, T.D.; Gan, Y.; Shirtliffe, S.; Gossen, B.D.; Taran, B.; Banniza, S. Improved sources of resistance to ascochyta blight in chickpea. Can. J. Plant Sci. 2009, 89, 107–118. [Google Scholar] [CrossRef]
- Kaur, l.; Sandhu, J.S.; Malhotra, R.S.; Imtiaz, M.; Sirari, A. Sources of stable resistance to Ascochyta blight in exotic kabuli chickpea. J. Food Legumes 2012, 25, 79–80. [Google Scholar]
- Duzdemir, O.; Selvi, B.; Yanar, Y.; Yildirimi, A. Sources of resistance in chickpea (Cicer arietinum L.) land races against Ascochyta rabiei causal agent of ascochyta blight disease. Pak. J. Bot. 2014, 46, 1479–1483. [Google Scholar]
- Benzohra, I.E.; Bendahmane, B.S.; Labdi, M.; Benkada, M.Y. Sources of Resistance in Chickpea Germplasm to Three Pathotypes of Ascochyta rabiei (Pass.) Labr. in Algeria. World Appl. Sci. J. 2013, 21, 873–878. [Google Scholar]
- Newman, T.E.; Jacques, S.; Grime, C.; Kamphuis, F.L.; Lee, R.C.; Berger, J.; Kamphuis, L.G. Identification of novel sources of resistance to ascochyta blight in a collection of wild Cicer accessions. Phytopathol. 2021, 111, 369–379. [Google Scholar] [CrossRef]
- Sudheesh, S.; Kahrood, H.V.; Braich, S.; Dron, N.; Hobson, K.; Cogan, N.O.; Kaur, S. Application of Genomics Approaches for the Improvement in Ascochyta Blight Resistance in Chickpea. Agron. 2021, 11, 1937. [Google Scholar] [CrossRef]
- Ondrej, M. Response of resistant lines of horse bean to pathogenic fungus Ascochyta fabae Speg. Plant Genet. Resour. Annu. Rep. 1993, 2, 45–48. [Google Scholar]
- Ramsey, M.; Knight, R.; Paull, J. Asochyta and Chocolate Spot resistant faba beans (Vicia faba L.) for Australia. In Proceedings of the 2nd European Conference on Grain Legumes, Copenhagen, Denmark, 9–13 July 1995; pp. 164–165. [Google Scholar]
- Sillero, J.C.; Avila, C.M.; Moreno, M.T.; Rubiales, D. Identification of resistance to Ascochyta fabae in Vicia faba germplasm. Plant Breed. 2001, 120, 529–531. [Google Scholar] [CrossRef]
- Gurung, A.M.; Pang, E.C.K.; Taylor, P.W.J. Examination of Pisum and Lathyrus species as sources of ascochyta blight resistance for field pea (Pisum sativum). Austr. Plant Pathol. 2002, 31, 41–45. [Google Scholar] [CrossRef]
- Rubeena, A.; Taylor, P.W.J.; Ades, P.K.; Ford, R. QTL mapping of resistance in lentil (Lens culinaris ssp. culinaris) to ascochyta blight (Ascochyta lentis). Plant Breed. 2006, 125, 506–512. [Google Scholar]
- Tullu, A.; Banniza, S.; Tar’an, B.; Warkentin, T.; Vandenberg, A. Sources of resistance to ascochyta blight in wild species of lentil (Lens culinaris Medik.). Genet. Resour. Crop Evol. 2010, 57, 1053–1063. [Google Scholar] [CrossRef]
- Sari, E.; Bhadauria, V.; Vandenberg, A.; Banniza, S. Genotype-Dependent Interaction of Lentil Lines with Ascochyta lentis. Front. Plant Sci. 2017, 8, 764. [Google Scholar] [CrossRef] [Green Version]
- Dadu, R.H.R.; Ford, R.; Sambasivam, P.; Gupta, D. Evidence of early defence to Ascochyta lentis within the recently identified Lens orientalis resistance source ILWL180. Plant Pathol. 2018, 67, 1492–1501. [Google Scholar] [CrossRef] [Green Version]
- Dadu, R.H.R.; Ford, R.; Sambasivam, P.; Street, K.; Gupta, D. Identification of novel Ascochyta lentis resistance in a global lentil collection using a focused identification of germplasm strategy (FIGS). Australas. Plant Pathol. 2018, 48, 103–113. [Google Scholar] [CrossRef]
- Clulow, S.A.; Lewis, B.G.; Matthews, P. Expression of resistance to Mycosphaerella pinodes in Pisum sativum. Plant Pathol. 1992, 41, 362–369. [Google Scholar] [CrossRef]
- Dadu, R.R.; Bar, I.; Ford, R.; Sambasivam, P.; Croser, J.; Ribalta, F.; Kaur, S.; Sudheesh, S.; Gupta, D. Lens orientalis Contributes Quantitative Trait Loci and Candidate Genes Associated with Ascochyta Blight Resistance in Lentil. Front. Plant Sci. 2021, 12, 703283. [Google Scholar] [CrossRef]
- Jha, A.B.; Warkentin, T.D.; Gurusamy, V.; Tar’an, B.; Banniza, S. Identification of Ascochyta blight resistance in wild Pisum species for use in pea breeding. Crop Sci. 2012, 52, 2462–2468. [Google Scholar] [CrossRef]
- Jha, A.B.; Tar’an, B.; Stonehouse, R.; Warkentin, T.D. Identification of QTLs associated with improved resistance to ascochyta blight in an interspecific pea recombinant inbred line population. Crop Sci. 2016, 56, 2926–2939. [Google Scholar] [CrossRef] [Green Version]
- Kaur, L.; Sirari, A.; Kumar, D.; Sandhu, J.S.; Singh, S.; Kapoor, K.; Singh, I.; Gowda, C.L.; Pande, S.; Gaur, P.M.; et al. Combining Ascochyta blight and Botrytis grey mould resistance in chickpea through interspecific hybridization. Phytopathol. Mediterr. 2013, 52, 157–165. [Google Scholar]
- Vakulabharanam, V.R.; Slinkard, A.E.; Vandenberg, A. Inheritance of resistance to Ascochyta blight in lentil and linkage between isozyme. In Proceedings of the Food Legume Res. Conf. III, Adelaide, Australia, 22–26 September 1997; p. 162. [Google Scholar]
- Erskine, W.; Bayaa, B. Screening for resistance to ascochyta blight. ICARDA Annu. Rep. 1991, 98–102. [Google Scholar]
- Ye, G.; McNeil, D.L.; Hill, G.D. Inheritance of foliar resis- tance to ascochyta blight in lentil (Lens culinaris). N. Z. J. Crop Hort. Sci. 2003, 31, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Polanco, C.; Sáenz de Miera, L.E.; González, A.I.; García, P.; Fratini, R.; Vaquero, F.; Vences, F.J.; de la Vega, M.P. Construction of a high-density interspecific (Lens culinaris x L. odemensis) genetic map based on functional markers for mapping morphological and agronomical traits, and QTLs affecting resistance to Ascochyta in lentil. PLoS ONE 2019, 14, e0214409. [Google Scholar] [CrossRef] [Green Version]
