Involvement of CCN1 Protein and TLR2/4 Signaling Pathways in Intestinal Epithelial Cells Response to Listeria monocytogenes
Abstract
:1. Introduction
2. Results
2.1. The Pathological Changes in Mice after L. monocytogenes Infection
2.2. The Changes in CCN1 Protein and TLR2/4 Signaling Pathways Response to L. monocytogenes Infection in Mice
2.3. The Damage of Small Intestinal Organoids after L. monocytogenes Infection
2.4. The Changes in CCN1 Protein and TLR2/4 Signaling Pathways Response to L. monocytogenes Infection in Organoids
2.5. The Changes in TLR2/4 Signaling Pathways Response to L. monocytogenes Infection in Organoids Pre-Treated with CCN1 Protein
3. Discussion
4. Materials and Methods
4.1. Bacterial Strain Culture
4.2. Animals and Intestinal Organoids
4.2.1. Ethics Statement
4.2.2. Animals
4.2.3. Intestinal Organoids
Isolation and Culture of Intestinal Organoids
L. monocytogenes Infection of Organoid Cells
4.3. The Number of L. monocytogenes in Target Organs and Organoids
4.4. ELISA
4.5. LDH Release Assay
4.6. Real-Time Quantitative PCR
4.7. Western Blot
4.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Noordhout, C.M.; Devleesschauwer, B.; Angulo, F.J.; Verbeke, G.; Haagsma, J.; Kirk, M.; Havelaar, A.; Speybroeck, N. The global burden of listeriosis: A systematic review and meta-analysis. Lancet Infect. Dis. 2014, 14, 1073–1082. [Google Scholar] [CrossRef] [Green Version]
- Shimazu, T.; Villena, J.; Tohno, M.; Fujie, H.; Hosoya, S.; Shimosato, T.; Aso, H.; Suda, Y.; Kawai, Y.; Saito, T.; et al. Immunobiotic Lactobacillus jensenii Elicits Anti-Inflammatory Activity in Porcine Intestinal Epithelial Cells by Modulating Negative Regulators of the Toll-Like Receptor Signaling Pathway. Infect. Immun. 2012, 80, 276–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosoya, S.; Villena, J.; Shimazu, T.; Tohno, M.; Fujie, H.; Chiba, E.; Shimosato, T.; Aso, H.; Suda, Y.; Kawai, Y.; et al. Immunobiotic lactic acid bacteria beneficially regulate immune response triggered by poly(I:C) in porcine intestinal epithelial cells. Vet. Res. 2011, 42, 111. [Google Scholar] [CrossRef] [Green Version]
- Tomosada, Y.; Villena, J.; Murata, K.; Chiba, E.; Shimazu, T.; Aso, H.; Iwabuchi, N.; Xiao, J.; Saito, T.; Kitazawa, H. Immunoregulatory Effect of Bifidobacteria Strains in Porcine Intestinal Epithelial Cells through Modulation of Ubiquitin-Editing Enzyme A20 Expression. PLoS ONE 2013, 8, e59259. [Google Scholar] [CrossRef]
- Harris, G.; KuoLee, R.; Chen, W.X. Role of Toll-like receptors in health and diseases of gastrointestinal tract. World J. Gastroenterol. 2006, 12, 2149–2160. [Google Scholar] [CrossRef] [PubMed]
- Seki, E.; Tsutsui, H.; Tsuji, N.M.; Hayashi, N.; Adachi, K.; Nakano, H.; Futatsugi-Yumikura, S.; Takeuchi, O.; Hoshino, K.; Akira, S.; et al. Critical roles of myeloid differentiation factor 88-dependent proinflammatory cytokine release in early phase clearance of Listeria monocytogenes in mice. J. Immunol. 2002, 169, 3863–3868. [Google Scholar] [CrossRef] [Green Version]
- D’Orazio, S.E.F. Innate and Adaptive Immune Responses during Listeria monocytogenes Infection. Microbiol. Spectr. 2019, 7, 3–7. [Google Scholar] [CrossRef]
- Jun, J.I.; Lau, L.F. CCN1 is an opsonin for bacterial clearance and a direct activator of Toll-like receptor signaling. Nat. Commun. 2020, 11, 1242. [Google Scholar] [CrossRef]
