Comparison of Different Mass Spectrometry Workflows for the Proteomic Analysis of Tear Fluid
Abstract
:1. Introduction
2. Results
2.1. In-Strip Protein Digestion Identifies More Proteins Than Post-Extraction Protein Digestion
2.2. Proteomic Profiling of Tear Samples
2.3. Major Protein Families Identified in Human Tear Samples
2.4. Gene Ontology Analyses of Differentially Expressed Proteins in Tear Fluid
2.5. Interaction Network Analyses
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Protein Digestion
4.3. LC–MS/MS
4.4. Protein Identification and Analysis
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Argüeso, P. The Disrupted Glycocalyx as a Source of Ocular Surface Biomarkers. Eye Contact Lens 2020, 46, S53. [Google Scholar] [CrossRef] [PubMed]
- Cher, I. A new look at lubrication of the ocular surface: Fluid mechanics behind the blinking eyelids. Ocul. Surf. 2008, 6, 79–86. [Google Scholar] [CrossRef]
- Willcox, M.D.; Argüeso, P.; Georgiev, G.A.; Holopainen, J.M.; Laurie, G.W.; Millar, T.J.; Papas, E.B.; Rolland, J.P.; Schmidt, T.A.; Stahl, U. TFOS DEWS II tear film report. Ocul. Surf. 2017, 15, 366–403. [Google Scholar] [CrossRef] [Green Version]
- Lindén, S.K.; Sheng, Y.H.; Every, A.L.; Miles, K.M.; Skoog, E.C.; Florin, T.H.; Sutton, P.; McGuckin, M.A. MUC1 limits Helicobacter pylori infection both by steric hindrance and by acting as a releasable decoy. PLoS Pathog. 2009, 5, e1000617. [Google Scholar] [CrossRef] [PubMed]
- Menon, N.G.; Goyal, R.; Lema, C.; Woods, P.S.; Tanguay, A.P.; Morin, A.A.; Das, N.; Jay, G.D.; Krawetz, R.J.; Dufour, A. Proteoglycan 4 (PRG4) expression and function in dry eye associated inflammation. Exp. Eye Res. 2021, 208, 108628. [Google Scholar] [CrossRef]
- Nair, A.P.; D’Souza, S.; Shetty, R.; Ahuja, P.; Kundu, G.; Khamar, P.; Dadachanji, Z.; Paritekar, P.; Patel, P.; Dickman, M.M. Altered ocular surface immune cell profile in patients with dry eye disease. Ocul. Surf. 2021, 21, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Pflugfelder, S.C.; Jones, D.; Ji, Z.; Afonso, A.; Monroy, D. Altered cytokine balance in the tear fluid and conjunctiva of patients with Sjögren’s syndrome keratoconjunctivitis sicca. Curr. Eye Res. 1999, 19, 201–211. [Google Scholar] [CrossRef]
- Shtein, R.M. Post-LASIK dry eye. Expert Rev. Ophthalmol. 2011, 6, 575–582. [Google Scholar] [CrossRef]
- Argüeso, P.; Balaram, M.; Spurr-Michaud, S.; Keutmann, H.T.; Dana, M.R.; Gipson, I.K. Decreased levels of the goblet cell mucin MUC5AC in tears of patients with Sjogren syndrome. Investig. Ophthalmol. Vis. Sci. 2002, 43, 1004–1011. [Google Scholar]
- Shimazaki-Den, S.; Dogru, M.; Higa, K.; Shimazaki, J. Symptoms, visual function, and mucin expression of eyes with tear film instability. Cornea 2013, 32, 1211–1218. [Google Scholar] [CrossRef]
- Bron, A.J.; Tomlinson, A.; Foulks, G.N.; Pepose, J.S.; Baudouin, C.; Geerling, G.; Nichols, K.K.; Lemp, M.A. Rethinking dry eye disease: A perspective on clinical implications. Ocul. Surf. 2014, 12, S1–S31. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, B.D.; Crews, L.A.; Messmer, E.M.; Foulks, G.N.; Nichols, K.K.; Baenninger, P.; Geerling, G.; Figueiredo, F.; Lemp, M.A. Correlations between commonly used objective signs and symptoms for the diagnosis of dry eye disease: Clinical implications. Acta Ophthalmol. 2014, 92, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Pflugfelder, S.C.; Solomon, A.; Stern, M.E. The diagnosis and management of dry eye: A twenty-five–year review. Cornea 2000, 19, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Chiva, A. Tear biomarkers in dry eye disease. Eur. Ophthalmic Rev. 2019, 13, 21–26. [Google Scholar] [CrossRef]
