Physicochemical and Theoretical Characterization of a New Small Non-Metal Schiff Base with a Differential Antimicrobial Effect against Gram-Positive Bacteria
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterizations
2.2. Electrochemical Characterization
2.3. Geometry Optimizations, TD-DFT, and NBO Studies
2.4. Analysis of Global Reactivity
2.5. Analysis of Local Reactivity
2.6. Analysis of Antimicrobial Activity
3. Materials and Methods
3.1. Materials and Instruments
3.2. Procedure for Preparing SB-1 and SB-2
3.2.1. Synthesis of (E)-4-Amino-3-((3,5-di-tert-butyl-2-hydroxybenzylidene)amino) Benzoic Acid (SB-1)
3.2.2. Synthesis of (E)-2-((4-Nitrobenzylidene)amino)aniline (SB-2)
3.3. Computational Details
3.4. Antimicrobial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Dodds, D.R. Antibiotic resistance: A current epilogue. Biochem. Pharmacol. 2017, 134, 139–146. [Google Scholar] [CrossRef]
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. MMBR 2010, 74, 417–433. [Google Scholar] [CrossRef] [Green Version]
- Andersson, D.I.; Balaban, N.Q.; Baquero, F.; Courvalin, P.; Glaser, P.; Gophna, U.; Kishony, R.; Molin, S.; Tonjum, T. Antibiotic resistance: Turning evolutionary principles into clinical reality. FEMS Microbiol. Rev. 2020, 44, 171–188. [Google Scholar] [CrossRef]
- Kwon, J.H.; Powderly, W.G. The post-antibiotic era is here. Science 2021, 373, 471. [Google Scholar] [CrossRef]
- CDC Biggest Threat Data. Available online: https://www.cdc.gov/drugresistance/biggest-threats.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fdrugresistance%2Fbiggest_threats.html (accessed on 23 February 2022).
- Madigan, M. Brock. In Biology of Microorganisms; Pearson: London, UK, 2017. [Google Scholar]
- Pérez-Cobas, A.E.; Artacho, A.; Knecht, H.; Ferrús, M.L.; Friedrichs, A.; Ott, S.J.; Moya, A.; Latorre, A.; Gosalbes, M.J. Differential Effects of Antibiotic Therapy on the Structure and Function of Human Gut Microbiota. PLoS ONE 2013, 8, e80201. [Google Scholar] [CrossRef]
- Malik, M.A.; Dar, O.A.; Gull, P.; Wani, M.Y.; Hashmi, A.A. Heterocyclic Schiff base transition metal complexes in antimicrobial and anticancer chemotherapy. Medchemcomm 2018, 9, 409–436. [Google Scholar] [CrossRef]
- Weng, Q.; Yi, J.; Chen, X.; Luo, D.; Wang, Y.; Sun, W.; Kang, J.; Han, Z. Controllable Synthesis and Biological Application of Schiff Bases from d-Glucosamine and Terephthalaldehyde. ACS Omega 2020, 5, 24864–24870. [Google Scholar] [CrossRef]
- Wang, D.; Li, H.; Sun, S.; Xu, Y. Cyanide Boosting Copper Catalysis: A Mild Approach to Fluorescent Benzazole Derivatives from Nonemissive Schiff Bases in Biological Media. Org. Lett. 2020, 22, 3361–3366. [Google Scholar] [CrossRef]
- El Deeb, S.; Ma, B.N.; Baecker, D.; Gust, R. Studies on the stability of the anticancer-active [N,N’-bis(salicylidene)-1,2-phenylenediamine]chloridoiron(III) complex under pharmacological-like conditions. Inorg. Chim. Acta 2019, 487, 76–80. [Google Scholar] [CrossRef]