- Francis, C.; Khan, T.; Priliouk, L.; Gorfu, D.; Beijiga, G. Screening of peas of Vavilov Institute and ICARDA for black spot resistance,” in New Approaches and Techniques in Breeding Sustainable Fodder Crops and Amenity Grasses. In Proceedings of the 22nd EUCARPIA Fodder Crops and Amenity Grasses Section Meeting, St. Petersburg, Russia, 17–21 October 2000; Provorov, N.A., Ed.; N.I. Vavilov All-Russian Institute of Plant Industry: Saint Petersburg, Russia; pp. 242–244. [Google Scholar]
- Xue, A.G.; Warkentin, T.D. Partial resistance to Mycosphaerella pinodes in field pea. Can. J. Plant Sci. 2001, 81, 535–540. [Google Scholar] [CrossRef]
- Zhang, R.; Hwang, S.F.; Chang, K.F.; Gossen, B.D.; Strelkov, S.E.; Turnbull, G.D.; Blade, S.F. Genetic resistance to Ascochyta pinodes in 558 field pea accessions. Crop Sci. 2006, 46, 2409–2414. [Google Scholar] [CrossRef]
- Prioul, S.; Frankewitz, A.; Deniot, G.; Morin, G.; Baranger, A. Mapping of quantitative trait loci for partial resistance to Ascochyta pinodes in pea (Pisum sativum L.) at the seedling and adult plant stages. Theor. Appl. Genet. 2004, 108, 1322–1334. [Google Scholar] [CrossRef] [PubMed]
- Sudheesh, S.; Rodda, M.S.; Davidson, J.; Javid, M.; Stephens, A.; Slater, A.T.; Cogan, N.O.I.; Forster, J.W.; Kaur, S. SNP-based linkage mapping for validation of QTLs for resistance to ascochyta blight in lentil. Front. Plant Sci. 2016, 7, 1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madrid, E.; Rajesh, P.N.; Rubio, J.; Gil, J.; Millán, T.; Chen, W. Characterization and genetic analysis of an EIN4-like sequence (CaETR-1) located in QTLAR1 implicated in ascochyta blight resistance in chickpea. Plant Cell Rep. 2012, 31, 1033–1042. [Google Scholar] [CrossRef]
- Cobos, M.; Rubio, J.; Strange, R.; Moreno, M.; Gil, J.; Millan, T. A new QTL for Ascochyta blight resistance in an RIL population derived from an interspecific cross in chickpea. Euphytica 2006, 149, 105–111. [Google Scholar] [CrossRef]
- Jha, A.B.; Gali, K.K.; Tar’an, B.; Warkentin, T.D. Fine mapping of QTLs for ascochyta blight resistance in pea using heterogeneous inbred families. Front. Plant Sci. 2017, 8, 765. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.; Purayannur, S.; Kaladhar, V.C.; Parida, S.K.; Verma, P.K. mQTL-seq and classical mapping implicates the role of an At-Hook Motif Containing Nuclear Localized (AHL) family gene in Ascochyta blight resistance of chickpea. Plant Cell Environ. 2018, 41, 2128–2140. [Google Scholar] [CrossRef]
- Gutierrez, N.; Torres, A.M. QTL dissection and mining of candidate genes for Ascochyta fabae and Orobanche crenata resistance in faba bean (Vicia faba L.). BMC Plant Biol. 2021, 21, 551. [Google Scholar] [CrossRef]
- Collard, B.; Pang, E.; Ades, P.; Taylor, P. Preliminary investigation of QTLs associated with seedling resistance to Ascochyta blight from Cicer echinospermum, a wild relative of chickpea. Theor. Appl. Genet. 2003, 107, 719–729. [Google Scholar] [CrossRef]
- Udupa, S.M.; Baum, M. Genetic dissection of pathotype- specific resistance to ascochyta blight disease in chickpea (Cicer arietinum L.) using microsatellite markers. Theor. Appl. Genet. 2003, 106, 1196–1202. [Google Scholar] [CrossRef]
- Lichtenzveig, J.; Bonfil, D.J.; Zhang, H.-B.; Shtienberg, D.; Abbo, S. Mapping quantitative trait loci in chickpea associated with time to flowering and resistance to Didymella rabiei the causal agent of Ascochyta blight. Theor. Appl. Genet. 2006, 113, 1357–1369. [Google Scholar] [CrossRef]
- Santra, D.K.; Tekeoglu, M.; Ratnaparkhe, M.; Kaiser, W.J.; Muehlbauer, F.J. Identification and mapping of QTLs conferring resistance to Ascochyta blight in chickpea. Crop Sci. 2000, 40, 1606–1612. [Google Scholar] [CrossRef]
- Cho, S.; Chen, W.; Muehlbauer, F.J. Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to Ascochyta blight. Theor. Appl. Genet. 2004, 109, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Iruela, M.; Castro, P.; Rubio, J.; Cubero, J.; Jacinto, C.; Millan, T.; Gil, J. Validation of a QTL for resistance to ascochyta blight linked to resistance to fusarium wilt race 5 in chickpea (Cicer arietinum L.). In Ascochyta Blights of Grain Legumes; Tivoli, B., Baranger, A., Muehlbauer, F.J., Cooke, B.M., Eds.; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Tar’an, B.; Warkentin, T.D.; Tullu, A.; Vandenberg, A. Genetic mapping of ascochyta blight resistance in chickpea (Cicer arietinum L.) using a simple sequence repeat linkage map. Genome 2007, 50, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Anbessa, Y.; Taran, B.; Warkentin, T.; Tullu, A.; Vandenberg, A. Genetic analyses and conservation of QTL for Ascochyta blight resistance in chickpea (Cicer arietinum L.). Theor. Appl. Genet. 2009, 119, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Kottapalli, P.; Gaur, P.; Katiyar, S.; Crouch, J.H.; Buhariwalla, H.K.; Pande, S.; Gali, K.K. Mapping and validation of QTLs for resistance to an Indian isolate of Ascochyta blight pathogen in chickpea. Euphytica 2009, 165, 79–88. [Google Scholar] [CrossRef]
