Comparison of L- and D-Amino Acids for Bacterial Imaging in Lung Infection Mouse Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain and Culture Conditions
2.2. Human Cell Line and Culture Conditions
2.3. Accumulation of 3H-L- and D-Met and Ala in E. coli EC-14
2.4. Accumulation of 3H-L- and D-Met and Ala in HaCaT Cells
2.5. E. coli EC-14 Lung-Infection-Model Mice
2.6. Biological Distribution of E. coli EC-14 Lung-Infection-Model Mice Using 3H-L-Met, 3H-D-Met, and 18F-FDG
3. Results
3.1. Accumulation of 3H-L- and D-Met and -Ala in E. coli EC-14
3.2. Accumulation of 3H-L- and D-Met and -Ala in E. coli EC-14 and HaCaT Cells
3.3. Growth Curve of E. coli EC-14 in Lung of Lung-Infection-Model Mice
3.4. Biological Distribution of 3H-L-Met, 3H-D-Met, and 18F-FDG in EC-14 Lung-Infection-Model Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Tsuzuki, S.; Matsunaga, N.; Yahara, K.; Gu, Y.; Hayakawa, K.; Hirabayashi, A.; Kajihara, T.; Sugai, M.; Shibayama, K.; Ohmagari, N. National trend of blood-stream infection attributable deaths caused by Staphylococcus aureus and Escherichia coli in Japan. J. Infect. Chemother. 2020, 26, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Van Oosten, M.; Hahn, M.; Crane, L.M.; Pleijhuis, R.G.; Francis, K.P.; van Diji, J.M.; van Dam, G.M. Targeted imaging of bacterial infections: Advances, hurdles and hopes. FEMS Microbiol. Rev. 2015, 39, 892–916. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, S.; Barnett, T.C.; Rivera-Hernandez, T.; Rohde, M.; Walker, M.J. Streptococcus pyogenes adhesion and colonization. FEBS Lett. 2016, 590, 3739–3757. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Angus, D.C.; van der Poll, T. Severe sepsis and septic shock. N. Engl. J. Med. 2013, 369, 840–851. [Google Scholar] [CrossRef]
- Lagier, J.C.; Edouard, S.; Pagnier, I.; Mediannikov, O.; Drancourt, M.; Raoult, D. Current and past strategies for bacterial culture in clinical microbiology. Clin. Microbiol. Rev. 2015, 28, 208–236. [Google Scholar] [CrossRef] [Green Version]
- Paolucci, M.; Landimi, M.P.; Sambri, V. Conventional and molecular techniques for the early diagnosis of bacteraemia. Int. J. Antimicrob. Agents. 2010, 36, S6–S16. [Google Scholar] [CrossRef] [Green Version]
- Signore, A.; Artiko, V.; Conserva, M.; Ferro-Flores, G.; Welling, M.; Jain, S.; Hess, S.; Sathekge, M. Imaging Bacteria with Radiolabelled Probes: Is It Feasible? J. Clin. Med. 2020, 9, 2372. [Google Scholar] [CrossRef]
- Mota, F.; Ordonez, A.A.; Firth, G.; Ruiz-Bedoya, C.A.; Ma, M.T.; Jain, S.K. Radiotracer Development for Bacterial Imaging. J. Med. Chem. 2020, 63, 1964–1977. [Google Scholar] [CrossRef]
- Kato, T.; Shinoda, J.; Nakayama, N.; Miwa, K.; Okumura, A.; Yano, H.; Yoshimura, S.; Maruyama, T.; Muragaki, Y.; Iwama, T. Metabolic assessment of gliomas using 11C-methionine, [18F] fluorodeoxyglucose, and 11C-choline positron-emission tomography AJNR Am. J. Neuroradiol. 2008, 29, 1176–1182. [Google Scholar] [CrossRef] [Green Version]
- Love, C.; Tomas, M.B.; Tronco, G.G.; Palestro, C.J. FDG PET of infection and inflammation. Radiographics 2005, 25, 1357–1368. [Google Scholar] [CrossRef] [Green Version]