- Zughaler, S.M.; Zimmer, S.M.; Datta, A.; Carlson, R.W.; Stephens, D.S. Differential induction of the toll-like receptor 4-MyD88-dependent and -independent signaling pathways by endotoxins (vol 73, pg 2940, 2005). Infect. Immun. 2006, 74, 3077. [Google Scholar] [CrossRef] [Green Version]
- McClure, R.; Massari, P. TLR-dependent human mucosal epithelial cell responses to microbial pathogens. Front. Immunol. 2014, 5, 386. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.S.; Kim, K.H.; Lau, L.F. The matricellular protein CCN1 promotes mucosal healing in murine colitis through IL-6. Mucosal. Immunol. 2015, 8, 1285–1296. [Google Scholar] [CrossRef] [PubMed]
- Jun, J.I.; Kim, K.H.; Lau, L.F. The matricellular protein CCN1 mediates neutrophil efferocytosis in cutaneous wound healing. Nat. Commun. 2015, 6, 7386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.H.; Chen, C.C.; Alpini, G.; Lau, L.F. CCN1 induces hepatic ductular reaction through integrin alpha(v)beta(5)-mediated activation of NF-kappa B. J. Clin. Investig. 2015, 125, 1886–1900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shegarfi, H.; Krohn, C.D.; Gundersen, Y.; Kjeldsen, S.F.; Hviid, C.V.B.; Ruud, T.E.; Aasen, A.O. Regulation of CCN1 (Cyr61) in a porcine model of intestinal ischemia/reperfusion. Innate Immun. 2015, 21, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Shihab, P.K.; Al-Roub, A.; Al-Ghanim, M.; Al-Mass, A.; Behbehani, K.; Ahmad, R. TLR2 and AP-1/NF-kappaB are involved in the regulation of MMP-9 elicited by heat killed Listeria monocytogenes in human monocytic THP-1 cells. J. Inflamm. 2015, 12, 32. [Google Scholar] [CrossRef] [Green Version]
- Wilharm, A.; Brigas, H.C.; Sandrock, I.; Ribeiro, M.; Amado, T.; Reinhardt, A.; Demera, A.; Hoenicke, L.; Strowig, T.; Carvalho, T.; et al. Microbiota-dependent expansion of testicular IL-17-producing Vγ6+ γδ T cells upon puberty promotes local tissue immune surveillance. Mucosal Immunol. 2020, 14, 242–252. [Google Scholar] [CrossRef]
- Fernandes-Alnemri, T.; Kang, S.; Anderson, C.; Sagara, J.; Fitzgerald†, K.; Alnemri, E.S. Toll-Like Receptor Signaling Licenses IRAK1 for Rapid Activation of The NLRP3 Inflammasome1. J. Immunol. 2013, 191, 3995–3999. [Google Scholar] [CrossRef]
- Co, J.Y.; Margalef-Catala, M.; Li, X.; Mah, A.T.; Kuo, C.J.; Monack, D.M.; Amieva, M.R. Controlling Epithelial Polarity: A Human Enteroid Model for Host-Pathogen Interactions. Cell Rep. 2019, 26, 2509–2520.e4. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Zhou, C.; Zhou, G.; Li, H.; Ye, K. Effect of Listeria monocytogenes on intestinal stem cells in the co-culture model of small intestinal organoids. Microb. Pathog. 2021, 153, 104776. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Wu, S.; Xia, Y.; Sun, J. Salmonella-infected crypt-derived intestinal organoid culture system for host–bacterial interactions. Physiol. Rep. 2014, 2, e12147. [Google Scholar] [CrossRef] [Green Version]
- Vandussen, K.L.; Marinshaw, J.M.; Shaikh, N.; Miyoshi, H.; Stappenbeck, T.S. Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays. Gut 2014, 64, 911–920. [Google Scholar] [CrossRef] [Green Version]