- Aryamanesh, N.; Nelson, M.; Yan, G.; Clarke, H.J.; Siddique, K.H.M. Mapping a major gene for growth habit and QTLs for Ascochyta blight resistance and flowering time in a population between chickpea and Cicer reticulatum. Euphytica 2010, 173, 307–319. [Google Scholar] [CrossRef]
- Tar’an, B.; Warkentin, T.; Somers, D.J.; Miranda, D.; Vandenberg, A.; Balde, S.; Woods, S.; Bing, D.; Xue, A.; DeKoeyer, D.; et al. Quantitative trait loci for lodging resistance, plant height and partial resistance to ascochyta blight in field pea (Pisum sativum L.). Theor. Appl. Genet. 2003, 107, 1482–1491. [Google Scholar] [CrossRef]
- Sabbavarapu, M.M.; Sharma, M.; Chamarthi, S.K.; Swapna, N.; Rathore, A.; Thudi, M.; Gaur, P.M.; Pande, S.; Singh, S.; Kaur, L. Molecular mapping of QTLs for resistance to Fusarium wilt (race 1) and Ascochyta blight in chickpea (Cicer arietinum L.). Euphytica 2013, 193, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Madrid, E.; Seoane, P.; Claros, M.G.; Barro, F.; Rubio, J.; Gil, J.; Millan, T. Genetic and physical mapping of the QTLAR3 controlling blight resistance in chickpea (Cicer arietinum L). Euphytica 2014, 198, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Stephens, A.; Lombardi, M.; Cogan, N.O.I.; Forster, J.W.; Hobson, K.; Materne, M.; Kaul, S. Genetic marker discovery, intraspecific linkage map construction and quantitative trait locus analysis of ascochyta blight resistance in chickpea (Cicer arietinum L.). Mol. Breed. 2014, 33, 297–313. [Google Scholar] [CrossRef]
- Daba, K.; Deokar, A.; Banniza, S.; Warkentin, T.D.; Tar’an, B. QTL mapping of early flowering and resistance to Ascochyta blight in chickpea. Genome 2016, 59, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ruperao, P.; Batley, J.; Edwards, D.; Davidson, J.; Hobson, K.; Sutton, T. Genome analysis identified novel candidate genes for Ascochyta blight resistance in chickpea using whole genome re-sequencing data. Front. Plant Sci. 2017, 8, 359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, T.; Mallikarjuna, B.P.; Thudi, M.; Samineni, S.; Singh, S.; Sandhu, J.S.; Kaur, L.; Singh, I.; Sirari, A.; Basandrai, A.K.; et al. Identification of QTLs for resistance to Fusarium wilt and Ascochyta blight in a recombinant inbred population of chickpea (Cicer arietinum L.). Euphytica 2018, 214, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Deokar, A.; Sagi, M.; Tar’an, B. Genome-wide SNP discovery for development of high-density genetic map and QTL mapping of Ascochyta blight resistance in chickpea (Cicer arietinum L). Theor. Appl. Genet. 2019, 132, 1861–1872. [Google Scholar] [CrossRef] [Green Version]
- Deokar, A.; Sagi, M.; Daba, K.; Tar’an, B. QTL sequencing strategy to map genomic regions associated with resistance to ascochyta blight in chickpea. Plant Biotechnol. J. 2019, 17, 275–288. [Google Scholar] [CrossRef]
- Kushwah, A.; Bhatia, D.; Rani, U.; Yadav, I.S.; Singh, I.; Bharadwaj, C.; Singh, S. Molecular mapping of quantitative trait loci for ascochyta blight and botrytis grey mould resistance in an inter-specific cross in chickpea (Cicer arietinum L.) using genotyping by sequencing. Breed. Sci. 2021, 71, 229–239. [Google Scholar] [CrossRef]
- Román, B.; Satovic, Z.; Avila, C.M.; Rubiales, D.; Moreno, M.T.; Torres, A.M. Locating genes associated with Ascochyta fabae resistance in Vicia faba. Aust. J. Agric. Res. 2003, 54, 85–90. [Google Scholar] [CrossRef]
- Avila, C.M.; Satovic, Z.; Sillero, J.C.; Rubiales, D.; Moreno, M.T.; Torres, A.M. Isolate and organ-specific QTLs for ascochyta blight resistance in faba bean (Vicia faba L). Theor. Appl. Genet. 2004, 108, 1071–1078. [Google Scholar] [CrossRef]
- Díaz-Ruiz, R.; Satovic, Z.; Ávila, C.M.; Alfaro, C.M.; Gutierrez, M.V.; Torres, A.M.; Román, B. Confirmation of QTLs controlling Ascochyta fabae resistance in different generations of faba bean (Vicia faba L.). Crop Pasture Sci. 2009, 60, 353–361. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S.; Kimber, R.B.E.; Cogan, N.O.I.; Materne, M.; Forster, J.W.; Paull, J.G. SNP discovery and high-density genetic mapping in faba bean (Vicia faba L.) permits identification of QTLs for ascochyta blight resistance. Plant Sci. 2014, 217–218, 47–55. [Google Scholar] [CrossRef]
- Faridi, R.; Koopman, B.; Schierholt, A.; Ali, M.B.; Apel, S.; Link, W. Genetic study of the resistance of faba bean (Vicia faba) against the fungus Ascochyta fabae through a genome-wide association analysis. Plant Breed. 2021, 140, 442–452. [Google Scholar] [CrossRef]
- Skiba, B.; Ford, R.; Pang, E.C. Construction of a linkage map based on a Lathyrus sativus backcross population and preliminary investigation of QTLs associated with resistance to ascochyta blight. Theor. Appl. Genet. 2004, 109, 1726–1735. [Google Scholar] [CrossRef]
- Chowdhury, M.A.; Andrahennadi, C.P.; Slinkard, A.E.; Vandenberg, A. RAPD and SCAR markers for resistance to acochyta blight in lentil. Euphytica 2001, 118, 331–337. [Google Scholar] [CrossRef]
- Tar’an, B.; Buchwaldt, L.; Breitkreutz, C.; Tullu, A.; Warkentin, T.; Banniza, S.; Vandenberg, A. Genetic Study of Ascochyta Blight Resistance in Chickpea and Lentil. 2002. Available online: http://www.usask.ca/soilsncrops/conference-proceedings/ (accessed on 5 January 2022).