- Murtaza, G.; Mumtaz, A.; Khan, F.A.; Ahmad, S.; Azhar, S.; Khan, S.A.; Najam-Ul-Haq, M.; Atif, M.; Khan, S.A.; Maalik, A.; et al. Recent pharmacological advancements in schiff bases: A review. Acta Pol. Pharm. 2014, 71, 531–535. [Google Scholar]
- Teran, R.; Guevara, R.; Mora, J.; Dobronski, L.; Barreiro-Costa, O.; Beske, T.; Perez-Barrera, J.; Araya-Maturana, R.; Rojas-Silva, P.; Poveda, A.; et al. Characterization of Antimicrobial, Antioxidant, and Leishmanicidal Activities of Schiff Base Derivatives of 4-Aminoantipyrine. Molecules 2019, 24, 2696. [Google Scholar] [CrossRef] [Green Version]
- Sangwan, V.; Singh, D.P. Macrocyclic Schiff base complexes as potent antimicrobial agents: Synthesis, characterization and biological studies. Mater. Sci. Eng. C Mater Biol. Appl. 2019, 105, 110119. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; Mohamed, I.M.A. A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef Univ. J Basic Appl. Sci. 2015, 4, 119–133. [Google Scholar] [CrossRef] [Green Version]
- Pervaiz, M.; Ahmad, I.; Yousaf, M.; Kirn, S.; Munawar, A.; Saeed, Z.; Adnan, A.; Gulzar, T.; Kamal, T.; Ahmad, A.; et al. Synthesis, spectral and antimicrobial studies of amino acid derivative Schiff base metal (Co, Mn, Cu, and Cd) complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 206, 642–649. [Google Scholar] [CrossRef]
- Rambabu, A.; Pradeep Kumar, M.; Ganji, N.; Daravath, S.; Shivaraj. DNA binding and cleavage, cytotoxicity and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes of 1-((E)-(4-(trifluoromethoxy)phenylimino)methyl)naphthalen-2-ol Schiff base. J. Biomol. Struct. Dyn. 2020, 38, 307–316. [Google Scholar] [CrossRef]
- Bajema, E.A.; Roberts, K.F.; Meade, T.J. Cobalt-Schiff Base Complexes: Preclinical Research and Potential Therapeutic Uses. Met Ions Life Sci. 2019, 19, 269–274. [Google Scholar] [CrossRef]
- da Silva, C.M.; da Silva, D.L.; Modolo, L.V.; Alves, R.B.; de Resende, M.A.; Martins, C.V.B.; de Fátima, Â. Schiff bases: A short review of their antimicrobial activities. J. Adv. Res. 2011, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Makurvet, F.D. Biologics vs. small molecules: Drug costs and patient access. Med. Drug Discov. 2021, 9, 100075. [Google Scholar] [CrossRef]
- Petrus, M.L.; Bouwer, R.K.M.; Lafont, U.; Athanasopoulos, S.; Greenham, N.C.; Dingemans, T.J. Small-molecule azomethines: Organic photovoltaics via Schiff base condensation chemistry. J. Mater. Chem. A 2014, 2, 9474–9477. [Google Scholar] [CrossRef] [Green Version]
- Carreno, A.; Gacitua, M.; Paez-Hernandez, D.; Polanco, R.; Preite, M.; Fuentes, J.A.; Mora, G.C.; Chavez, I.; Arratia-Perez, R. Spectral, theoretical characterization and antifungal properties of two phenol derivative Schiff bases with an intramolecular hydrogen bond. New J. Chem. 2015, 39, 7822–7831. [Google Scholar] [CrossRef]
- Carreño, A.; Zúñiga, C.; Páez-Hernández, D.; Gacitúa, M.; Polanco, R.; Otero, C.; Arratia-Pérez, R.; Fuentes, J.A. Study of the structure–bioactivity relationship of three new pyridine Schiff bases: Synthesis, spectral characterization, DFT calculations and biological assays. New J. Chem. 2018, 42, 8851–8863. [Google Scholar] [CrossRef]
