The Effect of Meclofenoxate on the Transcriptome of Aging Brain of Nothobranchius guentheri Annual Killifish
Abstract
:1. Introduction
2. Results and Discussion
2.1. De Novo Transcriptome Assembly and Annotation
2.2. Age-Dependent Gene Expression Changes in N. guentheri Brain in Meclofenoxate-Treated Fish and Controls
3. Materials and Methods
3.1. Fish Diet and Maintenance
3.2. RNA Isolation, Library Preparation, and Transcriptome Sequencing
3.3. NGS Data Processing
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lucas-Sánchez, A. Nothobranchius as a model for aging studies. A review. Aging Dis. 2014. [Google Scholar] [CrossRef]
- Valenzano, D.R.; Terzibasi, E.; Cattaneo, A.; Domenici, L.; Cellerino, A. Temperature affects longevity and age-related locomotor and cognitive decay in the short-lived fish Nothobranchius furzeri. Aging Cell 2006, 5, 275–278. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-Y.; Chiu, Y.-C. Ambient temperature influences aging in an annual fish (Nothobranchius rachovii). Aging Cell 2009, 8, 726–737. [Google Scholar] [CrossRef] [PubMed]
- Markofsky, J.; Milstoc, M. Aging changes in the liver of the male annual cyprinodont fish, Nothobranchius guentheri. Exp. Gerontol. 1979, 14, 11-IN6. [Google Scholar] [CrossRef]
- Markofsky, J.; Milstoc, M. Histopathological observations of the kidney during aging of the male annual fish Nothobranchius guentheri. Exp. Gerontol. 1979, 14, 149–155. [Google Scholar] [CrossRef]
- Markofsky, J.; Perlmutter, A. Age at sexual maturity and its relationship to longevity in the male annual cyprinodont fish, nothobranchius guentheri. Exp. Gerontol. 1972, 7, 131–135. [Google Scholar] [CrossRef]
- Wang, X.; Shang, X.; Luan, J.; Zhang, S. Identification, expression and function of apolipoprotein E in annual fish Nothobranchius guentheri: Implication for an aging marker. Biogerontology 2014, 15, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, X.; Feng, W.; Li, G.; Su, F.; Zhang, S. Differential expression of aging biomarkers at different life stages of the annual fish Nothobranchius guentheri. Biogerontology 2012, 13, 501–510. [Google Scholar] [CrossRef]
- Dong, Y.; Cui, P.; Li, Z.; Zhang, S. Aging asymmetry: Systematic survey of changes in age-related biomarkers in the annual fish Nothobranchius guentheri. Fish Physiol. Biochem. 2017, 43, 309–319. [Google Scholar] [CrossRef]
- Wang, X.; Ren, Y.; Du, X.; Song, L.; Chen, F.; Su, F. Effects of late-onset dietary intake of salidroside on insulin/insulin-like growth factor-1 (IGF-1) signaling pathway of the annual fish Nothobranchius guentheri. Arch. Gerontol. Geriatr. 2020, 91, 104233. [Google Scholar] [CrossRef]
- Yu, X.; Li, G. Effects of resveratrol on longevity, cognitive ability and aging-related histological markers in the annual fish Nothobranchius guentheri. Exp. Gerontol. 2012, 47, 940–949. [Google Scholar] [CrossRef] [PubMed]
- Aragona, M.; Porcino, C.; Guerrera, M.C.; Montalbano, G.; Levanti, M.; Abbate, F.; Laurà, R.; Germanà, A. Localization of Neurotrophin Specific Trk Receptors in Mechanosensory Systems of Killifish (Nothobranchius guentheri). Int. J. Mol. Sci. 2021, 22, 10411. [Google Scholar] [CrossRef]