- Tullu, A.; Tar’an, B.; Breitkreutz, C.; Banniza, S.; Warkentin, T.; Vandenberg, A.; Buchwaldt, L. A quantitative-trait locus for resistance to ascochyta blight (Ascochyta lentis) maps close to a gene for resistance to anthracnose (Colletotrichum truncatum) in lentil. Can. J. Plant. Pathol. 2006, 28, 588–595. [Google Scholar] [CrossRef]
- Gupta, D.; Taylor, P.W.J.; Inder, P.; Phan, H.T.T.; Ellwood, S.R.; Mathur, P.N.; Sarker, A.; Ford, R. Integration of EST-SSR markers of Medicago truncatula into intraspecific linkage map of lentil and identification of QTL conferring resistance to Ascochyta blight at seedling and pod stages. Mol. Breed. 2012, 30, 429–439. [Google Scholar] [CrossRef] [Green Version]
- Timmerman-Vaughan, G.M.; Frew, T.J.; Russell, A.C.; Khan, T.; Butler, R.; Gilpin, M.; Murray, S.; Falloon, K. QTL mapping of partial resistance to field epidemics of Ascochyta blight of pea. Crop Sci. 2002, 42, 2100–2111. [Google Scholar] [CrossRef]
- Fondevilla, S.; Satovic, Z.; Rubiales, D.; Moreno, M.T.; Torres, A.M. Mapping of quantitative trait loci for resistance to Ascochyta pinodes in Pisum sativum subsp. syriacum. Mol. Breed. 2008, 21, 439–454. [Google Scholar] [CrossRef]
- Timmerman-Vaughan, G.M.; Frew, T.J.; Butler, R.; Murray, S.; Gilpin, M.; Falloon, K.; Johnston, P.; Lakeman, M.B.; Russell, A.; Khan, T. Validation of quantitative trait loci for Ascochyta blight resistance in pea (Pisum sativum L.), using populations from two crosses. Theor. Appl. Genet. 2004, 109, 1620–1631. [Google Scholar] [CrossRef]
- Prioul-Gervais, S.; Deniot, G.; Receveur, E.-M.; Frankewitz, A.; Fourmann, M.; Rameau, C.; Pilet-Nayel, M.L.; Baranger, A. Candidate genes for quantitative resistance to Mycosphaerella pinodes in pea (Pisum sativum L.). Theor. Appl. Genet. 2007, 114, 971–984. [Google Scholar] [CrossRef]
- Fondevilla, S.; Almeida, N.F.; Satovic, Z.; Rubiales, D.; Patto, M.C.V.; Cubero, J.I.; Torres, A.M. Identification of common genomic regions controlling resistance to Mycosphaerella pinodes, earliness and architectural traits in different pea genetic backgrounds. Euphytica 2011, 182, 43–52. [Google Scholar] [CrossRef]
- Timmerman-Vaughan, G.M.; Moya, L.; Frew, T.J.; Murray, S.R.; Crowhurst, R. Ascochyta blight disease of pea (Pisum sativum L.): Defence-related candidate genes associated with QTL regions and identification of epistatic QTL. Theor. Appl. Genet. 2016, 129, 879–896. [Google Scholar] [CrossRef]
- Jha, A.B.; Gali, K.K.; Banniza, S.; Warkentin, T.D. Validation of SNP markers associated with ascochyta blight resistance in pea. Canad. J. Plant Sci. 2019, 99, 243–249. [Google Scholar] [CrossRef]
- Iruela, M.; Rubio, J.; Barro, F.; Cubero, J.I.; Millán, T.; Gil, J. Detection of two quantitative trait loci for resistance to ascochyta blight in an intra-specific cross of chickpea (Cicer arietinum L.): Development of SCAR markers associated with resistance. Theor. Appl. Genet. 2006, 112, 278–287. [Google Scholar] [CrossRef]
- Jha, A.B.; Tar’an, B.; Diapari, M.; Sindhu, A.; Shunmugam, A.; Bett, K.; Warkentin, T.D. Allele diversity analysis to identify SNPs associated with ascochyta blight resistance in pea. Euphytica 2015, 202, 189–197. [Google Scholar] [CrossRef]
- Carrillo, E.; Satovic, Z.; Aubert, G.; Boucherot, K.; Rubiales, D.; Fondevilla, S. Identification of quantitative trait loci and candidate genes for specific cellular resistance responses against Didymella pinodes in pea. Plant Cell Rep 2014, 33, 1133–1145. [Google Scholar] [CrossRef]
- Poland, J.; Rutkoski, J. Advances and challenges in genomic selection for disease resistance. Annu. Rev. Phytopathol. 2016, 54, 79–98. [Google Scholar] [CrossRef]
- Heffner, E.L.; Sorrells, M.E.; Jannink, J.L. Genomic selection for crop improvement. Crop Sci. 2009, 49, 1–12. [Google Scholar] [CrossRef]
- Carpenter, M.A.; Goulden, D.S.; Woods, C.J.; Thomson, S.J.; Kenel, F.; Frew, T.J.; Cooper, R.D.; Timmerman-Vaughan, G.M. Genomic Selection for Ascochyta Blight Resistance in Pea. Front. Plant Sci. 2018, 9, 1878. [Google Scholar] [CrossRef] [Green Version]
- Meuwissen, T.H.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef]
- Newell, M.A.; Jannink, J.L. Genomic selection in plant breeding. Methods Mol. Biol. 2014, 1145, 117–130. [Google Scholar]
- Huang, X.; Han, B. Natural variations and genome-wide association studies in crop plants. Annu. Rev. Plant Biol. 2014, 65, 531–551. [Google Scholar] [CrossRef]
- Satovic, Z.; Avila, C.M.; Cruz-Izquierdo, S.; Díaz-Ruíz, R.; García-Ruíz, G.M.; Palomino, C.; Gutiérrez, N.; Vitale, S.; Ocaña-Moral, S.; Gutiérrez, M.V.; et al. A reference consensus genetic map for molecular markers and economically important traits in faba bean (Vicia faba L.). BMC Genom. 2013, 14, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Coram, T.E.; Pang, E.C.K. Isolation and analysis of candidate ascochyta blight defence genes in chickpea. Part II. Microarray expression analysis of putative defence-related ESTs. Physiol. Mol. Plant Pathol. 2005, 66, 201–210. [Google Scholar] [CrossRef]
- Skiba, B.; Ford, R.; Pang, E.C. Construction of a cDNA library of Lathyrus sativus inoculated with Mycosphaerella pinodes and the expression of potential defence-related expressed sequence tags (ESTs). Physiol. Mol. Plant Pathol. 2005, 66, 55–67. [Google Scholar] [CrossRef]
