MicroRNA Mediated Plant Responses to Nutrient Stress
Abstract
:1. Introduction
2. microRNAs in Nutrient Stress
2.1. miRNAs and Nitrogen Stress
2.2. miRNAs and Phosphate Stress
2.3. miRNAs and Potassium Stress
2.4. miRNAs and Sulfate Stress
2.5. miRNAs and Copper Stress
2.6. miRNAs and Boron Stress
2.7. miRNAs and Magnesium Stress
2.8. miRNAs in Manganese Stress
2.9. miRNAs and Iron Stress
2.10. miRNA and Other Nutrients
miRNAs | Targets | Plant Species | Target Function | Regulation | Nutrients | References | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | P | K | S | Cu | Fe | B | Mg | Mn | Zn | Ca | ||||||
miR156 | SPLs | Camellia sinensis | Shoot development | Up | √ | [133] | ||||||||||
SPLs | Lupinus angustifolius | Seed development | Up | √ | [134] | |||||||||||
SPLs | Brassica napus | Seed maturation | Up | √ | [135] | |||||||||||
NAC4, ARF2, AFB3 | Arachis hypogaea | Root development | Up | √ | [76] | |||||||||||
miR157 | SPLs | Citrus sinensis | Root development | Down | √ | [101] | ||||||||||
miR158 | BZIP | Solanum lycopersicum | Plant development | Up | √ | [136] | ||||||||||
AP2, SBP, NAC, MYB | Arabidopsis thaliana | Plant development | Up | √ | [123] | |||||||||||
AP2, SBP, NAC, MYB | Vitis vinifera | Plant growth and development | Up | √ | [96] | |||||||||||
SPLs | Citrus sinensis | Respiration management | Up | √ | [113] | |||||||||||
FUT1 | Brassica juncea | Plant development and abiotic stress response | Up | √ | [128] | |||||||||||
miR159 | MYBs and TCPs | Cucumis sativus | Plant development | Up | √ | [137] | ||||||||||
MYBs | Betula luminifera | Root development | Down | √ | [138] | |||||||||||
NRAMP4 | Oryza sativa | Root development | Up | √ | [139] | |||||||||||
MYBs | Triticum aestivum | Root development | Up | √ | [140] | |||||||||||
miR160 | ARFs | Arabidopsis thaliana | Root development, signal transduction | Up | √ | [29] | ||||||||||
SPLs | Arachis hypogaea | Root development | Down | √ | [76] | |||||||||||
GRFs | Triticum aestivum | Signal transduction | Down | √ | [74] | |||||||||||
ARFs | Brassica juncea | Hormone signaling | Up | √ | [128] | |||||||||||
miR162 | DCLs | Zea mays | Flower development | Up | √ | [28] | ||||||||||
DCLs | Oryza sativa | Iron homeostasis | Up | √ | [141] | |||||||||||
miR164 | NAC | Arabidopsis thaliana | Leaf senescence | Up | √ | [51] | ||||||||||
SPLs | Arachis hypogaea | Root development | Down | √ | [76] | |||||||||||
TCA cycle | Arachis hypogaea | Potassium stress | Up/Down | √ | [76] | |||||||||||
miR165 | HD-ZIP | Hordeum vulgare | Root development | Up | √ | [99] | ||||||||||
miR166 | HD-ZIP | Populus tomentosa | Shoot development | Down | √ | [142] | ||||||||||
miR168 | AGOs | Cucumis sativus | Signal transduction | Down | √ | [137] | ||||||||||
AGOs | Solanum lycopersicum | Root development | Down | √ | [77] | |||||||||||
AGOs | Oryza sativa | Root development | Up/Down | √ | [141] | |||||||||||
miR169 | HAP2 | Arabidopsis thaliana | Nitrogen homeostasis, stress response | Down | √ | [37] | ||||||||||
HAP2 | Sorghum bicolor | stress response | Down | √ | [143] | |||||||||||
Pentose pathway | Triticum aestivum | Potassium stress | Up/Down | √ | [74] | |||||||||||
CAAT TFs | Phaseolus vulgaris | Leaf formation | Up | √ | [116] | |||||||||||
CAAT TFs | Brassica juncea | Plant development | Up | √ | [128] | |||||||||||
miR171 | SCLs | Arabidopsis thaliana | Root development | Down | √ | [29] | ||||||||||
SCLs | Oryza sativa | Root development | Up/Down | √ | [141] | |||||||||||
Signaling pathways | Taxus chinensis | Root development | Up/Down | √ | [144] | |||||||||||
SCARECROW-like protein | Citrus sinensis | Root development | Up | √ | [105] | |||||||||||
miR176 | MLH1 | Citrus sinensis | Respiration management | Up | √ | [113] | ||||||||||
miR319 | TCPs | Cucumis sativus | Shoot development | Down | √ | [137] | ||||||||||
TCPs | Hordeum vulgare | Potassium homeostasis | Down | √ | [72,73] | |||||||||||
Signaling pathways | Taxus chinensis | Root development | Up/Down | √ | [144] | |||||||||||
MYBs | Citrus sinensis | Root development | Up | √ | [105] | |||||||||||
ethylene-related TFs | Arabidopsis thaliana | oxidative stress-adaptive responses | Up | √ | [106] | |||||||||||
MYBs | Triticum aestivum | Nutrient stress response | Up | √ | [107] | |||||||||||
TCPs | Brassica juncea | Plant development | Up | √ | [128] | |||||||||||
miR390 | NAC4, ARF2, and AFB3 | Arachis hypogaea | Lateral root development | Up | √ | [76] | ||||||||||
Serine/threonine protein kinase | Phaseolus vulgaris | Nodule formation | Up | √ | [116] | |||||||||||
miR393 | Auxin receptors | Zea mays | Development of roots | Up | √ | [42] | ||||||||||
SPLs | Arachis hypogaea | Root development | Down | √ | [76] | |||||||||||
Auxin signaling | Oryza sativa | Development of Auxiliary buds | Up/Down | √ | [145] | |||||||||||
Basic helix-loop-helix (bHLH) | Brassica juncea | Plant development | Up | √ | [128] | |||||||||||
miR394 | F-box | Oryza sativa | Shoot development | Up | √ | [146] | ||||||||||
F-Box | Brassica juncea | Plant development | Up | √ | [128] | |||||||||||
miR395 | ATP sulfurylase; Sulfate transporters | Cucumis sativus | Sulfur metabolism | Down | √ | [137] | ||||||||||
Ca2+ signaling pathway | Sorghum bicolor | Potassium stress | Up/Down | √ | [143] | |||||||||||
ATP sulfurylase; Sulfate transporters | Arabidopsis thaliana | Nutrient stress response | Down | √ | [117] | |||||||||||
miR396 | GRF | Oryza sativa | Leaf development | Down | √ | [147] | ||||||||||
GRF | Hordeum vulgare | Potassium homeostasis | Down | √ | [72,73] | |||||||||||
GRF | Oryza sativa | Seedling growth | Down | √ | [147] | |||||||||||
GRF | Phaseolus vulgaris | Plant development | Up | √ | [100] | |||||||||||
RHS12 | Ananas comosus var. bracteatus | Plant development | UP | √ | [114] | |||||||||||