- Li, B.; Sheng, M.; Li, J.; Yan, G.; Lin, A.; Li, M.; Wang, W.; Chen, Y. Tear proteomic analysis of Sjögren syndrome patients with dry eye syndrome by two-dimensional-nano-liquid chromatography coupled with tandem mass spectrometry. Sci. Rep. 2014, 4, 5772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, J.H.; Ji, Y.W.; Hwang, H.S.; Oh, J.W.; Kim, H.C.; Lee, H.K.; Kim, K.P. Proteomic analysis of human lacrimal and tear fluid in dry eye disease. Sci. Rep. 2017, 7, 13363. [Google Scholar] [CrossRef] [Green Version]
- Ponzini, E.; Santambrogio, C.; De Palma, A.; Mauri, P.; Tavazzi, S.; Grandori, R. Mass spectrometry-based tear proteomics for noninvasive biomarker discovery. Mass Spectrom. Rev. 2021. [Google Scholar] [CrossRef]
- Posa, A.; Bräuer, L.; Schicht, M.; Garreis, F.; Beileke, S.; Paulsen, F. Schirmer strip vs. capillary tube method: Non-invasive methods of obtaining proteins from tear fluid. Ann. Anat.-Anat. Anz. 2013, 195, 137–142. [Google Scholar] [CrossRef]
- Makarov, A. Orbitrap journey: Taming the ion rings. Nat. Commun. 2019, 10, 3743. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.Y.W.; Sze, Y.H.; Bian, J.F.; Lam, T.C. Critical role of mass spectrometry proteomics in tear biomarker discovery for multifactorial ocular diseases. Int. J. Mol. Med. 2021, 47, 83. [Google Scholar] [CrossRef]
- Doll, S.; Burlingame, A.L. Mass spectrometry-based detection and assignment of protein posttranslational modifications. ACS Chem. Biol. 2015, 10, 63–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, H.; Sun, F.; Suttapitugsakul, S.; Wu, R. Global and site-specific analysis of protein glycosylation in complex biological systems with Mass Spectrometry. Mass Spectrom. Rev. 2019, 38, 356–379. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Beuerman, R.W.; Chew, A.P.; Koh, S.K.; Cafaro, T.A.; Urrets-Zavalia, E.A.; Urrets-Zavalia, J.A.; Li, S.F.; Serra, H.M. Quantitative analysis of N-linked glycoproteins in tear fluid of climatic droplet keratopathy by glycopeptide capture and iTRAQ. J. Proteome Res. 2009, 8, 1992–2003. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez Benavente, M.C.; Argueso, P. Glycosylation pathways at the ocular surface. Biochem. Soc. Trans. 2018, 46, 343–350. [Google Scholar] [CrossRef]
- Huang, Z.; Du, C.X.; Pan, X.D. The use of in-strip digestion for fast proteomic analysis on tear fluid from dry eye patients. PLoS ONE 2018, 13, e0200702. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, N.; Zheng, J.; Liu, X.M.; Lever, O.W.; Erickson, P.M.; Li, L. Characterization of human tear proteome using multiple proteomic analysis techniques. J. Proteome Res. 2005, 4, 2052–2061. [Google Scholar] [CrossRef]
- De Souza, G.A.; Godoy, L.M.; Mann, M. Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors. Genome Biol. 2006, 7, R72. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Zhao, S.Z.; Koh, S.K.; Chen, L.; Vaz, C.; Tanavde, V.; Li, X.R.; Beuerman, R.W. In-depth analysis of the human tear proteome. J. Proteom. 2012, 75, 3877–3885. [Google Scholar] [CrossRef]