- Coram, T.E.; Pang, E.C. Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochyta rabiei. Plant Biotechnol. J. 2006, 4, 647–666. [Google Scholar] [CrossRef]
- Ocaña, S.; Seoane, P.; Bautista, R.; Palomino, C.; Claros, G.M.; Torres, A.M.; Madrid, E. Large-scale transcriptome analysis in faba bean (Vicia faba L.) under Ascochyta fabae infection. PLoS ONE 2015, 10, e0135143. [Google Scholar] [CrossRef] [Green Version]
- García-García, P.; Vaquero, F.; Vences, F.J.; Sáenz de Miera, L.E.; Polanco, C.; González, A.I.; Horres, R.; Krezdorn, N.; Rotter, B.; Winter, P.; et al. Transcriptome pro ling of lentil in response to Ascochyta lentis infection. Spanish J. Agric. Res. 2019, 17, e0703. [Google Scholar] [CrossRef] [Green Version]
- Fondevilla, S.; Küster, H.; Krajinski, F.; Cubero, J.I.; Rubiales, D. Identification of genes differentially expressed in a resistant reaction to Mycosphaerella pinodes in pea using microarray technology. BMC Genom. 2011, 12, 28. [Google Scholar] [CrossRef] [Green Version]
- Almeida, N.F.; Krezdorn, N.; Rotter, B.; Winter, P.; Rubiales, D.; Vaz Patto, M.C. Lathyrus sativus transcriptome resistance response to Ascochyta lathyri investigated by deepSuperSAGE analysis. Front. Plant Sci. 2015, 6, 178. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.; Nizam, S.; Sinha, M.; Verma, P.K. Comparative Transcriptome Analysis of the Necrotrophic Fungus Ascochyta rabiei during Oxidative Stress: Insight for Fungal Survival in the Host Plant. PLoS ONE 2012, 7, e33128. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lu, S.; Liu, K.; Wang, S.; Huang, L.; Guo, L. Proteomics: A powerful tool to study plant responses to biotic stress. Plant Methods 2019, 15, 1–20. [Google Scholar] [CrossRef]
- Castillejo, M.Á.; Fondevilla-Aparicio, S.; Fuentes-Almagro, C.; Rubiales, D. Quantitative analysis of target peptides related to resistance against Ascochyta blight (Peyronellaea pinodes) in pea. J. Proteome Res. 2020, 19, 1000–1012. [Google Scholar] [CrossRef]
- Varshney, R.; Song, C.; Saxena, R.; Azam, S.; Yu, S.; Sharpe, A.G.; Cannon, S.; Baek, J.; Rosen, B.D.; Tar’an, B.; et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 2013, 31, 240–246. [Google Scholar] [CrossRef] [Green Version]
- Kreplak, J.; Madoui, M.A.; Cápal, P.; Novák, P.; Labadie, K.; Aubert, G.; Bayer, P.E.; Gali, K.K.; Syme, R.A.; Main, D.; et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 2019, 51, 1411–1422. [Google Scholar] [CrossRef]
- Lee, R.C.; Farfan-Caceres, L.; Debler, J.W.; Williams, A.H.; Syme, R.A.; Henares, B.M. Reference genome assembly for Australian Ascochyta lentis isolate Al4. Gene Genet. Genome 2021, 11, jkab006. [Google Scholar] [CrossRef]
- Varshney, R.K.; Thudi, M.; Roorkiwal, M.; He, W.; Upadhyaya, H.D.; Yang, W.; Bajaj, P.; Cubry, P.; Rathore, A.; Jian, J.; et al. Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nat. Genet. 2019, 51, 857–864. [Google Scholar] [CrossRef] [Green Version]
- Varshney, R.K.; Roorkiwal, M.; Sun, S.; Bajaj, P.; Chitikineni, A.; Thudi, M.; Singh, N.P.; Du, A.; Upadhyaya, H.D.; Khan, A.W.; et al. A chickpea genetic variation map based on the sequencing of 3366 genomes. Nature 2021, 599, 622–627. [Google Scholar] [CrossRef]
- Badet, T.; Croll, D. The rise and fall of genes: Origins and functions of plant pathogen pangenomes. Curr. Opin Plant Biol. 2020, 56, 65–73. [Google Scholar] [CrossRef]
- Houle, D.; Govindaraju, D.; Omholt, S. Phenomics: The next challenge. Nat. Rev. Genet. 2010, 11, 855–866. [Google Scholar] [CrossRef]
- Furbank, R.T.; Tester, M. Phenomics–technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011, 16, 635–644. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, W.; Sankaran, S. High-throughput field phenotyping of Ascochyta blight disease severity in chickpea. Crop Prot. 2019, 125, 104885. [Google Scholar] [CrossRef]
- Yang, W.; Feng, H.; Zhang, X.; Zhang, J.; Doonan, J.H.; Batchelor, W.D.; Xiong, L.; Yan, J. Crop phenomics and high-throughput phenotyping: Past decades, current challenges, and future perspectives. Mol. Plant. 2020, 13, 187–214. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Zhang, Y.; Du, J.; Guo, X.; Wen, W.; Gu, S.; Wang, J.; Fan, J. Crop phenomics: Current status and perspectives. Front. Plant Sci. 2019, 10, 714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Zhou, X.; Zhang, J.; Lan, Y.; Xu, C.; Liang, D. Detection of rice sheath blight using an unmanned aerial system with high-resolution color and multispectral imaging. PLoS ONE 2018, 13, e0187470. [Google Scholar] [CrossRef] [Green Version]
- Sugiura, R.; Tsuda, S.; Tamiya, S.; Itoh, A.; Nishiwaki, K.; Murakami, N.; Shibuya, Y.; Hirafuji, M.; Nuske, S. Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle. Biosyst. Eng. 2016, 148, 1–10. [Google Scholar] [CrossRef]
- Tetila, E.C.; Machado, B.B.; Belete, N.A.; Guimaraes, D.A.; Pistori, H. Identification of soybean foliar diseases using unmanned aerial vehicle images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2190–2194. [Google Scholar] [CrossRef]
- Garcia-Ruiz, F.; Sankaran, S.; Maja, J.M.; Lee, W.S.; Rasmussen, J.; Ehsani, R. Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Comput. Electron. Agric. 2013, 91, 106–115. [Google Scholar] [CrossRef]
- Lu, J.; Hu, J.; Zhao, G.; Mei, F.; Zhang, C. An in-field automatic wheat disease diagnosis system. Comput. Electron. Agric. 2017, 142, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [Google Scholar] [CrossRef]