GRF | Phaseolus vulgaris | Nodule formation | Up | √ | [116] | |||||||||||
miR397 | Laccases | Zea mays | Lignin synthesis/Copper homeostasis | Down | √ | [42] | ||||||||||
Laccases | Arabidopsis thaliana | Metabolic processes | Down | √ | [40] | |||||||||||
Laccases | Poncirus trifoliata | Stress response | Up | √ | [102] | |||||||||||
Laccases | Citrus sinensis | Cell wall biosynthesis | Down | √ | [103] | |||||||||||
miR398 | CSD; COX5b-1; CCS1 | Medicago sativa | Oxidative stress/Copper homeostasis | Down | √ | [148] | ||||||||||
SOD | Arabidopsis thaliana | Metabolic processes | Down | √ | [40] | |||||||||||
SPLs | Arabidopsis thaliana | Metabolic processes | Down | √ | [93] | |||||||||||
GATA type zinc finger TFs | Phaseolus vulgaris | Regulate light-sensitivity | Down | √ | [100] | |||||||||||
XTH | Ananas comosus var. bracteatus | Plant development | UP | √ | [114] | |||||||||||
Cu/Zn SOD | Brassica juncea | Plant development | Up | √ | [128] | |||||||||||
Unknown | Arachis hypogaea | Embryo development | Up | √ | [132] | |||||||||||
miR399 | UBC24/PHO2 | Zea mays | Phosphate homeostasis | Down | √ | [149] | ||||||||||
PHO2 | Sorghum bicolor | Plant development | Down | √ | [143] | |||||||||||
PHO2 | Arabidopsis thaliana | Metabolic processes | Down | √ | [40] | |||||||||||
Ubiquitin conjugase E2 | Arabidopsis thaliana | Nutrient stress response | Down | √ | [117] | |||||||||||
PHO2 | Brassica juncea | Phytohormone response | Down | √ | [128] | |||||||||||
miR401 | Unknown | Citrus sinensis | Leaf development | Down | √ | [104] | ||||||||||
miR408 | Laccases; plantacyanin | Zea mays | Lignin synthesis/Copper homeostasis | Down | √ | [42] | ||||||||||
SOD | Arabidopsis thaliana | Metabolic processes | Down | √ | [40] | |||||||||||
SPLs | Arabidopsis thaliana | Metabolic processes | Down | √ | [93] | |||||||||||
laccases | Arabidopsis thaliana | Iron homeostasis | Up/Down | √ | [124] | |||||||||||
Basic blue copper protein | Phaseolus vulgaris | Leaf development | Up | √ | [116] | |||||||||||
miR482 | Ca2+ signaling pathway | Sorghum bicolor | Potassium stress | Up/Down | √ | [143] | ||||||||||
miR485 | Unknown | Brassica juncea | Phytohormone response | Down | √ | [128] | ||||||||||
miR528 | Pytocyanin; CSD | Agrostis stolonifera | Oxidative stress | Down | √ | [150] | ||||||||||
miR535 | CSD | Vitis vinifera | Copper homeostasis | Down | √ | [96] | ||||||||||
miR780 | Na+/H+ antiporter | Arabidopsis thaliana | Export of Sodium ion | Up | √ | [29] | ||||||||||
miR781 | MCM2 (At1G44900) | Arabidopsis thaliana | Nutrient stress response | Up | √ | [117] | ||||||||||
miR826 | AHP2 | Populus spp. | Glucosinolate synthesis | Up | √ | [151] | ||||||||||
Signaling pathways | Taxus chinensis | Root development | Up/Down | √ | [144] | |||||||||||
Alkenyl hydroxalkyl producing 2 | Arabidopsis thaliana | Nutrient stress response | Up | √ | [117] | |||||||||||
miR827 | Ubiquitin E3 ligase NLA | Zea mays | phosphorus metabolism/Nitrogen | Down | √ | [42] | ||||||||||
miR842 | Jacalin lectin family | Zea mays | Unknown | Up | √ | [42] | ||||||||||
miR843 | Kinesin motor-related | Citrus sinensis | Root development | Up | √ | [101] | ||||||||||
miR846 | Jacalin lectin family | Zea mays | Unknown | Up | √ | [42] | ||||||||||
miR857 | Laccases | Zea mays | Lignin synthesis/Copper homeostasis | Down | √ | [42] | ||||||||||
Signaling pathways | Taxus chinensis | Root development | Up/Down | √ | [144] | |||||||||||
miR1432 | Unknown | Sorghum bicolor | Root development | Up/Down | √ | [143] | ||||||||||
miR2004 | PHD finger family proteins | Hordeum vulgare | Root development | Up | √ | [99] | ||||||||||
miR3511 | ROS | Arachis hypogaea | Embryo development | Down | √ | [132] | ||||||||||
miR3515 | ROS | Arachis hypogaea | Embryo development | Down | √ | [132] | ||||||||||
miR4351 | Unknown | Citrus sinensis | Leaf devlopment | Up | √ | [112] | ||||||||||
miR5026 | Unknown | Arabidopsis thaliana | Nutrient stress response | Up | √ | [117] | ||||||||||
miR5029 | PBA1 | Citrus sinensis | Respiration management | Up | √ | [113] | ||||||||||
miR5051 | Unknown | Hordeum vulgare | Root development | Up | √ | [99] | ||||||||||
miR5261 | Mrel1 | Citrus sinensis | Respiration management | Down | √ | [113] | ||||||||||
miR5266 | Unknown | Citrus sinensis | Leaf development | Up | √ | [104] | ||||||||||
miR5564 | Unknown | Sorghum bicolor | Shoot development | Up/Down | √ | [143] | ||||||||||
miR5565 | Unknown | Sorghum bicolor | Stress response | Up/Down | √ | [143] | ||||||||||
miR5595 | MES | Arabidopsis thaliana | Nutrient stress response | Up | √ | [117] | ||||||||||
miR5832 | Unkonwn | Citrus sinensis | Leaf development | Up | √ | [112] | ||||||||||
miR6485 | VALRs | Citrus sinensis | Respiration management | Up | √ | [113] |
3. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fageria, N.K. The Use of Nutrients in Crop Plants; Routledge: London, UK; Taylor & Francis: London, UK; England and Wales: London, UK, 2016. [Google Scholar]
- Goulding, K.; Murrell, T.S.; Mikkelsen, R.L.; Rosolem, C.; Johnston, J.; Wang, H.; Alfaro, M.A. Outputs: Potassium Losses from Agricultural Systems. In Improving Potassium Recommendations for Agricultural Crops; Springer: Cham, Switzerland, 2021; pp. 75–97. [Google Scholar]
- Mee, C.Y.; Balasundram, S.K.; Mohd Hanif, A.H. Detecting and monitoring plant nutrient stress using remote sensing approaches: A review. Asian J. Plant Sci. 2017, 16, 1–8. [Google Scholar]
- Schillaci, M.; Kehelpannala, C.; Martinez-Seidel, F.; Smith, P.M.C.; Arsova, B.; Watt, M.; Roessner, U. The metabolic response of brachypodium roots to the interaction with beneficial bacteria is affected by the plant nutritional status. Metabolites 2021, 11, 358. [Google Scholar] [CrossRef] [PubMed]