- Neumann, K.D.; Villanueva-Meyer, J.E.; Mutch, C.A.; Flavell, R.R.; Blecha, J.E.; Kwak, T.; Sriram, R.; VanBrocklin, H.F.; Rosenberg, O.S.; Ohliger, M.A.; et al. Imaging active infection in vivo using D-amino acid derived PET radiotracers. Sci. Rep. 2017, 7, 7903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnet, M.; Lagier, J.C.; Raoult, D.; Khelaifia, S. Bacterial culture through selective and non-selective conditions: The evolution of culture media in clinical microbiology. New Microbes New Infect. 2020, 30, 100622. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, W.; Blanot, D.; de Pedro, M.A. Peptidoglycan structure and architecture. FEMS Microbiol Rev. 2008, 32, 149–167. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M.; Mizutani, A.; Nishii, K.; Nakajima, S.; Shikano, N.; Nishii, R.; Fukuchi, K.; Kawai, K. Differences in accumulation and the transport mechanism of L- and D-methionine in high- and low-grade human glioma cells. Nucl. Med. Biol. 2017, 44, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Hashimoto, F.; Ohe, K.; Nadamura, T.; Nishi, K.; Shikano, N.; Nishii, R.; Higashi, T.; Okazawa, H.; Kawai, K. Transport mechanism of 11C-labeled L-and D-methionine in human-derived tumor cells. Nucl. Med. Biol. 2012, 39, 1213–1218. [Google Scholar] [CrossRef]
- Kagawa, S.; Nishii, R.; Higashi, T.; Yamauchi, H.; Ogawa, E.; Okudaira, H.; Kobayashi, M.; Yoshimoto, M.; Shikano, N.; Kawai, K. Relationship between [14C]MeAIB uptake and amino acid transporter family gene expression levels or proliferative activity in a pilot study in human carcinoma cells: Comparison with [3H]methionine uptake. Nucl. Med. Biol. 2017, 49, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Boukamp, P.; Petrussevska, R.T.; Breitkreutz, D.; Hornung, J.; Markham, A.; Fusenig, N.E. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 1988, 106, 761–771. [Google Scholar] [CrossRef] [Green Version]
- Aliashkevich, A.; Alvarez, L.; Cava, F. New insights into the mechanisms and biological roles of D-amino acids in complex eco-systems. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Lam, H.; Oh, D.C.; Cava, F.; Takacs, C.N.; Clardy, J.; de Pedro, M.A.; Waldor, M.K. D-amino acids govern stationary phase cell wall remodeling in bacteria. Science 2009, 18, 1552–1555. [Google Scholar] [CrossRef] [Green Version]
- Cava, F.; Lam, H.; de Pedro, M.A.; Waldor, M.K. Emerging knowledge of regulatory roles of D-amino acids in bacteria. Cell Mol. Life Sci. 2011, 68, 817–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radkov, A.D.; Moe, L.A. Bacterial synthesis of D-amino acids. applied microbiology and biotechnology. Appl. Microbiol. Biotechnol. 2014, 98, 5363–5374. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Santoni-Rugiu, E.; Ralfkiaer, E.; Porse, B.T.; Moser, C.; Høiby, N.; Borregaard, N.; Cowland, J.B. Lipocalin 2 is protective against E. coli pneumonia. Respir. Res. 2010, 11, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietert, K.; Gutbier, B.; Wienhold, S.M.; Reppe, K.; Jiang, X.; Yao, L.; Chaput, C.; Naujoks, J.; Brack, M.; Kupke, A.; et al. Spectrum of pathogen-and model-specific histopathologies in mouse models of acute pneumonia. PLoS ONE 2017, 12, e0188251. [Google Scholar] [CrossRef]