- Harfouche, A.L.; Jacobson, D.A.; Kainer, D.; Romero, J.C.; Harfouche, A.H.; Mugnozza, G.S.; Moshelion, M.; Tuskan, G.A.; Keurentjes, J.J.; Altman, A. Accelerating climate resilient plant breeding by applying next-generation artificial intelligence. Trends Biotechnol. 2019, 37, 1217–1235. [Google Scholar] [CrossRef]
- Bouhadida, M.; Benjannet, R.; Madrid, E.; Amri, M.; Kharrat, M. Efficiency of marker-assisted selection in detection of ascochyta blight resistance in Tunisian chickpea breeding lines. Phytopathol. Mediterr. 2013, 52, 202–211. [Google Scholar]
- Varshney, R.K.; Mohan, S.M.; Gaur, P.M.; Chamarthi, S.K.; Singh, V.K.; Srinivasan, S.; Swapna, N.; Sharma, M.; Pande, S.; Singh, S.; et al. Marker-assisted backcrossing to introgress resistance to Fusarium wilt race 1 and Ascochyta blight in C 214, an elite cultivar of chickpea. Plant Genome 2014, 7, plantgenome2013-10. [Google Scholar] [CrossRef] [Green Version]
- Castro, P.; Rubio, J.; Madrid, E.; Fernández-Romero, M.D.; Millán, T.; Gil, J. Efficiency of marker-assisted selection for Ascochyta blight in chickpea. J. Agric. Sci. 2015, 153, 56–67. [Google Scholar] [CrossRef]
Crop | Scientific Name of Causal Organism | Races/Pathotype | Symptoms |
---|---|---|---|
Chickpea | Ascochyta rabiei (anamorph); Didymella rabiei (teleomorph) | Three pathotypes [29,30], four pathotypes [32], five pathotypes [6], ten pathotypes [33] | Concentric necrotic lesions on all aboveground plant parts [34]; 100% chickpea yield loss under favorable environment [11]. |
Faba bean | Ascochyta fabae | Races 1, 2, 3, and 4 [7]; Seven races [35] | Stem lesions usually darker than leaf and pod lesions; lesions can be produced over the surface; mycelial invasion causes seed infection [36]. |
Lentil | Ascochyta lentis Vassiljevsky (teleomorph: Didymella lentis, syn. Ascochyta fabae f. sp. lentis) [37] | Two mating types [38] | Symptom appears as necrotic lesions on leaves, stems, and pods, inhibiting photosynthesis and causing up to 70% seed yield losses [5]. |
Lathyrus | Ascochyta lentis var. lathyri | – | Symptoms are characterised by presence of necrotic lesions on stems and leaves [39]. |
Pea | Didymella pinodes, Phoma pinodella, and P. koolunga, Ascochyta pisi Lib., Mycosphaerella pinodes, Phoma medicaginis var. pinodella [8,40,41,42,43,44] | – | Small ‘pinprick’ lesions, flecks on the leaf surface, coalescence of expanding lesions under wet condition, senescence of leaves [45,46] symptoms are noticed. Stem lesions have similar color and elongation, lesions become progressively longer and often coalesce to completely girdle stems [47,48]. |
Crop | Name of Accession | Reporting Country | Reference |
---|---|---|---|
Chickpea | C. judaicum, C. pinnatifidum | - | [106] |
Chickpea | C. echinospermum, C. reticulatum | - | [99] |
Chickpea | HOO-108, GL92024 | India | [107] |
Chickpea | PI 559361, PI 559363, W6 22589 | USA | [108] |
Chickpea | RIL58-ILC72/Cr5 | Spain | [109] |
Chickpea | Almaz, ICC 3996, ILWC 118 | Australia | [88] |
Chickpea | FLIP 98-133C, FLIP 98-136C | Canada | [110] |
Chickpea | FLIP 97-121C | India | [111] |
Chickpea | FLIP 4107, FLIP 1025, FLIP 10511 | Algeria | [104] |
Chickpea | EC 516934, ICCV 04537, ICCV 98818, EC 516850, EC 516971 | India | [103] |
Chickpea | ICC7052, ICC4463, ICC4363, ICC2884, ICC7150, ICC15294, ICC11627 | Kenya | [102] |
Chickpea | 10A, 28B | Turkey | [112] |
Chickpea | ILC72, ILC182, ILC187, ILC200, ILC202 | Algeria | [113] |
Chickpea | C. echinospermum accessions S2Drd_ 061 Deste_064, C. reticulatum accession Bari1_062, C. echinospermum accession Karab_063 | [114] | |
Chickpea | Cicer echinospernum | NSW-DPI, Tamworth, Australia | [115] |
Chickpea | IC275447, IC117744, EC267301, IC248147, EC220109 | PAU, Ludhiana, India; HAREC, HPKV, Dhaulakuan India | [105] |
Faba bean | BPL 471, 2485 | Syria, England, Canada, Poland, France, Tunisia | [7] |
Faba bean | SU-R 40, SU-R 5/13 | - | [116] |
Faba bean | ILB 1414, ILB 6561 | - | [98] |
Faba bean | Ascot | - | [117] |
Faba bean | 29H | France | [93,94] |
Faba bean | ILB 752 | - | [92] |
Faba bean | V-1220, V-494, V-175, V-47, V-165, V-1122, V-46 | - | [118] |
Faba bean | L-831818, V-26, V-958, V-255, V-1020, V-1085, V-1117, V-1020, V-1085, V-1117 | Czech Republic, Estonia, Germany, Spain | [58] |
Grasspea | L. sativus, L. ochrus, L. clymenum | - | [119] |
Lentil | Indian head | - | [89] |
Lentil | W6 3261, W6 3192, W6 3222, W6 3241 | - | [23,26] |
Lentil | 24 Lentis orientalis, 12 Lentis odemensis, 3 Lentis nigricans | - | [99] |
Lentil | ILL 358, ILL 5588, ILL 5684, Laird | Canada | [68] |
Lentil | ILL 358, ILL 4605 | Chile | [68] |
Lentil | ILL 358, LL 857 | Ethiopia | [68] |
Lentil | ILL 5698, ILL 5700, ILL 5883, ILL 6212 | Morocco | [68] |
Lentil | ILL 5684, ILL 5588, ILL 5714, Rajah | New Zealand | [68] |
lentil | FLIP84-27L, FLIP84-43L, FLIP84-55L | Pakistan | [68] |
Lentil | ILL 857, ILL 2439, ILL 4605 | Syria | [68] |
Lentil | HPL5, L442, L448, LG169, Pant4, Pant L406 | India | [68] |
Lentil | ILL 7537 | Jordan | [120] |
Lentil | L. ervoides, L. nigricans, L. culinaris subsp. orientalis, L. culinaris subsp. odemensis | Saskatoon, Canada | [121] |
Lentil | ILL 1704 | Ethiopia | [121] |
Lentil | CDC Robin, 964a-46 | - | [122] |
Lentil | L. orientalis accession ILWL 180 | ICARDA | [123] |