- Trehan, S.P.; Kumar, M. Improving Nutrient Use Efficiency by Exploiting Genetic Diversity of Crops. In Nutrient Use Efficiency: From Basics to Advance; Springer: New Delhi, India, 2015; pp. 209–220. ISBN 9788132221692. [Google Scholar]
- Fageria, N.K.; Baligar, V.C.; Li, Y.C. The role of nutrient efficient plants in improving crop yields in the twenty first century. J. Plant Nutr. 2008, 31, 1121–1157. [Google Scholar] [CrossRef]
- Gogolev, Y.V.; Ahmar, S.; Akpinar, B.A.; Budak, H.; Kiryushkin, A.S.; Gorshkov, V.Y.; Hensel, G.; Demchenko, K.N.; Kovalchuk, I.; Mora-Poblete, F.; et al. Omics, epigenetics, and genome editing techniques for food and nutritional security. Plants 2021, 10, 1423. [Google Scholar] [CrossRef] [PubMed]
- Islam, W. CRISPR-Cas9; an efficient tool for precise plant genome editing. Mol. Cell. Probes 2018, 39, 47–52. [Google Scholar] [CrossRef]
- Song, X.; Li, Y.; Cao, X.; Qi, Y. MicroRNAs and Their Regulatory Roles in Plant-Environment Interactions. Annu. Rev. Plant Biol. 2019, 70, 489–525. [Google Scholar] [CrossRef]
- Noman, A.; Sanaullah, T.; Khalid, N.; Islam, W.; Khan, S.; Irshad, M.K.; Aqeel, M. Crosstalk between plant miRNA and heavy metal toxicity. In Plant Metallomics and Functional Omics: A System-Wide Perspective; Springer Nature Switzerland AG: Cham, Switzerland, 2019; pp. 145–168. ISBN 9783030191030. [Google Scholar]
- Islam, W.; Noman, A.; Qasim, M.; Wang, L. Plant responses to pathogen attack: Small rnas in focus. Int. J. Mol. Sci. 2018, 19, 515. [Google Scholar] [CrossRef] [Green Version]
- Islam, W.; Islam, S.; Qasim, M.; Wang, L. Host-Pathogen interactions modulated by small RNAs. RNA Biol. 2017, 17, 891–904. [Google Scholar] [CrossRef] [Green Version]
- Noman, A.; Aqeel, M.; Khalid, N.; Islam, W.; Sanaullah, T.; Anwar, M.; Khan, S.; Ye, W.; Lou, Y. Zinc finger protein transcription factors: Integrated line of action for plant antimicrobial activity. Microb. Pathog. 2019, 132, 141–149. [Google Scholar] [CrossRef]
- Islam, W.; Adnan, M.; Huang, Z.; Lu, G.; Chen, H.Y.H. Small RNAs from seed to mature plant. CRC Crit. Rev. Plant Sci. 2019, 38, 117–139. [Google Scholar] [CrossRef]
- Islam, W.; Qasim, M.; Noman, A.; Adnan, M.; Tayyab, M.; Farooq, T.H.; Wei, H.; Wang, L. Plant microRNAs: Front line players against invading pathogens. Microb. Pathog. 2018, 118, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Nie, J.; Wang, H. MicroRNA biogenesis in plant. Plant Growth Regul. 2021, 93, 1–12. [Google Scholar] [CrossRef]
- Chen, X. microRNA biogenesis and function in plants. FEBS Lett. 2005, 579, 5923–5931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahzad, R.; Harlina, P.W.; Ayaad, M.; Ewas, M.; Nishawy, E.; Fahad, S.; Subthain, H.; Amar, M.H. Dynamic roles of microRNAs in nutrient acquisition and plant adaptation under nutrient stress: A review. Plant Omics 2018, 11, 58–79. [Google Scholar] [CrossRef]
- Masclaux-Daubresse, C.; Daniel-Vedele, F.; Dechorgnat, J.; Chardon, F.; Gaufichon, L.; Suzuki, A. Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Ann. Bot. 2010, 105, 1141–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreau, D.; Bardgett, R.D.; Finlay, R.D.; Jones, D.L.; Philippot, L. A plant perspective on nitrogen cycling in the rhizosphere. Funct. Ecol. 2019, 33, 540–552. [Google Scholar] [CrossRef] [Green Version]
- Maurel, C.; Nacry, P. Root architecture and hydraulics converge for acclimation to changing water availability. Nat. Plants 2020, 6, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant–microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef] [PubMed]
- Landi, S.; Esposito, S. Nitrate uptake affects cell wall synthesis and modeling. Front. Plant Sci. 2017, 8, 1376. [Google Scholar] [CrossRef] [Green Version]
- Yousuf, P.Y.; Shabir, P.A.; Hakeem, K.R. miRNAomic Approach to Plant Nitrogen Starvation. Int. J. Genomics 2021, 2021, 8560323. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Singh, A.K.; Chaudhary, B. Target-mimicry based miRNA167-diminution ameliorates cotton somatic embryogenesis via transcriptional biases of auxin signaling associated miRNAs and genes. Plant Cell. Tissue Organ Cult. 2020, 141, 511–531. [Google Scholar] [CrossRef]
- Asim, M.; Ullah, Z.; Xu, F.; An, L.; Aluko, O.O.; Wang, Q.; Liu, H. Nitrate signaling, functions, and regulation of root system architecture: Insights from arabidopsis thaliana. Genes 2020, 11, 633. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Liang, G.; Li, Y.; Wang, F.; Yu, D. Two young MicroRNAs originating from target duplication mediate nitrogen starvation adaptation via regulation of glucosinolate synthesis in Arabidopsis thaliana. Plant Physiol. 2014, 164, 853–865. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Tai, H.; Sun, S.; Zhang, F.; Xu, Y.; Li, W.X. Cloning and characterization of maize miRNAs involved in responses to nitrogen deficiency. PLoS ONE 2012, 7, e29669. [Google Scholar] [CrossRef] [Green Version]
- Liang, G.; He, H.; Yu, D. Identification of Nitrogen Starvation-Responsive MicroRNAs in Arabidopsis thaliana. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [Green Version]
- Guan, P. Dancing with hormones: A current perspective of nitrate signaling and regulation in arabidopsis. Front. Plant Sci. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Sajjad, N.; Bhat, E.A.; Shah, D.; Manzoor, I.; Noor, W.; Shah, S.; Hassan, S.; Ali, R. Nitrogen uptake, assimilation, and mobilization in plants under abiotic stress. In Transporters and Plant Osmotic Stress; Academic Press: Cambridge, MA, USA; Elsevier B.V.: Amsterdam, The Netherlands, 2021; pp. 215–233. [Google Scholar]
- Bao, M.; Bian, H.; Zha, Y.; Li, F.; Sun, Y.; Bai, B.; Chen, Z.; Wang, J.; Zhu, M.; Han, N. MiR396a-mediated basic helix-loop-helix transcription factor bHLH74 repression acts as a regulator for root growth in arabidopsis seedlings. Plant Cell Physiol. 2014, 55, 1343–1353. [Google Scholar] [CrossRef] [Green Version]