- Nikiforov-Nikishin, D.L.; Irkha, V.A.; Kochetkov, N.I.; Kalita, T.L.; Nikiforov-Nikishin, A.L.; Blokhin, E.E.; Antipov, S.S.; Makarenkov, D.A.; Zhavnerov, A.N.; Glebova, I.A.; et al. Some Aspects of Development and Histological Structure of the Visual System of Nothobranchius Guentheri. Animals 2021, 11, 2755. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.; Strähle, U.; Scholpp, S. Neurogenesis in zebrafish - from embryo to adult. Neural Dev. 2013, 8, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tozzini, E.T.; Baumgart, M.; Battistoni, G.; Cellerino, A. Adult neurogenesis in the short-lived teleost Nothobranchius furzeri: Localization of neurogenic niches, molecular characterization and effects of aging. Aging Cell 2012, 11, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Baumgart, M.; Groth, M.; Priebe, S.; Savino, A.; Testa, G.; Dix, A.; Ripa, R.; Spallotta, F.; Gaetano, C.; Ori, M.; et al. RNA-seq of the aging brain in the short-lived fish N. furzeri - conserved pathways and novel genes associated with neurogenesis. Aging Cell 2014, 13, 965–974. [Google Scholar] [CrossRef]
- Petzold, A.; Reichwald, K.; Groth, M.; Taudien, S.; Hartmann, N.; Priebe, S.; Shagin, D.; Englert, C.; Platzer, M. The transcript catalogue of the short-lived fish Nothobranchius furzeri provides insights into age-dependent changes of mRNA levels. BMC Genom. 2013, 14, 185. [Google Scholar] [CrossRef] [Green Version]
- Zs-Nagy, I. Aging of cell membranes: Facts and theories. Interdiscip. Top. Gerontol. 2014, 39, 62–85. [Google Scholar] [CrossRef]
- Marcer, D.; Hopkins, S.M. The differential effects of meclofenoxate on memory loss in the elderly. Age Ageing 1977, 6, 123–131. [Google Scholar] [CrossRef]
- Hochschild, R. Effect of dimethylaminoethyl p-chlorophenoxyacetate on the life span of male swiss webster albino mice. Exp. Gerontol. 1973, 8, 177–183. [Google Scholar] [CrossRef]
- Zhang, L.; Hui, Y.-N.; Wang, Y.-S.; Ma, J.-X.; Wang, J.-B.; Ma, L.-N. Calcium overload is associated with lipofuscin formation in human retinal pigment epithelial cells fed with photoreceptor outer segments. Eye 2011, 25, 519–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guvatova, Z.G.; Fedorova, M.S.; Vershinina, Y.S.; Pudova, E.A.; Lipatova, A.V.; Volodin, V.V.; Gladysh, N.S.; Tokarev, A.T.; Kornev, A.B.; Pavlov, V.S.; et al. De Novo Transcriptome Profiling of Brain Tissue from the Annual Killifish Nothobranchius guentheri. Life 2021, 11, 137. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Zhang, Z.; Su, B. Sex Biased Gene Expression Profiling of Human Brains at Major Developmental Stages. Sci. Rep. 2016, 6, 21181. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Chen, Y.-P.P.; Boyd-Kirkup, J.; Khaitovich, P.; Somel, M. Accelerated aging-related transcriptome changes in the female prefrontal cortex. Aging Cell 2012, 11, 894–901. [Google Scholar] [CrossRef] [Green Version]
- Jacquemont, S.; Coe, B.P.; Hersch, M.; Duyzend, M.H.; Krumm, N.; Bergmann, S.; Beckmann, J.S.; Rosenfeld, J.A.; Eichler, E.E. A higher mutational burden in females supports a “female protective model” in neurodevelopmental disorders. Am. J. Hum. Genet. 2014, 94, 415–425. [Google Scholar] [CrossRef] [Green Version]
- Kelmer Sacramento, E.; Kirkpatrick, J.M.; Mazzetto, M.; Baumgart, M.; Bartolome, A.; Di Sanzo, S.; Caterino, C.; Sanguanini, M.; Papaevgeniou, N.; Lefaki, M.; et al. Reduced proteasome activity in the aging brain results in ribosome stoichiometry loss and aggregation. Mol. Syst. Biol. 2020, 16, e9596. [Google Scholar] [CrossRef]