Lentil | IG207 | ICARDA | [124] |
Lentil | ILL7537 | - | [70] |
Pea | Lines JI 96, JI 252, JI 1089 | Afghanistan, Ethiopia, Syria | [125] |
Pea | P. fulvum accession PS1115 | - | [119] |
Pea | P. fuivum, followed by P. sativum ssp. eiatius and P. sativum ssp. syriacum | - | [100] |
Pea | Pisum fulvum accessions PI595937, P651, W615017, PI560061, P. sativum subsp. elatius accession PI344538 | Canada | [127] |
Pea | P13 Pisum sativum ssp. elatius | Turkey | [14] |
Pea | P18 Pisum sativum ssp. elatius | Greece | [14] |
Pea | P651 Pisum fulvum | Syria | [14] |
Pea | P665 Pisum sativum ssp. syriacum | Syria | [14] |
Pea | P670 Pisum sativum ssp. elatius | Turkey | [14] |
Pea | 05P778-BSR-701, ATC 5338, ATC 5345, Dundale, ATC 866 | Western Australia | [48] |
Pea | Pisum fulvum accessions PI595937, P651, W615017, PI560061, P. sativum subsp. elatius accession PI344538 | Canada | [128] |
Crop | Mapping Approach | Mapping Population | QTL/Gene | Type of Marker Used | Linkage Group (LG) | Phenotypic Variation (PV) % | Reference |
---|---|---|---|---|---|---|---|
Chickpea | Bi-parental | FLIP84-92C × C. reticulatum Lad. (PI 599072) | QTL-1 and QTL-2 | RAPD, ISSR | - | 50.30 | [147] |
Chickpea | Bi-parental | Lasseter × C. echinospermum accession (PI 527930), F2 | 1 QTL | STMS | LG4 | - | [144] |
Chickpea | Bi-parental | ILC 1272 × ILC 3279 | ar1, ar2a, ar2b | SSR | LG4, LG2 | - | [145] |
Chickpea | Bi-parental | PI 359075 × FLIP84-92C F7(RIL) | 3 QTL + Ar19 (or Ar21d) gene | SSR | (LG)4A, LG2 + 6 | - | [148] |
Chickpea | Bi-parental | Cicer arietinum (ILC72) × Cicer reticulatum (Cr5-10) | 1 QTL | RAPD, ISSR, STMS, isozyme | LG2 | 28 | [140] |
Chickpea | Bi-parental | QTLAR3 | STMS | LG2 | - | [149] | |
Chickpea | Bi-parental | ICCV96029′ and ‘CDC Frontier (186 F2) | T3hree QTL | SSR | LG3, 4, 6 | 12–29 | [150] |
Chickpea | Bi-parental | CDC Frontier × ICCV 96029, CDC Luna × ICCV 96029, CDC Corinne × ICCV 96029, Amit × ICCV 96029, F1 and F2 | 5 QTL (QTL1–5) | SSR | LG 2, 3, 4, 6, 8 | 14–56 | [151] |
Chickpea | Bi-parental | ICC 4991 × ICCV 04516 | 3 QTL | SSR | LG3, LG4 | 7.7–18.6 | [152] |
Chickpea | Bi-parental | C. arietinum × C. reticulatum | 3 QTL | SSR | LG3, LG4 | 49 | [153] |
Chickpea | Bi-parental | ILC3279 × WR315, RIL | QTL(AR1), EIN4-like sequence | SSR | LG4 | 33.8 | [139] |
Chickpea | Backcross | CDCXena × CDC Frontier, CDCXena × CDC 425-14 | Abr QTL 3, Abr QTL 4 | SSR | LG4, LG8 | - | [154] |
Chickpea | Bi-parental | C 214′ × ‘ILC 3279′ (F2) | AB-Q-SR-4-1, AB-Q-SR-4-2, AB-Q-APR-6-1, AB-Q-APR-6-2, AB-Q-APR-4-1, AB-Q-APR-5B | SSR | LG4, 5, 6 | 1.5–32 | [155] |
Chickpea | - | - | 42 candidate genes Ein3, Avr9/Cf9 and Argonaute 4 | SNP | Ca2 | 44.2 | [156] |
Chickpea | Bi-parental | S95362 × Howzat, Lasseter × ICC3996 | ab_QTL1, ab_QTL2 | EST, SNP | - | 14–45 | [157] |
Chickpea | Bi-parental | ICCV 96029 × CDC Frontier RIL(92) | qtlAb-1.1, qtlAb-2.1, qtlAb-3.1, qtlAb-4.1, qtlAb-6.1, qtlAb-7, qtlAb-8.1, qtlAb-8.2, qtlAb-8.3 | SNP | LG1, 2, 3, 4, 6, 7, 8 | 9–19 | [158] |
Chickpea | GWAS | 132 advanced breeding lines | AB4.1 QTL along with 12 candidate genes | SNP | LG4 | - | [159] |
Chickpea | Bi-parental | JG 62 × ICCV 05530, RIL(188) | 1 QTL for seedling resistance; minor QTL each for SR and adult plant resistance | SSR, SNP | - | - | [160] |
Chickpea | Bi-parental | FLIP84-92C(2) × PI359075(250 RILs), CRIL-7 (217 RILs) | qABR4.1, qABR4.2, qABR4.3 QTL and CaAHL18 candidate gene | SNP | LG4 | 42 | [142] |
Chickpea | GWAS | 146 (C. reticulatum) + 44 (C. echinospermum) | WRKY TF (Cr_02657.1), (Cr_09847.1) encodes a TF of ARF family | SNP | LG3, 4, 6 | 6.7–15.2 | [114] |
Chickpea | Bi-parental | ICCV 96029 × CDCFrontier 92 RILs, ICCV 96029 × Amit 139 RILs | CPR01-qAB1.1, CPR01-qAB1.2, CPR01-qAB1.3, CPR01-qAB1.4, CPR01-qAB4.1, CPR01-qAB4.2, CPR01-qAB4.3, CPR01-qAB4.4, CPR01-qAB4.5, CPR01-qAB6.1, CPR01-qAB6.2, CPR01-qAB7.1 | SNP | LG1, 2, 3, 4, 6, 7, 8 | - | [161] |
Chickpea | Bi-parental | Amit × ICCV 96029 (RIL) | 8 QTL | SNP | LG2, 3, 4, 5 and 6 | 7–40 | [162] |
Chickpea | Bi-parental | C. arietinum × Cicer echinospernum, RIL(134) | AB_echino_2014, AB_echino_2015 | SNP | LG4 | 34–41 | [138] |
Chickpea | Bi-parental | GPF2 × C. reticulatum acc. ILWC 292, 187 RIL | qab-4.1, qab-4.2, qab-7.1 | SNP | LG4, LG7 | 7–11 | [163] |
Faba bean | Bi-parental | 196F2 | Af1 and Af2 | - | LGVIII, LGIVa | 46 | [164] |
Faba bean | Bi-parental | 29H × Vf136, (F2) | 6 QTL (Af3 to Af8) | LG2, LG3, LG6, LG12, LG14, LG15 | 6.2–44.7 | [165] | |
Faba bean | Bi-parental | Vf6 Vf136 (165 RIL) | Af1 and Af 2 | RAPD, SSR, Isozyme EST, SCAR | LG2, LG3 | 16–24 | [166] |
Faba bean | Bi-parental | Icarus × Ascot | QTL-3, QTL-1, QTL-2, QTL-4 | SSR, SNP | Chr-II, Chr-VI, Chr-I.A | [167] | |
Faba bean | Bi-parental | 29H × Vf136, (RIL) | 10 QTL | - | LG2 LG3, LG4 | 9.8–17.7 | [57] |
Faba bean | Bi-parental | 29H × Vf136 (RIL, 119) | 9 QTL | SNP | chromosomes II, III, IV | 10.6–21.4 | [56] |
Faba bean | Bi-parental | 29H × Vf136, Vf6 × Vf136 | Af2, Af3, F_DSP1, F_DSP2 and DSL_Lo98 | Chromosomes II, III, IV | 7.8–14 | [143] | |
Faba bean | GWAS | 188 diverse lines | 12 MTAs | AFLP, SNP | LGI, III, IV, V, VI | 5.6–21.7 | [168] |
Lathyrus | Backcross population | ATC 80,878 × ATC 80407 | QTL1, QTL2 | RAPD, STMS, STS/CAPS | LG1, LG2 | 9–12 | [169] |
Lentil | Bi-parental | ILL5588 (cv. Northfield) × ILL6002 | - | RAPD | - | 89 | [20] |