- Vega, A.; O’Brien, J.A.; Gutiérrez, R.A. Nitrate and hormonal signaling crosstalk for plant growth and development. Curr. Opin. Plant Biol. 2019, 52, 155–163. [Google Scholar] [CrossRef]
- Etemadi, M.; Gutjahr, C.; Couzigou, J.M.; Zouine, M.; Lauressergues, D.; Timmers, A.; Audran, C.; Bouzayen, M.; Bécard, G.; Combier, J.P. Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Physiol. 2014, 166, 281–292. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.Y.; Zhang, L.; Li, W.W.; Hu, X.L.; Wang, M.B.; Fan, Y.L.; Zhang, C.Y.; Wang, L. Stress-induced early flowering is mediated by miR169 in Arabidopsis thaliana. J. Exp. Bot. 2014, 65, 89–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuluaga, D.L.; Sonnante, G. The use of nitrogen and its regulation in cereals: Structural genes, transcription factors, and the role of miRNAs. Plants 2019, 8, 294. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Ding, H.; Zhu, J.K.; Zhang, F.; Li, W.X. Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol. 2011, 190, 906–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, H.; Wang, G.; Hu, X.; Wang, H.; Du, L.; Zhu, Y. Role of microRNAs in plant responses to nutrient stress. Plant Soil 2014, 374, 1005–1021. [Google Scholar] [CrossRef]
- Pant, B.D.; Musialak-Lange, M.; Nuc, P.; May, P.; Buhtz, A.; Kehr, J.; Walther, D.; Scheible, W.R. Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol. 2009, 150, 1541–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, G.; Ai, Q.; Yu, D. Author Correction: Uncovering miRNAs involved in crosstalk between nutrient deficiencies in Arabidopsis. Sci. Rep. 2020, 10, 6912. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Chen, Y.; Cao, Y.; Chen, H.; Wang, J.; Bi, Y.M.; Tian, F.; Yang, F.; Rothstein, S.J.; Zhou, X.; et al. Overexpression of miR169o, an overlapping MicroRNA in response to both nitrogen limitation and bacterial infection, promotes nitrogen use efficiency and susceptibility to bacterial blight in rice. Plant Cell Physiol. 2018, 59, 1234–1247. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Z.; Yang, C.; Yang, Z.; Li, H.; Wu, Y. Physiological responses and small RNAs changes in maize under nitrogen deficiency and resupply. Genes Genom. 2019, 41, 1183–1194. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, X.; Yang, J.; Liu, W.; Du, Q.; Wang, H.; Fu, C.; Li, W.X. MicroRNA528 Affects Lodging Resistance of Maize by Regulating Lignin Biosynthesis under Nitrogen-Luxury Conditions. Mol. Plant 2018, 11, 806–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Xu, Z.; Mo, Q.; Zou, C.; Li, W.; Xu, Y.; Xie, C. Combined small RNA and degradome sequencing reveals novel miRNAs and their targets in response to low nitrate availability in maize. Ann. Bot. 2013, 112, 633–642. [Google Scholar] [CrossRef]
- Xu, Z.; Zhong, S.; Li, X.; Li, W.; Rothstein, S.J.; Zhang, S.; Bi, Y.; Xie, C. Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots. PLoS ONE 2011, 6, e28009. [Google Scholar] [CrossRef] [Green Version]
- Ikhajiagbe, B.; Anoliefo, G.O.; Olise, O.F.; Rackelmann, F.; Sommer, M.; Adekunle, I.J. Major phosphorus in soils is unavailable, yet critical for plant development. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 12, 500–535. [Google Scholar] [CrossRef]
- Wu, W.; Zhu, S.; Chen, Q.; Lin, Y.; Tian, J.; Liang, C. Cell wall proteins play critical roles in plant adaptation to phosphorus deficiency. Int. J. Mol. Sci. 2019, 20, 5259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, B.S.; Seo, J.S.; Chua, N.H. Nitrogen Limitation Adaptation Recruits Phosphate2 to target the phosphate transporter PT2 for degradation during the regulation of Arabidopsis phosphate homeostasis. Plant Cell 2014, 26, 454–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, H.F.; Chiou, T.J. The role of microRNAs in phosphorus deficiency signaling. Plant Physiol. 2011, 156, 1016–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Fang, Y.N.; Wu, X.M.; Qing, M.; Li, C.C.; Xie, K.D.; Deng, X.X.; Guo, W.W. The miR399-CsUBC24 module regulates reproductive development and male fertility in citrus. Plant Physiol. 2020, 183, 1681–1695. [Google Scholar] [CrossRef]
- Park, S.H.; Jeong, J.S.; Seo, J.S.; Park, B.S.; Chua, N.H. Arabidopsis ubiquitin-specific proteases UBP12 and UBP13 shape ORE1 levels during leaf senescence induced by nitrogen deficiency. New Phytol. 2019, 223, 1447–1460. [Google Scholar] [CrossRef]
- Rao, S.; Balyan, S.; Jha, S.; Bansal, C.; Das, J.R.; Gupta, A.; Mathur, S. Orchestration of MicroRNAs and Transcription Factors in the Regulation of Plant Abiotic Stress Response. In Plant Stress Biology; Springer: Berlin/Heidelberg, Germany, 2020; pp. 251–277. [Google Scholar]
- Gao, N.; Su, Y.; Min, J.; Shen, W.; Shi, W. Transgenic tomato overexpressing ath-miR399d has enhanced phosphorus accumulation through increased acid phosphatase and proton secretion as well as phosphate transporters. Plant Soil 2010, 334, 123–136. [Google Scholar] [CrossRef]
- Magalhaes, J.V.; de Sousa, S.M.; Guimaraes, C.T.; Kochian, L.V. The role of root morphology and architecture in phosphorus acquisition: Physiological, genetic, and molecular basis. In Plant Macronutrient Use Efficiency: Molecular and Genomic Perspectives in Crop Plants; Academic Press: Cambridge, MA, USA, 2017; pp. 123–147. ISBN 9780128112946. [Google Scholar]
- Song, L.; Yu, H.; Dong, J.; Che, X.; Jiao, Y.; Liu, D. The Molecular Mechanism of Ethylene-Mediated Root Hair Development Induced by Phosphate Starvation. PLoS Genet. 2016, 12, e1006194. [Google Scholar] [CrossRef] [Green Version]
- Ceasar, S.A. Regulation of low phosphate stress in plants. In Plant Life Under Changing Environment; Academic Press: Cambridge, MA, USA; Elsevier B.V.: Amsterdam, The Netherlands, 2020; pp. 123–156. [Google Scholar]