- Aass, C.; Norheim, I.; Eriksen, E.F.; Thorsby, P.M.; Pepaj, M. Single unit filter-aided method for fast proteomic analysis of tear fluid. Anal. Biochem. 2015, 480, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Dor, M.; Eperon, S.; Lalive, P.H.; Guex-Crosier, Y.; Hamedani, M.; Salvisberg, C.; Turck, N. Investigation of the global protein content from healthy human tears. Exp. Eye Res. 2019, 179, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Winiarczyk, M.; Kaarniranta, K.; Winiarczyk, S.; Adaszek, L.; Winiarczyk, D.; Mackiewicz, J. Tear film proteome in age-related macular degeneration. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 256, 1127–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aluru, S.V.; Shweta, A.; Bhaskar, S.; Geetha, K.; Sivakumar, R.M.; Utpal, T.; Padmanabhan, P.; Angayarkanni, N. Tear Fluid Protein Changes in Dry Eye Syndrome Associated with Rheumatoid Arthritis: A Proteomic Approach. Ocul. Surf. 2017, 15, 112–129. [Google Scholar] [CrossRef]
- Versura, P.; Nanni, P.; Bavelloni, A.; Blalock, W.L.; Piazzi, M.; Roda, A.; Campos, E.C. Tear proteomics in evaporative dry eye disease. Eye 2010, 24, 1396–1402. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Beuerman, R.W.; Chan, C.M.; Zhao, S.Z.; Li, X.R.; Yang, H.; Tong, L.; Liu, S.; Stern, M.E.; Tan, D. Identification of tear fluid biomarkers in dry eye syndrome using iTRAQ quantitative proteomics. J. Proteome Res. 2009, 8, 4889–4905. [Google Scholar] [CrossRef]
- Soria, J.; Duran, J.A.; Etxebarria, J.; Merayo, J.; Gonzalez, N.; Reigada, R.; Garcia, I.; Acera, A.; Suarez, T. Tear proteome and protein network analyses reveal a novel pentamarker panel for tear film characterization in dry eye and meibomian gland dysfunction. J. Proteom. 2013, 78, 94–112. [Google Scholar] [CrossRef] [PubMed]
- Csosz, E.; Boross, P.; Csutak, A.; Berta, A.; Toth, F.; Poliska, S.; Torok, Z.; Tozser, J. Quantitative analysis of proteins in the tear fluid of patients with diabetic retinopathy. J. Proteom. 2012, 75, 2196–2204. [Google Scholar] [CrossRef]
- Kuo, M.T.; Fang, P.C.; Chao, T.L.; Chen, A.; Lai, Y.H.; Huang, Y.T.; Tseng, C.Y. Tear Proteomics Approach to Monitoring Sjogren Syndrome or Dry Eye Disease. Int. J. Mol. Sci. 2019, 20, 1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.J.; Kim, P.K.; Yoo, H.S.; Kim, C.W. Comparison of tear proteins between healthy and early diabetic retinopathy patients. Clin. Biochem. 2012, 45, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Pieragostino, D.; Bucci, S.; Agnifili, L.; Fasanella, V.; D’Aguanno, S.; Mastropasqua, A.; Ciancaglini, M.; Mastropasqua, L.; Di Ilio, C.; Sacchetta, P.; et al. Differential protein expression in tears of patients with primary open angle and pseudoexfoliative glaucoma. Mol. Biosyst. 2012, 8, 1017–1028. [Google Scholar] [CrossRef] [PubMed]
- Pieragostino, D.; Agnifili, L.; Fasanella, V.; D’Aguanno, S.; Mastropasqua, R.; Di Ilio, C.; Sacchetta, P.; Urbani, A.; Del Boccio, P. Shotgun proteomics reveals specific modulated protein patterns in tears of patients with primary open angle glaucoma naive to therapy. Mol. Biosyst. 2013, 9, 1108–1116. [Google Scholar] [CrossRef] [PubMed]
- Nattinen, J.; Jylha, A.; Aapola, U.; Parkkari, M.; Mikhailova, A.; Beuerman, R.W.; Uusitalo, H. Patient stratification in clinical glaucoma trials using the individual tear proteome. Sci. Rep. 2018, 8, 12038. [Google Scholar] [CrossRef]
