Bacterial Inoculant and Sucrose Amendments Improve the Growth of Rheum palmatum L. by Reprograming Its Metabolite Composition and Altering Its Soil Microbial Community
Abstract
:1. Introduction
2. Results
2.1. The Effects of PGPM and Sucrose Applications on R. palmatum Growth and Yield
2.2. Metabolic Differences of R. palmatum Roots under the PGPM and Sucrose Treatments
2.3. Soil Properties, Enzyme Activities, and Microbial Biomass under the PGPM and Sucrose Treatments
2.4. The Effects of PGPM and Sucrose Applications on Rhizosphere Microbial Community Diversity and Richness
2.5. The Effects of PGPM and Sucrose Applications on Rhizosphere Microbial Community Composition
2.6. The Effects of Soil Physicochemical Properties on the Microbial Abundances
2.7. Network Analysis and Effects of PGPM and Sucrose Applications on Rhizosphere Microbial Community Function
3. Discussion
4. Materials and Methods
4.1. Plants, Bacteria, and Experiment Design
4.2. Growth Parameters and Yield Analysis
4.3. Determination of Soil Physicochemical Properties, Enzyme Activities, and Microbial Biomass
4.4. Metabolomic Profiling
4.5. Bacterial and Fungal PacBio Sequencing
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sparrow, L.A.; Chapman, K.S.R. Effects of nitrogen fertiliser on potato (Solanum tuberosum L.; cv. Russet Burbank) in Tasmania. 1. Yield and quality. Aust. J. Exp. Agric. 2003, 43, 631–641. [Google Scholar] [CrossRef]
- Antil, R.S.; Raj, D. Integrated nutrient management for sustainable crop production and improving soil health. In Nutrient Dynamics for Sustainable Crop Production; Springer: Singapore, 2020; pp. 67–101. [Google Scholar]
- Vessey, J.K. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 2003, 255, 571–586. [Google Scholar] [CrossRef]
- Ryu, C.M.; Farag, M.A.; Hu, C.H.; Reddy, M.S.; Wei, H.X.; Paré, P.W.; Kloepper, J.W. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA 2003, 100, 4927–4932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiltner, L. Uber neuer Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologieunterbesonderer. Berücksichtigung Der Gründüngung Und Brache 1904, 32, 1405–1417. [Google Scholar]
- Kent, A.D.; Smith, D.J.; Benson, B.J.; Triplett, E.W. Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities. Appl. Environ. Microbiol. 2003, 69, 6768–6776. [Google Scholar] [CrossRef] [Green Version]
- Kent, A.D.; Triplett, E.W. Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu. Rev. Microbiol. 2002, 56, 211–236. [Google Scholar] [CrossRef]
- Idris, E.E.; Iglesias, D.J.; Talon, M.; Borriss, R. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant-Microbe Interact. 2007, 20, 619–626. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.S.; Wu, H.J.; Zang, H.Y.; Wu, L.M.; Zhu, Q.Q.; Gao, X.W. Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. Mol. Plant-Microbe Interact. 2014, 27, 655–663. [Google Scholar] [CrossRef] [Green Version]
- Kloepper, J.W.; Leong, J.; Teintze, M.; Schroth, M.N. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 1980, 286, 885–886. [Google Scholar] [CrossRef]
- Autoun, H.; Kleopper, J.W. Plant growth promoting rhizobacteria (PGPR). In Encyclopedia of Genetics; Academic Press: New York, NY, USA, 2001; pp. 1477–1480. [Google Scholar]
- Goswami, D.; Dhandhukia, P.; Patel, P.; Thakker, J.N. Screening of PGPR from saline desert of Kutch: Growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol. Res. 2014, 169, 66–75. [Google Scholar] [CrossRef]
- Degryse, H.; Ongena, S. The impact of competition on bank orientation. J. Financ. Intermed. 2007, 16, 399–424. [Google Scholar] [CrossRef] [Green Version]
- Yobo, K.S.; Laing, M.D.; Hunter, C.H. Effects of single and dual applications of selected Trichoderma and Bacillus isolates on performance of dry bean seedlings grown in composted pine bark growth medium under shadehouse conditions. J. Plant Nutr. 2009, 32, 1271–1289. [Google Scholar] [CrossRef]
- Li, L.; Ma, J.; Ibekwe, A.M.; Wang, Q.; Yang, C.H. Cucumber rhizosphere microbial community response to biocontrol agent Bacillus subtilis B068150. Agriculture 2016, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Lugtenberg, B.; Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 2009, 63, 541–556. [Google Scholar] [CrossRef] [Green Version]
- Song, X.C.; Liu, M.Q.; Wu, D.; Griffiths, B.S.; Jiao, J.G.; Li, H.X.; Hu, F. Interaction matters: Synergy between vermicompost and PGPR agents improves soil quality, crop quality and crop yield in the field. Appl. Soil Ecol. 2015, 89, 25–34. [Google Scholar] [CrossRef]