- Liu, T.Y.; Huang, T.K.; Tseng, C.Y.; Lai, Y.S.; Lin, S.I.; Lin, W.Y.; Chen, J.W.; Chioua, T.J. PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis. Plant Cell 2012, 24, 2168–2183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briat, J.F.; Rouached, H.; Tissot, N.; Gaymard, F.; Dubos, C. Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: Potential involvement of Phosphate Starvation Response 1 (PHR1). Front. Plant Sci. 2015, 6, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouached, H.; Secco, D.; Arpat, B.; Poirier, Y. The transcription factor PHR1 plays a key role in the regulation of sulfate shoot-to-root flux upon phosphate starvation in Arabidopsis. BMC Plant Biol. 2011, 11, 19. [Google Scholar] [CrossRef] [Green Version]
- Pegler, J.L.; Nguyen, D.Q.; Oultram, J.M.J.; Grof, C.P.L.; Eamens, A.L. Molecular manipulation of the mir396 and mir399 expression modules alters the response of arabidopsis thaliana to phosphate stress. Plants 2021, 10, 2570. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.Y.; Huang, T.K.; Chiou, T.J. NITROGEN LIMITATION ADAPTATION, a target of MicroRNA827, Mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis. Plant Cell 2013, 25, 4061–4074. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Huang, W.; Ying, Y.; Li, S.; Secco, D.; Tyerman, S.; Whelan, J.; Shou, H. Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves. New Phytol. 2012, 196, 139–148. [Google Scholar] [CrossRef]
- Fujii, H.; Chiou, T.J.; Lin, S.I.; Aung, K.; Zhu, J.K. A miRNA involved in phosphate-starvation response in Arabidopsis. Curr. Biol. 2005, 15, 2038–2043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Lin, H.; Shen, Y.; Gao, J.; Xiang, K.; Liu, L.; Ding, H.; Yuan, G.; Lan, H.; Zhou, S.; et al. Cloning and characterization of miRNAs from maize seedling roots under low phosphorus stress. Mol. Biol. Rep. 2012, 39, 8137–8146. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.Y.; Zeng, H.Q.; Dong, C.X.; Yin, X.M.; Shen, Q.R.; Yang, Z.M. microRNA expression profiles associated with phosphorus deficiency in white lupin (Lupinus albus L.). Plant Sci. 2010, 178, 23–29. [Google Scholar] [CrossRef]
- Sha, A.; Chen, Y.; Ba, H.; Shan, Z.; Zhang, X.; Wu, X.; Qiu, D.; Chen, S.; Zhou, X. Identification of Glycine Max MicroRNAs in response to phosphorus deficiency. J. Plant Biol. 2012, 55, 268–280. [Google Scholar] [CrossRef]
- Liu, X.; Chu, S.; Sun, C.; Xu, H.; Zhang, J.; Jiao, Y.; Zhang, D. Genome-wide identification of low phosphorus responsive microRNAs in two soybean genotypes by high-throughput sequencing. Funct. Integr. Genom. 2020, 20, 825–838. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, X.; Guo, C.; Gu, J.; Xiao, K. Identification and characterization of microRNAs from wheat (Triticum aestivum L.) under phosphorus deprivation. J. Plant Biochem. Biotechnol. 2013, 22, 113–123. [Google Scholar] [CrossRef]
- Ragel, P.; Raddatz, N.; Leidi, E.O.; Quintero, F.J.; Pardo, J.M. Regulation of K+ nutrition in plants. Front. Plant Sci. 2019, 10, 281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, A.K.; Shankar, A.; Chandran, A.K.N.; Sharma, M.; Jung, K.H.; Suprasanna, P.; Pandey, G.K. Emerging concepts of potassium homeostasis in plants. J. Exp. Bot. 2020, 71, 608–619. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Wang, H.; Hamera, S.; Chen, X.; Fang, R. MiR444a has multiple functions in the rice nitrate-signaling pathway. Plant J. 2014, 78, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Ye, Z.; He, X.; Zhang, G. Identification of microRNAs and their targets responding to low-potassium stress in two barley genotypes differing in low-K tolerance. J. Plant Physiol. 2019, 234–235, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Zeng, J.; Long, L.; Ye, L.; Zhang, G. Identification of microRNAs in response to low potassium stress in the shoots of Tibetan wild barley and cultivated. Curr. Plant Biol. 2021, 25, 100193. [Google Scholar] [CrossRef]
- Thornburg, T.E.; Liu, J.; Li, Q.; Xue, H.; Wang, G.; Li, L.; Fontana, J.E.; Davis, K.E.; Liu, W.; Zhang, B.; et al. Potassium Deficiency Significantly Affected Plant Growth and Development as Well as microRNA-Mediated Mechanism in Wheat (Triticum aestivum L.). Front. Plant Sci. 2020, 11, 1219. [Google Scholar] [CrossRef] [PubMed]
- Fontana, J.E.; Wang, G.; Sun, R.; Xue, H.; Li, Q.; Liu, J.; Davis, K.E.; Thornburg, T.E.; Zhang, B.; Zhang, Z.; et al. Impact of potassium deficiency on cotton growth, development and potential microRNA-mediated mechanism. Plant Physiol. Biochem. 2020, 153, 72–80. [Google Scholar] [CrossRef]
- Li, L.; Li, Q.; Davis, K.E.; Patterson, C.; Oo, S.; Liu, W.; Liu, J.; Wang, G.; Fontana, J.E.; Thornburg, T.E.; et al. Response of Root Growth and Development to Nitrogen and Potassium Deficiency as well as microRNA-Mediated Mechanism in Peanut (Arachis hypogaea L.). Front. Plant Sci. 2021, 12, 695234. [Google Scholar] [CrossRef]
- Liu, X.; Tan, C.; Cheng, X.; Zhao, X.; Li, T.; Jiang, J. Correction to: miR168 targets Argonaute1A mediated miRNAs regulation pathways in response to potassium deficiency stress in tomato. BMC Plant Biol. 2021, 21, 84. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, S.; Mohapatra, T. Interaction Between Macro- and Micro-Nutrients in Plants. Front. Plant Sci. 2021, 12, 753. [Google Scholar] [CrossRef] [PubMed]
- Pandey, N. Role of plant nutrients in plant growth and physiology. In Plant Nutrients and Abiotic Stress Tolerance; Springer: Singapore, 2018; pp. 51–93. ISBN 9789811090448. [Google Scholar]
- Astolfi, S.; Celletti, S.; Vigani, G.; Mimmo, T.; Cesco, S. Interaction Between Sulfur and Iron in Plants. Front. Plant Sci. 2021, 12, 670308. [Google Scholar] [CrossRef]