- Carreno, A.; Rodriguez, L.; Paez-Hernandez, D.; Martin-Trasanco, R.; Zuniga, C.; Oyarzun, D.P.; Gacitua, M.; Schott, E.; Arratia-Perez, R.; Fuentes, J.A. Two New Fluorinated Phenol Derivatives Pyridine Schiff Bases: Synthesis, Spectral, Theoretical Characterization, Inclusion in Epichlorohydrin-beta-Cyclodextrin Polymer, and Antifungal Effect. Front. Chem. 2018, 6, 312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, M.N.; Sharif, S.A.I.; El-Tajory, A.N.; Elamari, A.A. Synthesis and Antibacterial Activities of Some Schiff Bases. E-J. Chem. 2011, 8, 212–216. [Google Scholar] [CrossRef] [Green Version]
- Carreno, A.; Paez-Hernandez, D.; Cantero-Lopez, P.; Zuniga, C.; Nevermann, J.; Ramirez-Osorio, A.; Gacitua, M.; Oyarzun, P.; Saez-Cortez, F.; Polanco, R.; et al. Structural Characterization, DFT Calculation, NCI, Scan-Rate Analysis and Antifungal Activity against Botrytis cinerea of (E)-2-{[(2-Aminopyridin-2-yl)imino]-methyl}-4,6-di-tert-butylphenol (Pyridine Schiff Base). Molecules 2020, 25, 2741. [Google Scholar] [CrossRef]
- Issa, Y.M.; Hassib, H.B.; Abdelaal, H.E.; Kenawi, I.M. Spectral investigation of the intramolecular charge-transfer in some aminotriazole Schiff bases. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 79, 1364–1374. [Google Scholar] [CrossRef]
- Czaplinska, B.; Malarz, K.; Mrozek-Wilczkiewicz, A.; Slodek, A.; Korzec, M.; Musiol, R. Theoretical and Experimental Investigations of Large Stokes Shift Fluorophores Based on a Quinoline Scaffold. Molecules 2020, 25, 2488. [Google Scholar] [CrossRef]
- Carreno, A.; Vega, A.; Zarate, X.; Schott, E.; Gacitua, M.; Valenzuela, N.; Preite, M.; Manriquez, J.M.; Chavez, I. Synthesis, Characterization and Computational Studies of (E)-2-{[(2-Aminopyridin-3-Yl)Imino]-Methyl}-4,6-Di-Tert-Butylphenol. Quim. Nova 2014, 37, 584–588. [Google Scholar] [CrossRef]
- Ohba, T.; Ishida, H.; Yamaguchi, T.; Horiuchi, T.; Ohkubo, K. Carbon dioxide-promoted electrochemical reduction of aromatic nitro compounds to azoxy compounds in acetonitrile. J. Chem. Soc. Chem. Commun. 1994, 263–264. [Google Scholar] [CrossRef]
- Huang, Y.; Lessard, J. Electrochemical Behaviour of Nitrobenzene, Nitrosobenzene, Azobenzene, and Azoxybenzene on Hg, Pt, Cu, and Ni Electrodes in Aprotic Medium. Electroanalysis 2016, 28, 2716–2727. [Google Scholar] [CrossRef]
- Carreno, A.; Ladeira, S.; Castel, A.; Vega, A.; Chavez, I. (E)-2-{[(2-Amino-pyridin-3-yl)imino]-meth-yl}-4,6-di-tert-butyl-phenol. Acta Cryst. Sect E Struct Rep. Online 2012, 68, o2507–o2508. [Google Scholar] [CrossRef]
- Deshmukh, M.M.; Gadre, S.R.; Bartolotti, L.J. Estimation of intramolecular hydrogen bond energy via molecular tailoring approach. J. Phys. Chem. A 2006, 110, 12519–12523. [Google Scholar] [CrossRef]
- Purser, G.H. Lewis Structures Are Models for Predicting Molecular Structure, Not Electronic Structure. J. Chem. Educ. 1999, 76, 1013–1018. [Google Scholar] [CrossRef]