- Acera, A.; Vecino, E.; Rodriguez-Agirretxe, I.; Aloria, K.; Arizmendi, J.M.; Morales, C.; Duran, J.A. Changes in tear protein profile in keratoconus disease. Eye 2011, 25, 1225–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pannebaker, C.; Chandler, H.L.; Nichols, J.J. Tear proteomics in keratoconus. Mol. Vis. 2010, 16, 1949–1957. [Google Scholar]
- Yenihayat, F.; Altintas, O.; Kasap, M.; Akpinar, G.; Guzel, N.; Celik, O.S. Comparative proteome analysis of the tear samples in patients with low-grade keratoconus. Int. Ophthalmol. 2018, 38, 1895–1905. [Google Scholar] [CrossRef] [PubMed]
- Kishazi, E.; Dor, M.; Eperon, S.; Oberic, A.; Hamedani, M.; Turck, N. Thyroid-associated orbitopathy and tears: A proteomics study. J. Proteom. 2018, 170, 110–116. [Google Scholar] [CrossRef]
- Jiang, L.; Rong, A.; Wei, R.; Diao, J.; Ding, H.; Wang, W. Tear proteomics of orbital decompression for disfiguring exophthalmos in inactive thyroid-associated ophthalmopathy. Exp. Ther. Med. 2020, 20, 253. [Google Scholar] [CrossRef] [PubMed]
- Potvin, R.; Makari, S.; Rapuano, C.J. Tear film osmolarity and dry eye disease: A review of the literature. Clin. Ophthalmol. 2015, 9, 2039–2047. [Google Scholar] [CrossRef] [Green Version]
- McKay, T.B.; Serjersen, H.; Hjortdal, J.; Zieske, J.D.; Karamichos, D. Characterization of Tear Immunoglobulins in a Small-Cohort of Keratoconus Patients. Sci. Rep. 2020, 10, 9426. [Google Scholar] [CrossRef]
- Janssen, P.T.; van Bijsterveld, O.P. Origin and biosynthesis of human tear fluid proteins. Invest. Ophthalmol. Vis. Sci. 1983, 24, 623–630. [Google Scholar]
- Jha, P.; Bora, P.S.; Bora, N.S. The role of complement system in ocular diseases including uveitis and macular degeneration. Mol. Immunol. 2007, 44, 3901–3908. [Google Scholar] [CrossRef] [Green Version]
- Gordon, S.M.; Hofmann, S.; Askew, D.S.; Davidson, W.S. High density lipoprotein: It’s not just about lipid transport anymore. Trends Endocrinol. Metab. TEM 2011, 22, 9–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pownall, H.J. Rethinking apolipoprotein A-II in lipid metabolism. Am. J. Clin. Nutr. 2018, 108, 4–5. [Google Scholar] [CrossRef] [PubMed]
- Nyunt, A.K.; Ishida, Y.; Yu, Y.; Shimada, S. Topical apolipoprotein A-1 may have a beneficial effect on the corneal epithelium in a mouse model of dry eye: A pilot study. Eye Contact Lens 2008, 34, 287–292. [Google Scholar] [CrossRef]
- Li, B.; Sheng, M.; Xie, L.; Liu, F.; Yan, G.; Wang, W.; Lin, A.; Zhao, F.; Chen, Y. Tear proteomic analysis of patients with type 2 diabetes and dry eye syndrome by two-dimensional nano-liquid chromatography coupled with tandem mass spectrometry. Invest. Ophthalmol. Vis. Sci. 2014, 55, 177–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palaniappan, C.K.; Schütt, B.S.; Bräuer, L.; Schicht, M.; Millar, T.J. Effects of Keratin and Lung Surfactant Proteins on the Surface Activity of Meibomian Lipids. Investig. Ophthalmol. Vis. Sci. 2013, 54, 2571–2581. [Google Scholar] [CrossRef] [Green Version]
- Jester, J.V.; Parfitt, G.J.; Brown, D.J. Meibomian gland dysfunction: Hyperkeratinization or atrophy? BMC Ophthalmol. 2015, 15 (Suppl. 1), 156. [Google Scholar] [CrossRef] [Green Version]