- Rajan, A.; Vela, L.; Zeng, X.L.; Yu, X.; Shroyer, N.; Blutt, S.E.; Poole, N.M.; Carlin, L.G.; Nataro, J.P.; Estes, M.K.; et al. Novel Segment- and Host-Specific Patterns of Enteroaggregative Escherichia coli Adherence to Human Intestinal Enteroids. MBio 2018, 9, e02419-17. [Google Scholar] [CrossRef] [Green Version]
- Garner, C.D.; Antonopoulos, D.A.; Wagner, B.; Duhamel, G.E.; Keresztes, I.; Ross, D.A.; Young, V.B.; Altier, C. Perturbation of the Small Intestine Microbial Ecology by Streptomycin Alters Pathology in a Salmonella enterica Serovar Typhimurium Murine Model of Infection. Infect. Immun. 2009, 77, 2691–2702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Yang, Q.; Tian, L.L.; Zhang, Z.H.; Qiu, L.; Tao, X.Y.; Wei, H. Protection of surface layer protein from Enterococcus faecium WEFA23 against Listeria monocytogenes CMCC54007 infection by modulating intestinal permeability and immunity. Appl. Microbiol. Biotechnol. 2021, 105, 4269–4284. [Google Scholar] [CrossRef] [PubMed]
- Lau, L.F. CCN1/CYR61: The very model of a modern matricellular protein. Cell. Mol. Life Sci. 2011, 68, 3149–3163. [Google Scholar] [CrossRef] [Green Version]
- Moon, H.G.; Qin, Z.; Quan, T.; Xie, L.; Dela Cruz, C.S.; Jin, Y. Matrix protein CCN1 induced by bacterial DNA and CpG ODN limits lung inflammation and contributes to innate immune homeostasis. Mucosal Immunol. 2015, 8, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Ding, E.Y.; Yu, O.M.; Xiang, S.Y.; Tan-Sah, V.P.; Yung, B.S.; Hedgpeth, J.; Neubig, R.R.; Lau, L.F.; Brown, J.H.; et al. Induction of the matricellular protein CCN1 through RhoA and MRTF-A contributes to ischemic cardioprotection. J. Mol. Cell. Cardiol. 2014, 75, 152–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiedmaier, N.; Wuller, S.; Koberle, M.; Manncke, B.; Krejci, J.; Autenrieth, I.B.; Bohn, E. Bacteria induce CTGF and CYR61 expression in epithelial cells in a lysophosphatidic acid receptor-dependent manner. Int. J. Med. Microbiol. 2008, 298, 231–243. [Google Scholar] [CrossRef]
- Higgins, S.E.; Wolfenden, A.D.; Tellez, G.; Hargis, B.M.; Porter, T.E. Transcriptional profiling of cecal gene expression in probiotic- and Salmonella-challenged neonatal chicks. Poult. Sci. 2011, 90, 901–913. [Google Scholar] [CrossRef]
- Smale, S.T. Selective Transcription in Response to an Inflammatory Stimulus. Cell 2010, 140, 833–844. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Zhao, J.; Shen, S.Q.; Li, H.X.; He, K.L.; Shen, G.X.; Mayer, L.; UnkelesS, J.; Li, D.; Yuan, Y.; et al. Listeria monocytogenes promotes tumor growth via tumor cell toll-like receptor 2 signaling. Cancer Res. 2007, 67, 4346–4352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.T.; Li, F.J.; Hsu, T.Y.; Liang, S.M.; Yeh, Y.C.; Liao, W.Y.; Chou, T.Y.; Chen, N.J.; Hsiao, M.; Yang, W.B.; et al. CLEC5A is a critical receptor in innate immunity against Listeria infection. Nat. Commun. 2017, 8, 299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janot, L.; Secher, T.; Torres, D.; Maillet, I.; Pfeilschifter, J.; Quesniaux, V.F.J.; Landmann, R.; Ryffel, B.; Erard, F. CD14 works with toll-like receptor 2 to contribute to recognition and control of Listeria monocytogenes infection. J. Infect. Dis. 2008, 198, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Van Riet, E.; Everts, B.; Retra, K.; Phylipsen, M.; van Hellemond, J.J.; Tielens, A.G.M.; van der Kleij, D.; Hartgers, F.C.; Yazdanbakhsh, M. Combined TLR2 and TLR4 ligation in the context of bacterial or helminth extracts in human monocyte derived dendritic cells: Molecular correlates for Th1/Th2 polarization. BMC Immunol. 