- Aviles-Moreno, J.R.; Berden, G.; Oomens, J.; Martinez-Haya, B. Isolated complexes of the amino acid arginine with polyether and polyamine macrocycles, the role of proton transfer. Phys. Chem. Chem. Phys. 2017, 19, 31345–31351. [Google Scholar] [CrossRef]
- Barrales-Martinez, C.; Martinez-Araya, J.I.; Jaque, P. 1,3-Dipolar Cycloadditions by a Unified Perspective Based on Conceptual and Thermodynamics Models of Chemical Reactivity. J. Phys. Chem. A 2021, 125, 801–815. [Google Scholar] [CrossRef]
- Martínez-Araya, J.I. The importance of diffuse functions in basis sets to produce reliable 3D pictures of dual descriptor. Chem. Phys. Lett. 2019, 724, 29–34. [Google Scholar] [CrossRef]
- Bader, R.F.W.; Carroll, M.T.; Cheeseman, J.R.; Chang, C. Properties of atoms in molecules: Atomic volumes. J. Am. Chem. Soc. 2002, 109, 7968–7979. [Google Scholar] [CrossRef]
- Oong, G.C.; Tadi, P. Chloramphenicol. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Shrivastava, R.; Chng, S.S. Lipid trafficking across the Gram-negative cell envelope. J. Biol. Chem. 2019, 294, 14175–14184. [Google Scholar] [CrossRef] [Green Version]
- Rajagopal, M.; Walker, S. Envelope Structures of Gram-Positive Bacteria. Curr. Top Microbiol. Immunol. 2017, 404, 1–44. [Google Scholar]
- Pimenta, A.L.; Young, J.; Holland, I.B.; Blight, M.A. Antibody analysis of the localisation, expression and stability of HlyD, the MFP component of the E. coli haemolysin translocator. Mol. Gen. Genet. 1999, 261, 122–132. [Google Scholar] [CrossRef]
- Nevermann, J.; Silva, A.; Otero, C.; Oyarzun, D.P.; Barrera, B.; Gil, F.; Calderon, I.L.; Fuentes, J.A. Identification of Genes Involved in Biogenesis of Outer Membrane Vesicles (OMVs) in Salmonella enterica Serovar Typhi. Front. Microbiol. 2019, 10, 104. [Google Scholar] [CrossRef]
- Hernandez-Aristizabal, I.; Ocampo-Ibanez, I.D. Antimicrobial Peptides with Antibacterial Activity against Vancomycin-Resistant Staphylococcus aureus Strains: Classification, Structures, and Mechanisms of Action. Int. J. Mol. Sci. 2021, 22, 7927. [Google Scholar] [CrossRef]
- Dietrich, R.; Jessberger, N.; Ehling-Schulz, M.; Martlbauer, E.; Granum, P.E. The Food Poisoning Toxins of Bacillus cereus. Toxins (Basel) 2021, 13, 98. [Google Scholar] [CrossRef]
- Sadowy, E. Mobile genetic elements beyond the VanB-resistance dissemination among hospital-associated enterococci and other Gram-positive bacteria. Plasmid 2021, 114, 102558. [Google Scholar] [CrossRef]
- del Valle, M.A.; Gacitúa, M.; Díaz, F.R.; Armijo, F.; Río, R.D. Electrosynthesis of polythiophene nanowires via mesoporous silica thin film templates. Electrochem. Commun. 2009, 11, 2117–2120. [Google Scholar] [CrossRef]
- Diaz, F.R.; Pardo, M.A.; Gacitua, M.A.; del Valle, M.A. Electrode Modified with a Polymer of Aniline and 3-Hexylthiophene to Be Assayed in the Selective Determination of Nitrate. J. Chil. Chem. Soc. 2020, 65, 5023–5026. [Google Scholar] [CrossRef]
- de Valle, M.A. dsDNA Sensing Capabilities of Metallopolymers Electrochemically Deposited from Ruthenium-Pyrrole and—Thiophene Complexes. Int. J. Electrochem. Sci. 2019, 14, 8131–8140. [Google Scholar] [CrossRef]