- Sellers, J.R. Myosins: A diverse superfamily. Biochim. Biophys. Acta 2000, 1496, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Rudolf, R.; Bittins, C.M.; Gerdes, H.H. The role of myosin V in exocytosis and synaptic plasticity. J. Neurochem. 2011, 116, 177–191. [Google Scholar] [CrossRef]
- Papadopulos, A. Membrane shaping by actin and myosin during regulated exocytosis. Mol. Cell. Neurosci. 2017, 84, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Samuels, I.S.; Bell, B.A.; Sturgill-Short, G.; Ebke, L.A.; Rayborn, M.; Shi, L.; Nishina, P.M.; Peachey, N.S. Myosin 6 is required for iris development and normal function of the outer retina. Invest. Ophthalmol. Vis. Sci. 2013, 54, 7223–7233. [Google Scholar] [CrossRef] [Green Version]
- Perumal, N.; Funke, S.; Pfeiffer, N.; Grus, F.H. Proteomics analysis of human tears from aqueous-deficient and evaporative dry eye patients. Sci. Rep. 2016, 6, 29629. [Google Scholar] [CrossRef]
- Artym, J. The role of lactoferrin in the iron metabolism. Part II. Antimicrobial and antiinflammatory effect of lactoferrin by chelation of iron. Postepy Hig. Med. Dosw. Online 2010, 64, 604–616. [Google Scholar] [PubMed]
- Vagge, A.; Senni, C.; Bernabei, F.; Pellegrini, M.; Scorcia, V.; Traverso, C.E.; Giannaccare, G. Therapeutic Effects of Lactoferrin in Ocular Diseases: From Dry Eye Disease to Infections. Int. J. Mol. Sci. 2020, 21, 6668. [Google Scholar] [CrossRef] [PubMed]
- Masoudi, S.; Stapleton, F.J.; Willcox, M.D. Contact Lens-Induced Discomfort and Protein Changes in Tears. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 2016, 93, 955–962. [Google Scholar] [CrossRef]
- Glasgow, B.J.; Gasymov, O.K. Focus on Molecules: Tear lipocalin. Exp. Eye Res. 2011, 92, 242–243. [Google Scholar] [CrossRef] [Green Version]
- Hammam, N.; Gamal, N.M.; Elzohri, M.H.; Elsonbaty, A.M.; Rashed, A.M.; Eldaly, Z.H.; Tarik, D.; Gheita, T.A. Serum 14-3-3η protein is associated with clinical and serologic features of Sjögren’s syndrome in patients with systemic lupus erythematosus: A cross-sectional analysis. Clin. Rheumatol. 2020, 39, 2603–2610. [Google Scholar] [CrossRef]
- Engler, R. Acute-phase proteins in inflammation. Comptes Rendus Seances Soc. Biol. Ses Fil. 1995, 189, 563–578. [Google Scholar]
- Eidet, J.R.; Jørstad, Ø.K.; Fostad, I.G.; Olstad, O.K.; Sørland, R.Ø.; Moe, M.C.; Petrovski, G.; Pepaj, M. Unilateral acute anterior uveitis is associated with ipsilateral changes in the tear fluid proteome that involves the LXR/RXR pathway. J. Ophthalmic Inflamm. Infect. 2020, 10, 13. [Google Scholar] [CrossRef]
- Nattinen, J.; Aapola, U.; Jylha, A.; Vaajanen, A.; Uusitalo, H. Comparison of Capillary and Schirmer Strip Tear Fluid Sampling Methods Using SWATH-MS Proteomics Approach. Transl. Vis. Sci. Technol. 2020, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- Tukey, J.W. Exploratory Data Analysis; Addison-Wesley: Boston, MA, USA, 1977; Volume 2. [Google Scholar]