- Bragina, L.; Conti, F. Expression of Neurofilament Subunits at Neocortical Glutamatergic and GABAergic Synapses. Front. Neuroanat. 2018, 12, 74. [Google Scholar] [CrossRef]
- Yuan, A.; Sershen, H.; Basavarajappa, B.S.; Kumar, A.; Hashim, A.; Berg, M.; Lee, J.-H.; Sato, Y.; Rao, M.V.; Mohan, P.S.; et al. Neurofilament subunits are integral components of synapses and modulate neurotransmission and behavior in vivo. Mol. Psychiatry 2015, 20, 986–994. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Han, Q.; Shen, F.; Chen, M.; Zeng, H. Effect of axonal developmental disorders in the corpus callosum on the neurological function after birth in septic neonatal rats. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2016, 28, 683–687. [Google Scholar] [CrossRef]
- Kaushik, G.; Spenlehauer, A.; Sessions, A.O.; Trujillo, A.S.; Fuhrmann, A.; Fu, Z.; Venkatraman, V.; Pohl, D.; Tuler, J.; Wang, M.; et al. Vinculin network–mediated cytoskeletal remodeling regulates contractile function in the aging heart. Sci. Transl. Med. 2015, 7. [Google Scholar] [CrossRef] [Green Version]
- Seixas, A.I.; Azevedo, M.M.; Paes de Faria, J.; Fernandes, D.; Mendes Pinto, I.; Relvas, J.B. Evolvability of the actin cytoskeleton in oligodendrocytes during central nervous system development and aging. Cell. Mol. Life Sci. 2019, 76, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.-F.; Wong, W.-T. Roles of the actin cytoskeleton in aging and age-associated diseases. Ageing Res. Rev. 2020, 58, 101021. [Google Scholar] [CrossRef] [PubMed]
- McMurray, C.T. Neurodegeneration: Diseases of the cytoskeleton? Cell Death Differ. 2000, 7, 861–865. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Wang, R.; Tang, X. Centrophenoxine improves chronic cerebral ischemia induced cognitive deficit and neuronal degeneration in rats. Acta Pharmacol. Sin. 2004, 25, 1590–1596. [Google Scholar]
- ZS-NAGY, I. A Survey of the Available Data on a New Nootropic Drug, BCE-001. Ann. N. Y. Acad. Sci. 1994, 717, 102–114. [Google Scholar] [CrossRef]
- Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol. Rev. 2010, 62, 405–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, H.Y.; Kim, D.H.; Lee, E.K.; Chung, K.W.; Chung, S.; Lee, B.; Seo, A.Y.; Chung, J.H.; Jung, Y.S.; Im, E.; et al. Redefining Chronic Inflammation in Aging and Age-Related Diseases: Proposal of the Senoinflammation Concept. Aging Dis. 2019, 10, 367–382. [Google Scholar] [CrossRef] [Green Version]
- Sparkman, N.L.; Johnson, R.W. Neuroinflammation associated with aging sensitizes the brain to the effects of infection or stress. Neuroimmunomodulation 2008, 15, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Lyman, M.; Lloyd, D.G.; Ji, X.; Vizcaychipi, M.P.; Ma, D. Neuroinflammation: The role and consequences. Neurosci. Res. 2014, 79, 1–12. [Google Scholar] [CrossRef]
- Ebert, S.E.; Jensen, P.; Ozenne, B.; Armand, S.; Svarer, C.; Stenbaek, D.S.; Moeller, K.; Dyssegaard, A.; Thomsen, G.; Steinmetz, J.; et al. Molecular imaging of neuroinflammation in patients after mild traumatic brain injury: A longitudinal 123 I-CLINDE single photon emission computed tomography study. Eur. J. Neurol. 2019, 26, 1426–1432. [Google Scholar] [CrossRef]