- Hay, P.J. Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition-metal atoms. J. Chem. Phys. 1977, 66, 4377–4384. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- McLean, A.D.; Chandler, G.S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J. Chem. Phys. 1980, 72, 5639–5648. [Google Scholar] [CrossRef]
- Frisch, M.J.; Pople, J.A.; Binkley, J.S. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 1984, 80, 3265–3269. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S. The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor. Chem. Acc. Theory Comput. Modeling (Theor. Chim. Acta) 2002, 108, 134–142. [Google Scholar] [CrossRef]
- Politzer, P. Atomic and molecular energies as functionals of the electrostatic potential. Theor. Chem. Acc. 2004, 111, 395–399. [Google Scholar] [CrossRef]
- Murray, J.S.; Politzer, P. The electrostatic potential: An overview. WIREs Comput. Mol. Sci. 2011, 1, 153–163. [Google Scholar] [CrossRef]
- Clark, T.; Chandrasekhar, J.; Spitznagel, G.W.; Schleyer, P.V.R. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li-F. J. Comput. Chem. 1983, 4, 294–301. [Google Scholar] [CrossRef]
- Jarvik, T.; Smillie, C.; Groisman, E.A.; Ochman, H. Short-term signatures of evolutionary change in the Salmonella enterica serovar Typhimurium 14028 genome. J. Bacteriol. 2010, 192, 560–567. [Google Scholar] [CrossRef] [Green Version]
- Berrocal, L.; Fuentes, J.A.; Trombert, A.N.; Jofre, M.R.; Villagra, N.A.; Valenzuela, L.M.; Mora, G.C. stg fimbrial operon from S. Typhi STH2370 contributes to association and cell disruption of epithelial and macrophage-like cells. Biol. Res. 2015, 48, 34. [Google Scholar] [CrossRef] [Green Version]
- Valenzuela, C.; Ugalde, J.A.; Mora, G.C.; Alvarez, S.; Contreras, I.; Santiviago, C.A. Draft Genome Sequence of Salmonella enterica Serovar Typhi Strain STH2370. Genome Announc. 2014, 2, e00104-14. [Google Scholar] [CrossRef] [Green Version]
- Marchant, P.; Carreño, A.; Vivanco, E.; Silva, A.; Nevermann, J.; Otero, C.; Araya, E.; Gil, F.; Calderon, I.L.; Fuentes, J.A. “One for all”: Functional transfer of OMV-mediated polymyxin B resistance from Salmonella enterica sv. Typhi ΔtolR and ΔdegS to susceptible bacteria. Front. Microbiol. 2021, 12, 1068. [Google Scholar] [CrossRef]
- Cuenca-Estrella, M.; Moore, C.B.; Barchiesi, F.; Bille, J.; Chryssanthou, E.; Denning, D.W.; Donnelly, J.P.; Dromer, F.; Dupont, B.; Rex, J.H.; et al. Multicenter evaluation of the reproducibility of the proposed antifungal susceptibility testing method for fermentative yeasts of the Antifungal Susceptibility Testing Subcommittee of the European Committee on Antimicrobial Susceptibility Testing (AFST-EUCAST). Clin. Microbiol. Infect. 2003, 9, 467–474. [Google Scholar]
Global Reactivity Descriptors | FDA | FMOA | |||
---|---|---|---|---|---|
Name | Symbol | SB-1 | SB-2 | SB-1 | SB-2 |
First Vertical Ionization Potential | I1 | 0.2661 | 0.2763 | 0.2175 | 0.2171 |