- Hagan, S.; Martin, E.; Enríquez-de-Salamanca, A. Tear fluid biomarkers in ocular and systemic disease: Potential use for predictive, preventive and personalised medicine. EPMA J. 2016, 7, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Almeida Borges, D.; Alborghetti, M.R.; Franco Paes Leme, A.; Ramos Domingues, R.; Duarte, B.; Veiga, M.; Trindade Ferrer, M.; Viana Wanzeler, A.C.; Leite Arieta, C.E.; Alves, M. Tear proteomic profile in three distinct ocular surface diseases: Keratoconus, pterygium, and dry eye related to graft-versus-host disease. Clin. Proteom. 2020, 17, 42. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.T.; Zhou, L.; Li, J.; Tong, L.; Zhao, S.Z.; Li, X.R.; Yu, S.J.; Koh, S.K.; Beuerman, R.W. Proteomic profiling of inflammatory signaling molecules in the tears of patients on chronic glaucoma medication. Invest. Ophthalmol. Vis. Sci. 2011, 52, 7385–7391. [Google Scholar] [CrossRef] [PubMed]
Sample ID | Age | Sex | Race |
---|---|---|---|
S1 | 27 | F | White |
S2 | 50 | F | Other |
S3 | 30 | F | Other |
S4 | 22 | M | White |
S5 | 40 | M | Other |
S6 | 27 | F | White |
S7 | 21 | F | White |
S8 | 45 | M | Other |
S9 | 25 | F | White |
S10 | 26 | F | White |
S11 | 22 | F | White |
Number of Unique Proteins Identified | Method A | Method B | ||
---|---|---|---|---|
CID | HCD | CID | HCD | |
High (detected in >75% of samples) | 122 | 112 | 178 | 182 |
Medium (detected in 50–75% of samples) | 92 | 90 | 153 | 147 |
Low (detected in 25–50% of samples) | 248 | 258 | 366 | 373 |
Rare (detected in 5–25% of samples) | 2237 | 2310 | 2596 | 2668 |
Total | 2699 | 2770 | 3293 | 3370 |
S. No. | UniProt ID | Gene Symbol | Description | Mean PSM |
---|---|---|---|---|
1 | P02788 | LTF | Lactotransferrin | 2802.91 |
2 | P31025 | LCN1 | Lipocalin-1 | 1300.64 |
3 | P02768 | ALB | Albumin | 874.18 |
4 | P12273 | PIP | Prolactin-inducible protein | 572.46 |
5 | P01876 | IGHA1 | Immunoglobulin heavy constant alpha 1 | 386.19 |
6 | P61626 | LYZ | Lysozyme C | 380.45 |
7 | P01833 | PIGR | Polymeric immunoglobulin receptor | 275.36 |
8 | Q9GZZ8 | LACRT | Extracellular glycoprotein lacritin | 263.91 |
9 | P01834 | IGKC | Immunoglobulin kappa constant | 230.09 |
10 | P0DOX2 | IGA2 | Immunoglobulin alpha-2 heavy chain | 212.87 |
11 | P25311 | AZGP1 | Zinc-alpha-2-glycoprotein | 203.00 |
12 | P0DOX7 | IGK | Immunoglobulin kappa light chain | 189.36 |
13 | P01036 | CST4 | Cystatin-S | 185.90 |
14 | O75556 | SCGB2A1 | Mammaglobin-B | 137.72 |
15 | Q16378 | PRR4 | Proline-rich protein 4 | 130.54 |
16 | P01037 | CST1 | Cystatin-SN | 115.40 |
17 | P19013 | KRT4 | Keratin, type II cytoskeletal 4 | 100.11 |
18 | Q99935 | OPRPN | Opiorphin prepropeptide | 97.72 |
19 | P60709 | ACTB | Actin, cytoplasmic 1 | 97.63 |
20 | P06733 | ENO1 | Alpha-enolase | 96.63 |
21 | P04083 | ANXA1 | Annexin A1 | 95.45 |
22 | Q9UGM3 | DMBT1 | Deleted in malignant brain tumors 1 protein | 86.00 |
23 | P01024 | C3 | Complement C3 | 80.54 |
24 | P02787 | TF | Serotransferrin | 78.72 |
25 | B9A064 | IGLL5 | Immunoglobulin lambda-like polypeptide 5 | 76.11 |
26 | Q8N3C0 | ASCC3 | Activating signal cointegrator 1 complex subunit 3 | 73.45 |
27 | P0DOX5 | IGG1 | Immunoglobulin gamma-1 heavy chain | 73.00 |
28 | P0DOY2 | IGLC2 | Immunoglobulin lambda constant 2 | 70.18 |
29 | P13646 | KRT13 | Keratin, type I cytoskeletal 13 | 70.11 |
30 | P08727 | KRT19 | Keratin, type I cytoskeletal 19 | 66.00 |
31 | P13647 | KRT5 | Keratin, type II cytoskeletal 5 | 56.00 |
32 | P09211 | GSTP1 | Glutathione S-transferase P | 51.18 |
33 | P68032 | ACTC1 | Actin, alpha cardiac muscle 1 | 48.10 |
34 | P09228 | CST2 | Cystatin-SA | 47.71 |
35 | P01860 | IGHG3 | Immunoglobulin heavy constant gamma 3 | 47.14 |
36 | P14618 | PKM | Pyruvate kinase PKM | 46.54 |