- Guzman-Martinez, L.; Maccioni, R.B.; Andrade, V.; Navarrete, L.P.; Pastor, M.G.; Ramos-Escobar, N. Neuroinflammation as a Common Feature of Neurodegenerative Disorders. Front. Pharmacol. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solito, E.; Sastre, M. Microglia function in Alzheimer’s disease. Front. Pharmacol. 2012, 3, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrientos, R.M.; Kitt, M.M.; Watkins, L.R.; Maier, S.F. Neuroinflammation in the normal aging hippocampus. Neuroscience 2015, 309, 84–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, M.G.; Barrientos, R.M.; Biedenkapp, J.C.; Rudy, J.W.; Watkins, L.R.; Maier, S.F. mRNA up-regulation of MHC II and pivotal pro-inflammatory genes in normal brain aging. Neurobiol. Aging 2006, 27, 717–722. [Google Scholar] [CrossRef]
- Perry, V.H.; Matyszak, M.K.; Fearn, S. Altered antigen expression of microglia in the aged rodent CNS. Glia 1993, 7, 60–67. [Google Scholar] [CrossRef]
- Mercier, J.; Provins, L.; Hannestad, J. Progress and Challenges in the Development of PET Ligands to Aid CNS Drug Discovery. In Comprehensive Medicinal Chemistry III; Elsevier: Amsterdam, The Netherlands, 2017; pp. 20–64. [Google Scholar]
- Perner, C.; Perner, F.; Gaur, N.; Zimmermann, S.; Witte, O.W.; Heidel, F.H.; Grosskreutz, J.; Prell, T. Plasma VCAM1 levels correlate with disease severity in Parkinson’s disease. J. Neuroinflamm. 2019, 16, 94. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.-H.; Kim, Y.K.; Kim, M.R.; Jang, J.H.; Lee, S. Emerging Roles of Vascular Cell Adhesion Molecule-1 (VCAM-1) in Immunological Disorders and Cancer. Int. J. Mol. Sci. 2018, 19, 57. [Google Scholar] [CrossRef] [Green Version]
- Yousef, H.; Czupalla, C.J.; Lee, D.; Chen, M.B.; Burke, A.N.; Zera, K.A.; Zandstra, J.; Berber, E.; Lehallier, B.; Mathur, V.; et al. Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1. Nat. Med. 2019, 25, 988–1000. [Google Scholar] [CrossRef]
- Reichwald, K.; Lauber, C.; Nanda, I.; Kirschner, J.; Hartmann, N.; Schories, S.; Gausmann, U.; Taudien, S.; Schilhabel, M.B.; Szafranski, K.; et al. High tandem repeat content in the genome of the short-lived annual fish Nothobranchius furzeri: A new vertebrate model for aging research. Genome Biol. 2009, 10, R16. [Google Scholar] [CrossRef]
- Wood, J.G.; Helfand, S.L. Chromatin structure and transposable elements in organismal aging. Front. Genet. 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Andrenacci, D.; Cavaliere, V.; Lattanzi, G. The role of transposable elements activity in aging and their possible involvement in laminopathic diseases. Ageing Res. Rev. 2020, 57, 100995. [Google Scholar] [CrossRef] [PubMed]
- National Research Council; Division on Earth and Life Studies; Institute for Laboratory Animal Research. Committee for the Update of the Guide for the Care and Use of Laboratory Animals. In Guide for the Care and Use of Laboratory Animals; The National Academies Press: Washington, DC, USA, 2011; ISBN 9780309386296. [Google Scholar]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
QUAST Metrics | Joint Dataset, 115 Gb | Current Dataset, 29 Gb | Dataset of the Work [22], 38 Gb |
---|---|---|---|
Transcripts (>0 bp) | 595,883 | 226,597 | 352,297 |
Transcripts (>500 bp) | 184,805 | 89,658 | 127,262 |
Transcripts (>1000 bp) | 81,223 | 50,507 | 66,471 |
Transcripts (>5000 bp) | 5757 | 3769 | 6322 |
Transcripts (>10,000 bp) | 500 | 299 | 604 |
Transcripts (>25,000 bp) | 10 | 6 | 5 |
Total length (>0 bp) | 386,870,887 | 195,140,104 | 285,906,387 |
Total length (>500 bp) | 263,650,013 | 153,792,134 | 217,410,128 |