2009, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Z.J.; Cervantes, J.L.; Cicek, B.B.; Mukherjee, S.; Venkatesh, M.; Maher, L.A.; Salazar, J.C.; Mani, S.; Khanna, K.M. Pregnane X Receptor Regulates Pathogen-Induced Inflammation and Host Defense against an Intracellular Bacterial Infection through Toll-like Receptor 4 (vol 6, 2016). Sci. Rep. 2017, 7, 31936. [Google Scholar]
- Popovic, N.; Djokic, J.; Brdaric, E.; Dinic, M.; Terzic-Vidojevic, A.; Golic, N.; Veljovic, K. The Influence of Heat-Killed Enterococcus faecium BGPAS1-3 on the Tight Junction Protein Expression and Immune Function in Differentiated Caco-2 Cells Infected With Listeria monocytogenes ATCC 19111. Front. Microbiol. 2019, 10, 412. [Google Scholar] [CrossRef]
- Theisen, E.; Sauer, J.D. Listeria monocytogenes and the Inflammasome: From Cytosolic Bacteriolysis to Tumor Immunotherapy. Curr. Top. Microbiol. 2016, 397, 133–160. [Google Scholar]
- Soria-Castro, R.; Alfaro-Doblado, A.R.; Rodriguez-Lopez, G.; Campillo-Navarro, M.; Meneses-Preza, Y.G.; Galan-Salinas, A.; Alvarez-Jimenez, V.; Yam-Puc, J.C.; Munguia-Fuentes, R.; Dominguez-Flores, A.; et al. TLR2 Regulates Mast Cell IL-6 and IL-13 Production During Listeria monocytogenes Infection. Front. Immunol. 2021, 12, 2231. [Google Scholar] [CrossRef]
Target Genes | Primer Sense (5′-3′) | Primer Antisense (5′-3′) |
---|---|---|
CCN1 | CTGCGCTAAACAACTCAACGA | GCAGATCCCTTTCAGAGCGG |
TLR2 | GGACATCCCCTTCCCTCACTTC | ACGGGCAGTGGTGAAAACT |
TLR4 | TTCAGAGCCGTTGGTGTATC | CCCATTCCAGGTAGGTGTTT |
MyD88 | CCTGCGGTTCATCACTAT | GGCTCCGCATCAGTCT |
IRAK1 | CCACCCTGGGTTATGTGCC | GAGGATGTGAACGAGGTCAGC |
TAK1 | ATGTTTGTCGTGCCTTTCTCT | AAGGGTTTCCGGCGTGTTAT |
p38 | CAGAAACTGACGGACGACCA | CAGCTCGGCCATAATGCAAC |
TNF | TACTGAACTTCGGGGTGATTGGTCC | CAGCCTTGTCCCTTGAAGAGAACC |
IL-1β | GCTTGGTGATGTCTGGTCCA | AACACGCAGGACAGGTACAG |
GAPDH | ATGGTGAAGGTCGGTGTGAA | TGGAAGATGGTGATGGGCTT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Zou, Y.; Zhang, Y.; Teng, S.; Ye, K. Involvement of CCN1 Protein and TLR2/4 Signaling Pathways in Intestinal Epithelial Cells Response to Listeria monocytogenes. Int. J. Mol. Sci. 2022, 23, 2739. https://doi.org/10.3390/ijms23052739
Zhou C, Zou Y, Zhang Y, Teng S, Ye K. Involvement of CCN1 Protein and TLR2/4 Signaling Pathways in Intestinal Epithelial Cells Response to Listeria monocytogenes. International Journal of Molecular Sciences. 2022; 23(5):2739. https://doi.org/10.3390/ijms23052739
Chicago/Turabian StyleZhou, Cong, Yafang Zou, Yuanyuan Zhang, Shuang Teng, and Keping Ye. 2022. "Involvement of CCN1 Protein and TLR2/4 Signaling Pathways in Intestinal Epithelial Cells Response to Listeria monocytogenes" International Journal of Molecular Sciences 23, no. 5: 2739. https://doi.org/10.3390/ijms23052739
APA StyleZhou, C., Zou, Y., Zhang, Y., Teng, S., & Ye, K. (2022). Involvement of CCN1 Protein and TLR2/4 Signaling Pathways in Intestinal Epithelial Cells Response to Listeria monocytogenes. International Journal of Molecular Sciences, 23(5), 2739. https://doi.org/10.3390/ijms23052739