- Wang, L.; Chen, K.; Zhou, M. Structure and function of an Arabidopsis thaliana sulfate transporter. Nat. Commun. 2021, 12, 4455. [Google Scholar] [CrossRef]
- Li, L.; Yi, H.; Xue, M.; Yi, M. miR398 and miR395 are involved in response to SO2 stress in Arabidopsis thaliana. Ecotoxicology 2017, 26, 1181–1187. [Google Scholar] [CrossRef]
- Liang, G.; Yang, F.; Yu, D. MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J. 2010, 62, 1046–1057. [Google Scholar] [CrossRef]
- Çelik, Ö.; Akdaş, E.Y. Tissue-specific transcriptional regulation of seven heavy metal stress-responsive miRNAs and their putative targets in nickel indicator castor bean (R. communis L.) plants. Ecotoxicol. Environ. Saf. 2019, 170, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Wawrzyńska, A.; Sirko, A. To control and to be controlled: Understanding the Arabidopsis SLIM1 function in sulfur deficiency through comprehensive investigation of the EIL protein family. Front. Plant Sci. 2014, 5, 575. [Google Scholar] [PubMed]
- Koprivova, A.; Kopriva, S. Molecular mechanisms of regulation of sulfate assimilation: First steps on a long road. Front. Plant Sci. 2014, 5, 589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiou, T.J. The role of microRNAs in sensing nutrient stress. Plant, Cell Environ. 2007, 30, 323–332. [Google Scholar] [CrossRef]
- García-Segura, L.; Pérez-Andrade, M.; Miranda-Ríos, J. The emerging role of MicroRNAs in the regulation of gene expression by nutrients. J. Nutrigenet. Nutr. 2013, 6, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.Q.; Xiang, A.L.; Che, L.L.; Chen, S.; Li, H.; Song, J.B.; Yang, Z.M. A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress. Plant Biotechnol. J. 2010, 8, 887–899. [Google Scholar] [CrossRef]
- Shahbaz, M.; Pilon, M. Conserved cu-microRNAs in arabidopsis thaliana function in copper economy under deficiency. Plants 2019, 8, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shabbir, Z.; Sardar, A.; Shabbir, A.; Abbas, G.; Shamshad, S.; Khalid, S.; Natasha; Murtaza, G.; Dumat, C.; Shahid, M. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere 2020, 259, 127436. [Google Scholar] [CrossRef] [PubMed]
- Printz, B.; Lutts, S.; Hausman, J.F.; Sergeant, K. Copper trafficking in plants and its implication on cell wall dynamics. Front. Plant Sci. 2016, 7, 601. [Google Scholar] [CrossRef] [Green Version]
- Perea-García, A.; Andrés-Bordería, A.; Huijser, P.; Peñarrubia, L. The copper-microrna pathway is integrated with developmental and environmental stress responses in arabidopsis thaliana. Int. J. Mol. Sci. 2021, 22, 9547. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Shu, L.; Zhang, W.; Wang, Z. Cca-miR398 increases copper sulfate stress sensitivity via the regulation of CSD mRNA transcription levels in transgenic Arabidopsis thaliana. PeerJ 2020, 2020, e9105. [Google Scholar] [CrossRef]
- Abdel-Ghany, S.E.; Pilon, M. MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J. Biol. Chem. 2008, 283, 15932–15945. [Google Scholar] [CrossRef] [Green Version]
- Jiu, S.; Leng, X.; Haider, M.S.; Dong, T.; Guan, L.; Xie, Z.; Li, X.; Shangguan, L.; Fang, J. Identification of copper (Cu) stress-responsive grapevine microRNAs and their target genes by high-throughput sequencing. R. Soc. Open Sci. 2019, 6, 180735. [Google Scholar] [CrossRef] [Green Version]
- Yamasaki, H.; Hayashi, M.; Fukazawa, M.; Kobayashi, Y.; Shikanai, T. SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 2009, 21, 347–361. [Google Scholar] [CrossRef] [Green Version]
- Shireen, F.; Nawaz, M.A.; Chen, C.; Zhang, Q.; Zheng, Z.; Sohail, H.; Sun, J.; Cao, H.; Huang, Y.; Bie, Z. Boron: Functions and approaches to enhance its availability in plants for sustainable agriculture. Int. J. Mol. Sci. 2018, 19, 1856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozhuner, E.; Eldem, V.; Ipek, A.; Okay, S.; Sakcali, S.; Zhang, B.; Boke, H.; Unver, T. Boron Stress Responsive MicroRNAs and Their Targets in Barley. PLoS ONE 2013, 8, e59543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jyothi, M.N.; Usha, S.; Suchithra, B.; Ulfath, T.K.S.; Devaraj, V.R.; Babu, R.N. Boron toxicity induces altered expression of miRNAs in French bean (Phaseolus vulgaris L.). J. Appl. Biol. Biotechnol. 2018, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.B.; Yang, L.T.; Qi, Y.P.; Li, Y.; Li, Z.; Chen, Y.B.; Huang, Z.R.; Chen, L.S. Identification of boron-deficiency-responsive microRNAs in Citrus sinensis roots by Illumina sequencing. BMC Plant Biol. 2014, 14, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, L.F.; Liu, Y.Z.; Yin, X.X.; Peng, S.A. Transcript analysis of citrus miRNA397 and its target LAC7 reveals a possible role in response to boron toxicity. Acta Physiol. Plant. 2016, 38, 18. [Google Scholar] [CrossRef]
- Huang, J.H.; Qi, Y.P.; Wen, S.X.; Guo, P.; Chen, X.M.; Chen, L.S. Illumina microRNA profiles reveal the involvement of miR397a in Citrus adaptation to long-term boron toxicity via modulating secondary cell-wall biosynthesis. Sci. Rep. 2016, 6, 22900. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.B.; Qi, Y.P.; Yang, L.T.; Guo, P.; Li, Y.; Chen, L.S. Boron-deficiency-responsive microRNAs and their targets in Citrus sinensis leaves. BMC Plant Biol. 2015, 15, 271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.H.; Lin, X.J.; Zhang, L.Y.; Wang, X.D.; Fan, G.C.; Chen, L.S. MicroRNA sequencing revealed Citrus adaptation to long-term boron toxicity through modulation of root development by miR319 and miR171. Int. J. Mol. Sci. 2019, 20, 1422. [Google Scholar] [CrossRef] [Green Version]