37 | P01591 | JCHAIN | Immunoglobulin J chain | 46.00 |
38 | P98160 | HSPG2 | Heparan sulfate proteoglycan core protein | 45.72 |
39 | P07355 | ANXA2 | Annexin A2 | 44.81 |
40 | P0DOX6 | IGM | Immunoglobulin mu heavy chain | 44.28 |
41 | P21980 | TGM2 | Protein-glutamine gamma-glutamyltransferase 2 | 43.00 |
42 | P01871 | IGHM | Immunoglobulin heavy constant mu | 41.90 |
43 | P30740 | SERPINB1 | Leukocyte elastase inhibitor | 40.54 |
44 | P98088 | MUC5AC | Mucin-5AC | 40.33 |
45 | P02538 | KRT6A | Keratin, type II cytoskeletal 6A | 40.33 |
46 | P00450 | CP | Ceruloplasmin | 40.18 |
47 | P00352 | ALDH1A1 | Aldehyde dehydrogenase 1A1 | 40.18 |
48 | P01861 | IGHG4 | Immunoglobulin heavy constant gamma 4 | 40.00 |
49 | P01859 | IGHG2 | Immunoglobulin heavy constant gamma 2 | 37.90 |
50 | P08729 | KRT7 | Keratin, type II cytoskeletal 7 | 37.14 |
Families | Group | Count | Proteins | |||||
---|---|---|---|---|---|---|---|---|
Immunoglobulin | High | 17 | IGHV4-59 | IGHV5-51 | JCHAIN | IGHA1 | IGHM | IGKC |
IGKV1D-33 | IGHG2 | IGLV3-9 | IGKV1-8 | IGLC2 | IGK | |||
IGKV2D-29 | IGKV3-15 | IGHV3-7 | IGKV4-1 | IGLL5 | ||||
Medium | 8 | IGA2 | IGKV3-20 | IGHV6-1 | IGG1 | IGHG3 | IGHG4 | |
IGM | IGLV1-47 | |||||||
Low | 7 | IGKV3D-11 | IGKV3-11 | IGHV3-15 | IGHV3-9 | IGHA2 | IGHG1 | |
IGKV3D-20 | ||||||||
Rare | 29 | IGHV1-69D | IGKV1D-8 | IGHV3-72 | IGHV3-74 | IGHV3-49 | IGHV3-33 | |
IGKV6D-21 | IGLC1 | IGLV1-40 | IGLV1-44 | IGLV6-57 | IGSF22 | |||
IGHV3-64D | IGHV1-18 | IGHV2-26 | IGHV3-64 | IGD | IGHV4-28 | |||
IGHV5-10-1 | IGKV5-2 | IGKV3D-15 | IGKV1-16 | IGKV1-17 | IGKV1-6 | |||
IGKV1D-13 | IGLV3-19 | IGLL1 | IGSF10 | |||||
Keratin | High | 7 | KRT10 | KRT9 | KRT1 | KRT2 | KRT13 | KRT19 |
KRT4 | ||||||||
Medium | 5 | KRT14 | KRT5 | KRT7 | KRT6A | KRT8 | ||
Low | 2 | KRT18 | KRT3 | |||||
Rare | 12 | KRT15 | KRT82 | KRT85 | KRT78 | KRT31 | KRT34 | |
KRTAP5-1 | KRT17 | KRT23 | KRT83 | KRT86 | KRT36 | |||
Complement | High | 2 | C3 | CFB | ||||
Medium | 2 | C4A | CD55 | |||||
Low | 3 | C1QTNF4 | C1QB | CFH | ||||
Rare | 10 | CFHR1 | C1QTNF2 | C9 | C1RL | C1S | C4B | |
C7 | CFHR5 | CFI | CR1 | |||||
Myosin | High | 4 | MYL6 | MYH14 | MYL12A | MYH8 | ||
Medium | 1 | MYH9 | ||||||
Low | 3 | MYO3A | MYH13 | MYH10 | ||||
Rare | 7 | MYH15 | MYL1 | MYLK4 | MYLK | MYH2 | MYH7 | |
MYH7B | ||||||||
Apolipoprotein | High | 2 | APOA1 | APOA2 | ||||
Medium | 0 | |||||||
Low | 2 | APOD | APOB | |||||
Rare | 7 | APOA4 | APOC3 | APOL1 | APOC2 | APOE | APOF | |
LPA | ||||||||
Heat shock | High | 4 | HSPA1A | HSPB1 | HSP90AA1 | HSPA8 | ||
Medium | 1 | HSPA4 | ||||||
Low | 1 | HSP90AB1 | ||||||
Rare | 4 | HSP90AA2P | HSPA13 | HSPA1L | TRAP1 | |||
Protein s100 | High | 4 | S100A11 | S100A4 | S100A8 | S100A9 | ||
Medium | 0 | |||||||
Low | 0 | |||||||
Rare | 5 | S100A10 | S100A14 | S100A7L2 | S100A2 | S100A7 | ||
Mucin | High | 1 | MUC5AC | |||||
Medium | 0 | |||||||
Low | 1 | MUC16 | ||||||
Rare | 6 | MUC12 | MUC17 | MUC19 | MUC2 | MUC5B | MUC6 | |
Annexin | High | 5 | ANXA1 | ANXA2 | ANXA5 | ANXA3 | ANXA4 | |
Medium | 1 | ANXA11 | ||||||
Low | 0 | |||||||
Rare | 2 | ANXA10 | ANXA8L1 | |||||
14-3-3 | High | 4 | YWHAB | YWHAZ | YWHAE | SFN | ||
Medium | 1 | YWHAG | ||||||
Low | 1 | YWHAQ | ||||||
Rare | 1 | YWHAH | ||||||
Cystatin | High | 4 | CSTB | CST3 | CST4 | CST1 | ||
Medium | 1 | CST2 | ||||||
Low | 1 | CST5 | ||||||
Rare | 0 | |||||||