Total length (>1000 bp) | 192,720,831 | 126,643,405 | 175,623,569 |
Total length (>5000 bp) | 40,282,776 | 26,395,594 | 45,099,163 |
Total length (>10,000 bp) | 6,597,510 | 4,117,143 | 7,821,995 |
Total length (>25,000 bp) | 268,609 | 162,941 | 134,557 |
Largest transcript | 27,943 | 27,845 | 27,376 |
N50 | 1927 | 2423 | 2539 |
N75 | 948 | 1283 | 1231 |
L50 | 36,670 | 18,767 | 24,581 |
L75 | 86,380 | 40,530 | 55,134 |
% Length (>500 bp) | 68.15 | 78.81 | 76.04 |
% Length (>1000 bp) | 49.82 | 64.90 | 61.43 |
% Length (>5000 bp) | 10.41 | 13.53 | 15.77 |
% Length (>10,000 bp) | 1.71 | 2.11 | 2.74 |
% Length (>25,000 bp) | 0.07 | 0.08 | 0.05 |
rnaQUAST metrics | |||
Aligned, % | 99.29 | 99.63 | 99.78 |
Uniquely aligned, % | 93.74 | 94.16 | 95.04 |
Multiply aligned, % | 2.05 | 2.23 | 1.03 |
Unaligned, % | 0.71 | 0.37 | 0.22 |
Avg. aligned fraction | 0.9860 | 0.9880 | 0.9850 |
Avg. alignment length | 615.47 | 818.24 | 769.95 |
Avg. mismatches per transcript | 2.90 | 1.99 | 3.00 |
Misassemblies | 20 848 | 7 336 | 13 051 |
Misassemblies per 1 Mb | 53.89 | 37.59 | 45.65 |
Completed BUSCOs, % | |||
Cyprinodontiformes | 66.96 | 59.19 | 63.94 |
Actinopterygii | 88.38 | 82.83 | 86.68 |
Vertebrata | 90.58 | 87.75 | 90.88 |
Metazoa | 97.17 | 97.27 | 97.69 |
Eukaryota | 96.86 | 96.08 | 98.04 |
BUSCO duplication ratio, % | |||
Cyprinodontiformes | 33.49 | 29.16 | 36.52 |
Actinopterygii | 32.58 | 30.38 | 37.75 |
Vertebrata | 33.25 | 32.18 | 39.37 |
Metazoa | 28.26 | 26.40 | 32.62 |
Eukaryota | 25.10 | 32.65 | 33.60 |
cell colors | worse | middle | better |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakhtogarimov, I.R.; Kudryavtseva, A.V.; Krasnov, G.S.; Gladysh, N.S.; Volodin, V.V.; Kudryavtsev, A.A.; Bulavkina, E.V.; Goncharova, M.A.; Ledyaeva, V.S.; Pastukhov, I.S.; et al. The Effect of Meclofenoxate on the Transcriptome of Aging Brain of Nothobranchius guentheri Annual Killifish. Int. J. Mol. Sci. 2022, 23, 2491. https://doi.org/10.3390/ijms23052491
Bakhtogarimov IR, Kudryavtseva AV, Krasnov GS, Gladysh NS, Volodin VV, Kudryavtsev AA, Bulavkina EV, Goncharova MA, Ledyaeva VS, Pastukhov IS, et al. The Effect of Meclofenoxate on the Transcriptome of Aging Brain of Nothobranchius guentheri Annual Killifish. International Journal of Molecular Sciences. 2022; 23(5):2491. https://doi.org/10.3390/ijms23052491
Chicago/Turabian StyleBakhtogarimov, Ildar R., Anna V. Kudryavtseva, George S. Krasnov, Natalya S. Gladysh, Vsevolod V. Volodin, Alexander A. Kudryavtsev, Elizaveta V. Bulavkina, Margarita A. Goncharova, Veronika S. Ledyaeva, Ivan S. Pastukhov, and et al. 2022. "The Effect of Meclofenoxate on the Transcriptome of Aging Brain of Nothobranchius guentheri Annual Killifish" International Journal of Molecular Sciences 23, no. 5: 2491. https://doi.org/10.3390/ijms23052491
APA StyleBakhtogarimov, I. R., Kudryavtseva, A. V., Krasnov, G. S., Gladysh, N. S., Volodin, V. V., Kudryavtsev, A. A., Bulavkina, E. V., Goncharova, M. A., Ledyaeva, V. S., Pastukhov, I. S., Vershinina, Y. S., Starkova, A. M., Snezhkina, A. V., Shuvalova, A. I., Pavlov, V. S., Nikiforov-Nikishin, D. L., Moskalev, A. A., & Guvatova, Z. G. (2022). The Effect of Meclofenoxate on the Transcriptome of Aging Brain of Nothobranchius guentheri Annual Killifish. International Journal of Molecular Sciences, 23(5), 2491. https://doi.org/10.3390/ijms23052491