- Kayihan, D.S.; Kayihan, C.; Özden Çiftçi, Y. Moderate level of toxic boron causes differential regulation of micrornas related to jasmonate and ethylene metabolisms in arabidopsis thaliana. Turk. J. Botany 2019, 43, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Kayihan, D.S.; Aksoy, E.; Kayihan, C. Identification and expression profiling of toxic boron-responsive micrornas and their targets in sensitive and tolerant wheat cultivars. Turkish J. Agric. For. 2021, 45, 411–433. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Dąbrowski, P.; Cetner, M.D.; Samborska, I.A.; Łukasik, I.; Brestic, M.; Zivcak, M.; Tomasz, H.; Mojski, J.; Kociel, H.; et al. A comparison between different chlorophyll content meters under nutrient deficiency conditions. J. Plant Nutr. 2017, 40, 1024–1034. [Google Scholar] [CrossRef]
- Farhat, N.; Elkhouni, A.; Zorrig, W.; Smaoui, A.; Abdelly, C.; Rabhi, M. Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning. Acta Physiol. Plant. 2016, 38, 145. [Google Scholar] [CrossRef]
- Wolf, J.; Straten, S.; Pitann, B.; Mühling, K.H. Foliar Magnesium supply increases the abundance of RuBisCO of Mg-deficient maize plants. J. Appl. Bot. Food Qual. 2019, 92, 274–280. [Google Scholar] [CrossRef]
- Ye, X.; Chen, X.F.; Deng, C.L.; Yang, L.T.; Lai, N.W.; Guo, J.X.; Chen, L.S. Magnesium-deficiency effects on pigments, photosynthesis and photosynthetic electron transport of leaves, and nutrients of leaf blades and veins in citrus sinensis seedlings. Plants 2019, 8, 389. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.L.; Qi, Y.P.; Liang, W.W.; Yang, L.T.; Lu, Y.B.; Guo, P.; Ye, X.; Chen, L.S. MicroRNA regulatory mechanisms on Citrus sinensis leaves to magnesium-deficiency. Front. Plant Sci. 2016, 7, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, W.W.; Huang, J.H.; Li, C.P.; Yang, L.T.; Ye, X.; Lin, D.; Chen, L.S. MicroRNA-mediated responses to long-term magnesium-deficiency in Citrus sinensis roots revealed by Illumina sequencing. BMC Genomics 2017, 18, 657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owusu Adjei, M.; Zhou, X.; Mao, M.; Xue, Y.; Liu, J.; Hu, H.; Luo, J.; Zhang, H.; Yang, W.; Feng, L.; et al. Magnesium Oxide nanoparticle effect on the growth, development, and microRNAs expression of Ananas comosus var. bracteatus. J. Plant Interact. 2021, 16, 247–257. [Google Scholar] [CrossRef]
- Alejandro, S.; Höller, S.; Meier, B.; Peiter, E. Manganese in Plants: From Acquisition to Subcellular Allocation. Front. Plant Sci. 2020, 11, 300. [Google Scholar] [CrossRef] [Green Version]
- Valdés-López, O.; Yang, S.S.; Aparicio-Fabre, R.; Graham, P.H.; Reyes, J.L.; Vance, C.P.; Hernández, G. MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytol. 2010, 187, 805–818. [Google Scholar] [CrossRef]
- Gong, J.; Li, D.; Li, H.; Zhou, H.; Xu, J. Identification of manganese-responsive micrornas in arabidopsis by small rna sequencing. Czech J. Genet. Plant Breed. 2019, 55, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Przybyla-Toscano, J.; Boussardon, C.; Law, S.R.; Rouhier, N.; Keech, O. Gene atlas of iron-containing proteins in Arabidopsis thaliana. Plant J. 2021, 106, 258–274. [Google Scholar] [CrossRef]
- He, L.; Yue, Z.; Chen, C.; Li, C.; Li, J.; Sun, Z. Enhancing iron uptake and alleviating iron toxicity in wheat by plant growth-promoting bacteria: Theories and practices. Int. J. Agric. Biol. 2020, 23, 190–196. [Google Scholar] [CrossRef]
- Rout, G.R.; Sahoo, S. Role of Iron in Plant Growth and Metabolism. Rev. Agric. Sci. 2015, 3, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.F.; Yarra, R.; Yin, X.X.; Liu, Y.Z.; Cao, H.X. Identification and function prediction of iron-deficiency-responsive microRNAs in citrus leaves. 3 Biotech 2021, 11, 121. [Google Scholar] [CrossRef]
- Kong, W.W.; Yang, Z.M. Identification of iron-deficiency responsive microRNA genes and cis-elements in Arabidopsis. Plant Physiol. Biochem. 2010, 48, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Waters, B.M.; McInturf, S.A.; Stein, R.J. Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana. J. Exp. Bot. 2012, 63, 5903–5918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrió-Seguí, À.; Ruiz-Rivero, O.; Villamayor-Belinchón, L.; Puig, S.; Perea-García, A.; Peñarrubia, L. The altered expression of Microrna408 influences the arabidopsis response to iron deficiency. Front. Plant Sci. 2019, 10, 324. [Google Scholar] [CrossRef]
- Mousavi, S.R.; Galavi, M.; Rezaei, M. Zink (Zn) Importance for Crop Production. Int. J. Agron. Plant Prod. 2013, 4, 64–68. [Google Scholar]
- Sadeghzadeh, B. A review of zinc nutrition and plant breeding. J. Soil Sci. Plant Nutr. 2013, 4, 95162013005000072. [Google Scholar] [CrossRef] [Green Version]
- Mattiello, E.M.; Cancellier, E.L.; da Silva, R.C.; Degryse, F.; Baird, R.; Mclaughlin, M.J. Efficiency of soil-applied 67Zn-enriched fertiliser across three consecutive crops. Pedosphere 2021, 31, 531–537. [Google Scholar] [CrossRef]
- Shi, D.Q.; Zhang, Y.; Ma, J.H.; Li, Y.L.; Xu, J. Identification of zinc deficiency-responsive MicroRNAs in Brassica juncea Roots by Small RNA Sequencing. J. Integr. Agric. 2013, 12, 2036–2044. [Google Scholar] [CrossRef]
- Sinare, B.; Miningou, A.; Nebié, B.; Eleblu, J.; Kwadwo, O.; Traoré, A.; Zagre, B.; Desmae, H. Participatory analysis of groundnut (Arachis hypogaea L.) cropping system and production constraints in Burkina Faso. J. Ethnobiol. Ethnomed. 2021, 17, 2. [Google Scholar] [CrossRef]
- Hamza, M.; Abbas, M.; Abd Elrahman, A.; Helal, M.; Shahba, M. Conventional versus nano calcium forms on peanut production under sandy soil conditions. Agriculture 2021, 11, 767. [Google Scholar] [CrossRef]