Lentil | Bi-parental | Eston x Indian head, F2(60) | ral 2gene | RAPD, SCAR | - | - | [170] |
Lentil | Bi-parental | ILL5588 (cv. Northfield) × L692-16-1 | 2 QTL | RAPD, ISSR, RFLP, AFLP | LG4 | 36 | [171] |
Lentil | F2 | ILL5588 (cv. Northfield) × ILL7537, ILL7537 × ILL6002 | 5 + 3 QTL | RAPD, ISSR, AFLP | LG1, 2, 4, and 5 | 50 | [120] |
Lentil | Bi-parental | Eston × PI 320,937 | 1 QTL | RAPD, AFLP, SSR | LG6 | 41 | [172] |
Lentil | Bi-parental | ILL5588 (cv. Northfield) × ILL5722 (cv. Digger) F5(94) | QTL1, QTL2, QTL3, QTL4, QTL5, QTL6 | ST-SSR/SSR, ISSR, RAPD, ITAP | LG1, 4, 5 and 9 | 34–61 | [173] |
Lentil | Bi-parental | Indianhead × Northfield | AB_IH1, AB_IH1.2, AB_NF1, AB_IH1.3 | SSR, SNP | LG2, 3 and 6 | 7–47 | [138] |
Lentil | Bi-parental | Lens culinaris × L. odemensis, RIL | AS-Q1, AS-Q2, AS-Q3 | SNP | LG6 | 23–27 | [133] |
Pea | Bi-parental | 3148-A88 × Rovar, F2:4 | 13 QTL | RAPD, STS | [174] | ||
Pea | Bi-parental | Carneval × MP1401 | 3 QTL | AFLP, SCAR | LG2, 3, 4, 5, 7 | 36 | [154] |
Pea | Bi-parental | P665 × Messire | 6 QTL | RAPD, STS, EST | LG2, 3, 4, 5 | 31–75 | [175] |
Pea | Bi-parental | DP × JI296 (135 RIL) | 6 QTL at the seedling stage | - | - | 56.6–74 | [137] |
Pea | Bi-parental | A26 × Rovar, A88 × Rovar | 11 + 14 QTL | STS | LG I, II, III, IV, V, VI, VII | 4.6–37.4 | [176] |
Pea | Bi-parental | JI296 × DP RIL | RGA-G3A, RGA2.97, PsPRP4A, Peachi21, PsMnSOD, DRR230-b, PsDof1, peabetaglu and DRR49a, QTL mpIII-4 | - | LG2, 3, 7, 4, 6 | - | [177] |
Pea | Bi-parental | P665 × Messire | 3 QTL | SSR | - | - | [178] |
Pea | Bi-parental | A26 × Rovar, A88 × Rovar. | Asc2.1, Asc4.2, Asc4.3 and Asc7.1 QTL, 14 candidate genes | – | - | - | [179] |
Pea | Bi-parental | P651 (P. fulvum) × Alfetta (Pisum sativum L.) RIL(144) | abI-IV-1, abI-IV-2, abI-IV-3, abI-IV-4, abIII- 1, abVII-1, abI-IV-5, abIII-2, abVII-2 | SNP | LG1, 2, 3, 4, 7 | 7.5–28% | [128] |
Pea | Bi-parental | F6 RILs PR-19-224 and PR-19-173 | abI-IV-2.1 and abI-IV-2.2 | SNP | - | 5.5–14% | [141] |
Pea | Genome-wide association study | 36 cultivars | 3 MTAs | SNP | - | - | [180] |
Crop | DEG/Candidate Gene | Function | References | Genotype Name | Technique Used |
---|---|---|---|---|---|
Chickpea | 97 DEGs | Pathogenesis-related proteins, proline-rich protein, SNAKIN2 antimicrobial peptide, leucine-zipper protein | [193] | ICC3996, FLIP94-508C, ILWC245 | RT-PCR, Microarray technology |
Chickpea | LOC101508336, LOC101508648, LOC101508966, LOC101509280 | – | [142] | FLIP8492C, PI359075 | qRT-PCR |
Chickpea | 6767 differentially expressed genes, 651 miRNAs, chitinases (Ca_04405), CC-NBS-LRR (Ca_08361), CC-NBS-LRR (Ca_08122), Dof zinc finger protein (Ca_19433), ERF (Ca_00359), calcium-transporting ATPase (Ca_12185), senescence-associated protein (Ca_15107), cellulose synthase (Ca_08607) | Pathogenesis-related proteins, cell wall synthesis, NBS-LRR, secondary metabolites | [76] | ILC 3279, ICCV 05530, C 214, Pb 7 | Illumina Inc., San Diego, CA, USA, qRT-PCR |
Faba bean | 850 differentially expressed transcript | Biosynthesis of secondary metabolites, ethylene, phenylpropanoid and isoflavonoids, NBS-LRR proteins synthesis | [194] | 29H and Vf136 | Illumina platform, RT-qPCR |
Lathyrus | 29 unique gene sequences | Pathogen recognition, signaling transduction, transcription regulation, PR proteins, and disease resistance | [192] | ATC 80,878, ATC 80407 | Microarray technology |
Lentil | Pathogenesis-related proteins, genes related to hormone signaling, cell death, and cell-wall reinforcement | [122] | CDC Robin, 964a-46 Eston | HiSeq 2500. qRT-PCR | |
Lentil | pathogen invasion recognition and signaling genes, pathogenesis-related protein genes, ethylene response factor (ERF) | Fungal elicitors recognition, defense signaling genes, hypersensitive reaction and cell death, transcription regulation of defense genes | [70] | ‘ILL7537′ and ‘ILL6002′ | RT- qPCR. RNA-Seq |
Lentil | Lignin biosynthesis, jasmonic acid pathway signaling gene | Contributed to defense response | [195] | Lupa, ILL5588, BG16880 | Massive analysis of cDNA ends |
Pea | 346 DEGs | Pathogenesis-related (PR) proteins, hormone signaling, cell wall reinforcement, phenylpropanoid | [196] | P665 | Microarray technology |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jha, U.C.; Sharma, K.D.; Nayyar, H.; Parida, S.K.; Siddique, K.H.M. Breeding and Genomics Interventions for Developing Ascochyta Blight Resistant Grain Legumes. Int. J. Mol. Sci. 2022, 23, 2217. https://doi.org/10.3390/ijms23042217
Jha UC, Sharma KD, Nayyar H, Parida SK, Siddique KHM. Breeding and Genomics Interventions for Developing Ascochyta Blight Resistant Grain Legumes. International Journal of Molecular Sciences. 2022; 23(4):2217. https://doi.org/10.3390/ijms23042217
Chicago/Turabian StyleJha, Uday C., Kamal Dev Sharma, Harsh Nayyar, Swarup K. Parida, and Kadambot H. M. Siddique. 2022. "Breeding and Genomics Interventions for Developing Ascochyta Blight Resistant Grain Legumes" International Journal of Molecular Sciences 23, no. 4: 2217. https://doi.org/10.3390/ijms23042217
APA StyleJha, U. C., Sharma, K. D., Nayyar, H., Parida, S. K., & Siddique, K. H. M. (2022). Breeding and Genomics Interventions for Developing Ascochyta Blight Resistant Grain Legumes. International Journal of Molecular Sciences, 23(4), 2217. https://doi.org/10.3390/ijms23042217