Peroxiredoxin | High | 4 | PRDX1 | PRDX5 | PRDX6 | PRDX2 | ||
Medium | 0 | |||||||
Low | 0 | |||||||
Rare | 1 | PRDX4 |
GO ID | GO Term | # of Proteins | p-Value |
---|---|---|---|
Biological Processes | |||
GO:0052548 | Regulation of endopeptidase activity | 42 | 1.43 × 10−22 |
GO:0006508 | Proteolysis | 79 | 3.50 × 10−20 |
GO:0006950 | Response to stress | 122 | 6.75 × 10−19 |
GO:0051336 | Regulation of hydrolase activity | 58 | 6.83 × 10−19 |
GO:0009605 | Response to external stimulus | 90 | 8.18 × 10−14 |
GO:0006952 | Defense response | 66 | 1.67 × 10−13 |
GO:0007010 | Cytoskeleton organization | 59 | 1.96 × 10−13 |
GO:0042592 | Homeostatic process | 65 | 4.36 × 10−12 |
GO:0010941 | Regulation of cell death | 61 | 8.42 × 10−12 |
GO:0098542 | Defense response to other organism | 44 | 1.09 × 10−09 |
GO:0009617 | Response to bacterium | 35 | 1.21 × 10−09 |
GO:0006915 | Apoptotic process | 62 | 1.26 × 10−09 |
GO:0006954 | Inflammatory response | 36 | 2.09 × 10−09 |
GO:0051050 | Positive regulation of transport | 38 | 4.16 × 10−09 |
GO:0022610 | Biological adhesion | 51 | 1.20 × 10−08 |
GO:0006793 | Phosphorus metabolic process | 76 | 1.41 × 10−08 |
Cellular Components | |||
GO:0070062 | Extracellular exosome | 224 | 1.41 × 10−152 |
GO:1903561 | Extracellular vesicle | 224 | 1.74 × 10−148 |
GO:0005576 | Extracellular region | 244 | 1.35 × 10−104 |
GO:0072562 | Blood microparticle | 36 | 4.77 × 10−34 |
GO:0101002 | Ficolin-1-rich granule | 34 | 1.36 × 10−27 |
GO:0070161 | Anchoring junction | 55 | 3.09 × 10−21 |
GO:0005764 | Lysosome | 42 | 1.89 × 10−14 |
GO:0005773 | Vacuole | 44 | 6.14 × 10−14 |
GO:0030054 | Cell junction | 70 | 1.84 × 10−11 |
Molecular Functions | |||
GO:0061135 | Endopeptidase regulator activity | 31 | 2.56 × 10−23 |
GO:0061134 | Peptidase regulator activity | 33 | 3.18 × 10−23 |
GO:0050839 | Cell adhesion molecule binding | 44 | 1.80 × 10−20 |
GO:0045296 | Cadherin binding | 35 | 4.47 × 10−20 |
GO:0030234 | Enzyme regulator activity | 63 | 1.35 × 10−18 |
GO:0008289 | Lipid binding | 36 | 1.77 × 10−09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, G.; Lee, T.J.; Glass, J.; Rountree, G.; Ulrich, L.; Estes, A.; Sezer, M.; Zhi, W.; Sharma, S.; Sharma, A. Comparison of Different Mass Spectrometry Workflows for the Proteomic Analysis of Tear Fluid. Int. J. Mol. Sci. 2022, 23, 2307. https://doi.org/10.3390/ijms23042307
Jones G, Lee TJ, Glass J, Rountree G, Ulrich L, Estes A, Sezer M, Zhi W, Sharma S, Sharma A. Comparison of Different Mass Spectrometry Workflows for the Proteomic Analysis of Tear Fluid. International Journal of Molecular Sciences. 2022; 23(4):2307. https://doi.org/10.3390/ijms23042307
Chicago/Turabian StyleJones, Garrett, Tae Jin Lee, Joshua Glass, Grace Rountree, Lane Ulrich, Amy Estes, Mary Sezer, Wenbo Zhi, Shruti Sharma, and Ashok Sharma. 2022. "Comparison of Different Mass Spectrometry Workflows for the Proteomic Analysis of Tear Fluid" International Journal of Molecular Sciences 23, no. 4: 2307. https://doi.org/10.3390/ijms23042307
APA StyleJones, G., Lee, T. J., Glass, J., Rountree, G., Ulrich, L., Estes, A., Sezer, M., Zhi, W., Sharma, S., & Sharma, A. (2022). Comparison of Different Mass Spectrometry Workflows for the Proteomic Analysis of Tear Fluid. International Journal of Molecular Sciences, 23(4), 2307. https://doi.org/10.3390/ijms23042307