- Song, Q.; Liu, Y.; Pang, J.; Yong, J.W.H.; Chen, Y.; Bai, C.; Gille, C.; Shi, Q.; Wu, D.; Han, X.; et al. Supplementary Calcium Restores Peanut (Arachis hypogaea) Growth and Photosynthetic Capacity Under Low Nocturnal Temperature. Front. Plant Sci. 2020, 10, 1637. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Yang, Q.; Chen, K.; Zhao, S.; Zhang, C.; Pan, R.; Cai, T.; Deng, Y.; Wang, X.; Chen, Y.; et al. Integrated microRNA and transcriptome profiling reveals a miRNA-mediated regulatory network of embryo abortion under calcium deficiency in peanut (Arachis hypogaea L.). BMC Genom. 2019, 20, 392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, K.; Fan, D.; Ding, Z.; Su, Y.; Wang, X. Cs-miR156 is involved in the nitrogen form regulation of catechins accumulation in tea plant (Camellia sinensis L.). Plant Physiol. Biochem. 2015, 97, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Deboer, K.; Melser, S.; Sperschneider, J.; Kamphuis, L.G.; Garg, G.; Gao, L.L.; Frick, K.; Singh, K.B. Identification and profiling of narrow-leafed lupin (Lupinus angustifolius) micrornas during seed development. BMC Genom. 2019, 20, 135. [Google Scholar] [CrossRef]
- Huang, D.; Koh, C.; Feurtado, J.A.; Tsang, E.W.T.; Cutler, A.J. MicroRNAs and their putative targets in Brassica napus seed maturation. BMC Genom. 2013, 14, 140. [Google Scholar] [CrossRef] [Green Version]
- De Sousa Cardoso, T.C.; Alves, T.C.; Caneschi, C.M.; dos Reis Gomes Santana, D.; Fernandes-Brum, C.N.; Dos Reis, G.L.; Daude, M.M.; Ribeiro, T.H.C.; Gómez, M.M.D.; Lima, A.A.; et al. New insights into tomato microRNAs. Sci. Rep. 2018, 8, 16069. [Google Scholar] [CrossRef]
- Li, C.; Yu, X.; Bai, L.; He, C.; Li, Y. Responses of miRNAs and their target genes to nitrogen- or phosphorus-deficiency in grafted cucumber seedlings. Hortic. Environ. Biotechnol. 2016, 57, 97–112. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, Y.; Wu, F.; Zhang, Y.; Cheng, L.; Huang, M.; Tong, Z. Profiling of MicroRNAs and Their Targets in Roots and Shoots Reveals a Potential MiRNA-Mediated Interaction Network in Response to Phosphate Deficiency in the Forestry Tree Betula luminifera. Front. Genet. 2021, 12, 552454. [Google Scholar] [CrossRef]
- Paul, S.; Gayen, D.; Datta, S.K.; Datta, K. Analysis of high iron rice lines reveals new miRNAs that target iron transporters in roots. J. Exp. Bot. 2016, 67, 5811–5824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, G.; Du, C.; Gao, H.; Liu, S.; Sun, W.; Lu, H.; Kang, J.; Xie, Y.; Ma, D.; Wang, C. Identification of microRNAs in developing wheat grain that are potentially involved in regulating grain characteristics and the response to nitrogen levels. BMC Plant Biol. 2020, 20, 1–21. [Google Scholar] [CrossRef]
- Agarwal, S.; Mangrauthia, S.K.; Sarla, N. Expression profiling of iron deficiency responsive microRNAs and gene targets in rice seedlings of Madhukar x Swarna recombinant inbred lines with contrasting levels of iron in seeds. Plant Soil 2015, 396, 137–150. [Google Scholar] [CrossRef]
- Chen, M.; Bao, H.; Wu, Q.; Wang, Y. Transcriptome-wide identification of miRNA targets under nitrogen deficiency in populus tomentosa using degradome sequencing. Int. J. Mol. Sci. 2015, 16, 13937–13958. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Li, D.; Cong, L.; Lu, X. Identification of microRNAs involved in crosstalk between nitrogen, phosphorus and potassium under multiple nutrient deficiency in sorghum. Crop J. 2021, 9, 465–475. [Google Scholar] [CrossRef]
- Fei, Y.; Luo, C.; Tang, W. Differential expression of microRNAs during root formation in Taxus chinensis var. mairei cultivars. Open Life Sci. 2019, 14, 97–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Xia, K.; Liang, Z.; Chen, K.; Gao, C.; Zhang, M. MicroRNA393 is involved in nitrogen-promoted rice tillering through regulation of auxin signal transduction in axillary buds. Sci. Rep. 2016, 6, 32158. [Google Scholar] [CrossRef]
- Qu, L.; Lin, L.B.; Xue, H.W. Rice miR394 suppresses leaf inclination through targeting an F-box gene, Leaf Inclination 4. J. Integr. Plant Biol. 2019, 61, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhou, Z.; Bai, J.; Tao, X.; Wang, L.; Zhang, H.; Zhu, J.K. Disruption of MIR396e and MIR396f improves rice yield under nitrogen-deficient conditions. Natl. Sci. Rev. 2020, 7, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Javed, M.; Sinha, A.; Shukla, L.I. Evaluation of mature miR398 family, expression analysis and the post-transcriptional regulation evidence in gamma-irradiated and nitrogen-stressed Medicago sativa seedlings. Int. J. Radiat. Biol. 2019, 95, 585–596. [Google Scholar] [CrossRef]
- Ma, P.; Zhang, X.; Luo, B.; Chen, Z.; He, X.; Zhang, H.; Li, B.; Liu, D.; Wu, L.; Gao, S.; et al. Transcriptomic and genome-wide association study reveal long noncoding RNAs responding to nitrogen deficiency in maize. BMC Plant Biol. 2021, 21, 93. [Google Scholar] [CrossRef]
- Yuan, S.; Li, Z.; Li, D.; Yuan, N.; Hu, Q.; Luo, H. Constitutive expression of rice microRNA528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in creeping bentgrass. Plant Physiol. 2015, 169, 576–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Y.; Sun, F.; Hou, J.; Chen, L.; Zhang, Y.; Kang, X.; Wang, Y. Differential profiling analysis of miRNAs reveals a regulatory role in low N stress response of Populus. Funct. Integr. Genom. 2015, 15, 93–105. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, W.; Tauqeer, A.; Waheed, A.; Zeng, F. MicroRNA Mediated Plant Responses to Nutrient Stress. Int. J. Mol. Sci. 2022, 23, 2562. https://doi.org/10.3390/ijms23052562
Islam W, Tauqeer A, Waheed A, Zeng F. MicroRNA Mediated Plant Responses to Nutrient Stress. International Journal of Molecular Sciences. 2022; 23(5):2562. https://doi.org/10.3390/ijms23052562
Chicago/Turabian StyleIslam, Waqar, Arfa Tauqeer, Abdul Waheed, and Fanjiang Zeng. 2022. "MicroRNA Mediated Plant Responses to Nutrient Stress" International Journal of Molecular Sciences 23, no. 5: 2562. https://doi.org/10.3390/ijms23052562
APA StyleIslam, W., Tauqeer, A., Waheed, A., & Zeng, F. (2022). MicroRNA Mediated Plant Responses to Nutrient Stress. International Journal of Molecular Sciences, 23(5), 2562. https://doi.org/10.3390/ijms23052562