Second Vertical Ionization Potential | I2 | 0.4115 | 0.4521 | 0.2175 | 0.2171 |
First Vertical Electron Affinity | A1 | 0.0264 | 0.0614 | 0.0766 | 0.1172 |
Second Vertical Electron Affinity | A2 | −0.0919 | −0.0879 | 0.0766 | 0.1172 |
Electronic Chemical Potential | µ | −0.1463 | −0.1688 | −0.1471 | −0.1671 |
Molecular Hardness | η | 0.2397 | 0.2149 | 0.1409 | 0.1000 |
Global Softness | S | 4.1722 | 4.6528 | 7.0977 | 10.0030 |
Electrophilicity | ω | 0.0446 | 0.0663 | 0.0768 | 0.1397 |
Electron donating Power | ω− | 0.1774 | 0.2305 | 0.2359 | 0.3693 |
Electron donating Power | ω+ | 0.0311 | 0.0617 | 0.0888 | 0.2021 |
Net Electrophilicity | Δω | 0.2085 | 0.2921 | 0.3247 | 0.5714 |
Schiff Bases | Precursors of SB-1 | |||||
---|---|---|---|---|---|---|
Strains | Gram | Cam a | SB-1 | SB-2 | A b | B c |
Staphylococcus aureus | Positive | 3.9 ± 3.7 | 7.8 ± 2.9 | NE | NE | NE |
Bacillus cereus | Positive | 7.8 ± 5.8 | 3.9 ± 3.1 | NE | NE | NE |
Enterococcus faecalis | Positive | 3.9 ± 5.9 | 7.8 ± 5.7 | NE | ND e | ND |
Klebsiella pneumoniae | Negative | 7.8 ± 0.1 | NE d | NE | ND | ND |
Salmonella Typhimurium | Negative | 7.8 ± 3.7 | NE | NE | NE | NE |
Salmonella Typhi | Negative | 7.8 ± 7.8 | NE | NE | ND | ND |
Escherichia coli | Negative | 7.8 ± 3.1 | NE | NE | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gacitúa, M.; Carreño, A.; Morales-Guevara, R.; Páez-Hernández, D.; Martínez-Araya, J.I.; Araya, E.; Preite, M.; Otero, C.; Rivera-Zaldívar, M.M.; Silva, A.; et al. Physicochemical and Theoretical Characterization of a New Small Non-Metal Schiff Base with a Differential Antimicrobial Effect against Gram-Positive Bacteria. Int. J. Mol. Sci. 2022, 23, 2553. https://doi.org/10.3390/ijms23052553
Gacitúa M, Carreño A, Morales-Guevara R, Páez-Hernández D, Martínez-Araya JI, Araya E, Preite M, Otero C, Rivera-Zaldívar MM, Silva A, et al. Physicochemical and Theoretical Characterization of a New Small Non-Metal Schiff Base with a Differential Antimicrobial Effect against Gram-Positive Bacteria. International Journal of Molecular Sciences. 2022; 23(5):2553. https://doi.org/10.3390/ijms23052553
Chicago/Turabian StyleGacitúa, Manuel, Alexander Carreño, Rosaly Morales-Guevara, Dayán Páez-Hernández, Jorge I. Martínez-Araya, Eyleen Araya, Marcelo Preite, Carolina Otero, María Macarena Rivera-Zaldívar, Andrés Silva, and et al. 2022. "Physicochemical and Theoretical Characterization of a New Small Non-Metal Schiff Base with a Differential Antimicrobial Effect against Gram-Positive Bacteria" International Journal of Molecular Sciences 23, no. 5: 2553. https://doi.org/10.3390/ijms23052553
APA StyleGacitúa, M., Carreño, A., Morales-Guevara, R., Páez-Hernández, D., Martínez-Araya, J. I., Araya, E., Preite, M., Otero, C., Rivera-Zaldívar, M. M., Silva, A., & Fuentes, J. A. (2022). Physicochemical and Theoretical Characterization of a New Small Non-Metal Schiff Base with a Differential Antimicrobial Effect against Gram-Positive Bacteria. International Journal of Molecular Sciences, 23(5), 2553. https://doi.org/10.3390/ijms23052553