- Casali, M.; Lauri, C.; Altini, C.; Bertagna, F.; Cassarino, G.; Cistaro, A.; Erba, A.P.; Ferrari, C.; Mainolfi, C.G.; Palucci, A.; et al. State of the art of 18F-FDG PET/CT application in inflammation and infection: A guide for image acquisition and interpretation. Clin. Transl. Imaging 2021, 9, 299–339. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Tsujikawa, T.; Kondo, C.; Maki, M.; Momose, M.; Nagai, M.; Ohnuki, T.; Nishikawa, T.; Kusakabe, K. Accuracy of PET for Diagnosis of Solid Pulmonary Lesions with 18F-FDG Uptake Below the Standardized Uptake Value of 2.5. J. Nucl. Med. 2006, 47, 426–431. [Google Scholar]
Time after 3H-L-Met Injection | 15 min | 60 min | 15 min | 60 min | 15 min | 60 min |
---|---|---|---|---|---|---|
Organ (%ID/g) | Control | 4 h after Infection | 24 h after Infection | |||
Blood | 0.50 ± 0.18 | 0.50 ± 0.43 | 1.61 ± 0.82 * | 1.51±0.07 † | 2.74 ± 0.86 † | 1.24 ± 0.86 * |
Heart | 1.65 ± 0.74 | 1.89 ± 0.31 | 2.96 ± 0.96 | 3.74± 0.10 † | 1.35 ± 0.19 | 1.40 ± 0.27 |
Lung | 1.49 ± 0.19 | 1.57 ± 0.26 | 4.16 ± 0.60 † | 4.06 ± 0.12 † | 3.13 ± 1.09 * | 2.47 ± 0.10 † |
Liver | 1.66 ± 0.53 | 2.09 ± 0.84 | 3.16 ± 0.20 † | 4.74 ± 0.14 † | 6.19 ± 0.93 † | 9.43 ± 0.82 † |
Spleen | 1.39 ± 0.57 | 2.47 ± 0.63 | 7.06 ± 1.81 † | 6.09 ± 2.79 * | 3.01 ± 0.55 † | 3.23 ± 1.81 |
Pancreas | 4.29 ± 4.68 | 12.47 ± 4.68 | 22.01 ± 6.38 † | 21.69 ± 3.40 * | 14.39 ± 2.53 † | 11.94 ± 0.94 |
Kidney | 1.67 ± 0.62 | 3.17 ± 0.49 | 5.13 ± 2.83 * | 5.92± 0.73 † | 5.15 ± 0.40 † | 4.43 ± 0.72 * |
Brain | 4.10 ± 4.61 | 0.51 ± 0.10 | 2.80 ± 3.39 | 1.11 ± 0.48 | 1.41 ± 0.17 | 1.36 ± 0.18 † |
Bladder | 0.20 ± 0.17 | 0.35 ± 0.27 | 0.55 ± 0.36 | 1.15± 0.42 * | 0.46 ± 0.41 | 0.46 ± 0.41 * |
Lung/heart | 1.03 ± 0.39 | 0.83 ± 0.03 | 1.51 ± 0.51 | 1.09 ± 0.02 † | 2.27 ± 0.47 † | 1.82 ± 0.41 † |
Lung/liver | 0.94 ± 0.20 | 0.85 ± 0.38 | 1.32 ± 0.20 * | 0.86 ± 0.03 | 0.50 ± 0.13 * | 0.26 ± 0.04 * |
Infected lung /control lung | – | – | 2.80 | 2.58 | 2.11 | 1.57 |
Time after 3H-D-Met Injection | 15 min | 60 min | 15 min | 60 min | 15 min | 60 min |
---|---|---|---|---|---|---|
Organ (%ID/g) | Control | 4 h after Infection | 24 h after Infection | |||
Blood | 0.34 ± 0.14 | 0.27 ± 0.07 | 1.71 ± 0.17 † | 1.09 ± 0.08 † | 2.54 ± 0.83 † | 2.27 ± 0.66 † |
Heart | 1.01 ± 0.25 | 0.92 ± 0.31 | 2.32 ± 0.07 † | 2.18 ± 0.38 † | 1.25 ± 0.09 | 1.28 ± 0.30 |
Lung | 1.01 ± 0.10 | 1.02 ± 0.33 | 2.87 ± 0.28 † | 2.52 ± 0.55 † | 2.34 ± 0.09 † | 2.34 ± 0.62 † |
Liver | 1.14 ± 0.13 | 1.64 ± 0.80 | 3.01 ± 0.26 † | 3.80 ± 0.26 † | 4.32 ± 0.24 † | 7.12 ± 0.75 † |
Spleen | 1.29 ± 0.25 | 2.01 ± 0.30 | 4.70 ± 0.37 † | 6.78 ± 2.16 † | 2.06 ± 0.42 * | 4.05 ± 1.12 * |
Pancreas | 7.70 ± 1.25 | 8.77 ± 3.45 | 19.14 ± 2.18 † | 16.56 ± 4.03 * | 12.07 ± 1.57 † | 15.68 ± 3.51 * |
Kidney | 3.36 ± 0.89 | 3.10 ± 0.42 | 8.79 ± 0.67 † | 8.15 ± 1.26 † | 9.11 ± 1.55 † | 10.25 ± 1.43 † |
Brain | 0.44 ± 0.06 | 0.59 ± 0.13 | 1.21 ± 0.17 † | 1.28 ± 0.36 * | 0.92 ± 0.15 † | 1.60 ± 0.15 † |
Bladder | 0.62 ± 0.36 | 0.70 ± 0.49 | 1.94 ± 0.41 † | 0.69 ± 0.13 | 2.01 ± 0.85 * | – |
Lung/heart | 1.06 ± 0.33 | 1.20 ± 0.50 | 1.24 ± 0.14 | 1.17 ± 0.23 | 1.88 ± 0.18 † | 1.88 ± 0.52 |
Lung/liver | 0.91 ± 0.20 | 0.68 ± 0.24 | 0.96 ± 0.10 | 0.67 ± 0.18 | 0.54 ± 0.03 * | 0.33 ± 0.10 * |
Infected lung /control lung | – | – | 2.84 | 2.48 | 2.31 | 2.30 |
Time after 18F-FDG Injection | 15 min | 60 min | 15 min | 60 min | 15 min | 60 min |
---|---|---|---|---|---|---|
Organ (%ID/g) | Control | 4 h after Infection | 24 h after Infection | |||
Blood | 1.98 ± 0.58 | 0.45 ± 0.09 | 1.84 ± 0.85 | 0.41 ± 0.06 | 2.59 ± 0.72 | 0.49 ± 0.15 |
Heart | 13.14 ± 7.34 | 11.23 ± 6.51 | 18.28 ± 8.61 | 17.07 ± 7.99 | 5.72 ± 3.23 * | 9.85 ± 5.13 |
Lung | 3.41 ± 0.34 | 3.57 ± 0.80 | 4.58 ± 0.91 † | 3.99 ± 0.71 | 7.82 ± 1.21 † | 9.31 ± 1.79 † |
Liver | 2.85 ± 1.39 | 0.99 ± 0.21 | 2.47 ± 0.54 | 0.89 ± 0.13 | 4.65 ± 0.94 † | 2.34 ± 1.04 † |
Spleen | 2.68 ± 0.68 | 3.42 ± 0.47 | 3.44 ± 0.63 * | 3.53 ± 1.24 | 5.92 ± 2.90 † | 9.86 ± 6.01 † |
Pancreas | 2.42 ± 1.57 | 1.69 ± 0.31 | 1.64 ± 0.30 | 1.61 ± 0.11 | 2.66 ± 1.79 | 2.16 ± 0.35 * |
Kidney | 5.97 ± 3.73 | 1.90 ± 0.51 | 5.40 ± 2.77 | 3.30 ± 1.82 | 6.69 ± 0.74 | 3.14 ± 0.54 † |
Brain | 5.12 ± 2.35 | 6.39 ± 1.03 | 6.97 ± 1.46 | 5.11 ± 1.49 | 12.46 ± 1.53 † | 11.51 ± 2.78 † |
Bladder | 1.50 ± 0.84 | 2.04 ± 1.19 | 1.86 ± 0.87 | 1.76 ± 1.13 | 1.67 ± 1.13 | - |
Lung/heart | 0.36 ± 0.22 | 0.43 ± 0.33 | 0.36 ± 0.34 | 0.30 ± 0.18 | 1.72 ± 0.76 † | 1.15 ± 0.52 † |
Lung/liver | 1.34 ± 0.37 | 3.86 ± 1.60 | 1.88 ± 0.31 † | 4.52 ± 0.84 | 1.71 ± 0.23 * | 4.49 ± 1.49 |
Infected lung /control lung | - | - | 1.34 | 1.12 | 2.29 | 2.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muranaka, Y.; Mizutani, A.; Kobayashi, M.; Nakamoto, K.; Matsue, M.; Nishi, K.; Yamazaki, K.; Nishii, R.; Shikano, N.; Okamoto, S.; et al. Comparison of L- and D-Amino Acids for Bacterial Imaging in Lung Infection Mouse Model. Int. J. Mol. Sci. 2022, 23, 2467. https://doi.org/10.3390/ijms23052467
Muranaka Y, Mizutani A, Kobayashi M, Nakamoto K, Matsue M, Nishi K, Yamazaki K, Nishii R, Shikano N, Okamoto S, et al. Comparison of L- and D-Amino Acids for Bacterial Imaging in Lung Infection Mouse Model. International Journal of Molecular Sciences. 2022; 23(5):2467. https://doi.org/10.3390/ijms23052467
Chicago/Turabian StyleMuranaka, Yuka, Asuka Mizutani, Masato Kobayashi, Koya Nakamoto, Miki Matsue, Kodai Nishi, Kana Yamazaki, Ryuichi Nishii, Naoto Shikano, Shigefumi Okamoto, and et al. 2022. "Comparison of L- and D-Amino Acids for Bacterial Imaging in Lung Infection Mouse Model" International Journal of Molecular Sciences 23, no. 5: 2467. https://doi.org/10.3390/ijms23052467
APA StyleMuranaka, Y., Mizutani, A., Kobayashi, M., Nakamoto, K., Matsue, M., Nishi, K., Yamazaki, K., Nishii, R., Shikano, N., Okamoto, S., & Kawai, K. (2022). Comparison of L- and D-Amino Acids for Bacterial Imaging in Lung Infection Mouse Model. International Journal of Molecular Sciences, 23(5), 2467. https://doi.org/10.3390/ijms23052467