- Kabiraj, A.; Majhi, K.; Halder, U.; Let, M.; Bandopadhyay, R. Role of Plant Growth-Promoting Rhizobacteria (PGPR) for crop stress management. In Sustainable Agriculture in the Era of Climate Change; Springer: Cham, Switzerland, 2020; pp. 367–389. [Google Scholar]
- Schisler, D.A.; Slininger, P.J.; Behle, R.W.; Jackson, M.A. Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 2004, 94, 1267–1271. [Google Scholar] [CrossRef] [Green Version]
- Fogele, B.; Granta, R.; Valciņa, O.; Bērziņš, A. Occurrence and diversity of Bacillus cereus and moulds in spices and herbs. Food Control 2018, 83, 69–74. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, Y.; Yue, L.; Constantine, U.; Zhao, X.; Zhou, Q.; Wang, Y.; Zhang, Y.B.; Chen, G.F.; Dun, Z.H.; et al. Effectively controlling Fusarium root rot disease of Angelica sinensis and enhancing soil fertility with a novel attapulgite-coated biocontrol agent. Appl. Soil Ecol. 2021, 168, 104–121. [Google Scholar] [CrossRef]
- Ahamd, M.; Hussain, A.; Akhtar, M.F.U.Z.; Zafar-Ul-Hye, M.; Iqbal, Z.; Naz, T.; Iqbal, M.M. Effectiveness of multi-strain biofertilizer in combination with organic sources for improving the productivity of Chickpea in Drought Ecology. Asian J. Agric. Biol. 2017, 5, 228–237. [Google Scholar]
- Kachroo, D.; Razdan, R. Growth, nutrient uptake and yield of wheat (Triticum aestivum) as influenced by biofertilizers and nitrogen. Indian J. Agron. 2006, 51, 37–39. [Google Scholar]
- Tripathi, R.D.; Dwivedi, S.; Shukla, M.K.; Mishra, S.; Srivastava, S.; Singh, R.; Rai, U.N.; Gupta, D.K. Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice (Oryza sativa L.) plants. Chemosphere 2008, 70, 1919–1929. [Google Scholar] [CrossRef]
- Gupta, A.; Sharma, V.K.; Sharma, G.D.; Chopra, P. Effect of biofertilizer and phosphorus levels on yield attributes, yield and quality of urdbean (Vigna mungo). Indian J. Agron. 2006, 51, 142–144. [Google Scholar]
- Singh, B.; Pareek, R.G. Effect of phosphorus and biofertilizers on growth and yield of mungbean. Indian J. Pulses Res. 2003, 16, 31–33. [Google Scholar]
- Singh, R.S.; Yadav, M.K. Effect of phosphorus and biofertilizers on growth, yield and nutrient uptake of long duration pigeonpea under rainfed condition. J. Food Legumes 2008, 21, 46–48. [Google Scholar]
- Shanware, A.S.; Kalkar, S.A.; Trivedi, M.M. Potassium solublisers: Occurrence, mechanism and their role as competent biofertilizers. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 622–629. [Google Scholar]
- Bahadur, I.; Meena, V.S.; Kumar, S. Importance and application of potassic biofertilizer in Indian agriculture. Res. J. Chem. Sci. 2014, 2231, 606X. [Google Scholar]
- Blagodatskaya, E.; Kuzyakov, Y. Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biol. Biochem. 2013, 67, 192–211. [Google Scholar] [CrossRef]
- Rekha, K.; Kumar, R.M.; Ilango, K.; Rex, A.; Usha, B. Transcriptome profiling of rice roots in early response to Bacillus subtilis (RR4) colonization. Botany 2018, 96, 749–765. [Google Scholar] [CrossRef] [Green Version]
- Panichikkal, J.; EdayileveetilKrishnankutty, R. Rhizobacterial biofilm and plant growth promoting trait enhancement by organic acids and sugars. Biofouling 2020, 36, 990–999. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, Y.; Zhou, J.C.; George, T.S.; Feng, G. Addition of fructose to the maize hyphosphere increases phosphatase activity by changing bacterial community structure. Soil Biol. Biochem. 2020, 142, 107724. [Google Scholar] [CrossRef]
- Li, L.; Liu, K.; Wei, S.L.; Cheng, X.L.; Liu, J.; Ren, G.X.; Wang, W.Q. Resource situation investigation about Rheum tanguticum and its sustainable utilization analysis in main production area of China. China J. Chin. Mater. Med. 2014, 39, 1407–1412. [Google Scholar]
- Xiong, F.; Nie, X.Q.; Yang, L.C.; Wang, L.L.; Li, J.J.; Zhou, G.Y. Non-target metabolomics revealed the differences between Rh. tanguticum plants growing under canopy and open habitats. BMC Plant Biol. 2021, 21, 119. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.T.; Sham, T.T.; Yang, G.Y.; Yi, L.; Chen, H.B.; Zhao, Z.Z. Profiling of secondary metabolites in tissues from Rheum palmatum L. using laser microdissection and liquid chromatography mass spectrometry. Anal. Bioanal. Chem. 2013, 405, 4199–4212. [Google Scholar] [CrossRef] [PubMed]
- Gecibesler, I.H.; Disli, F.; Bayindir, S.; Toprak, M.; Tufekci, A.R.; Yaglıoglu, A.S.; Altun, M.; Kocak, A.; Demirtas, I.; Adem, S. The isolation of secondary metabolites from Rheum ribes L. and the synthesis of new semi-synthetic anthraquinones: Isolation, synthesis and biological activity. Food Chem. 2021, 342, 128378. [Google Scholar] [CrossRef]
- Strobel, B.W.; Kristensen, F.; Hansen, H.C.B. Oxalate distribution in soils under rhubarb (Rheum rhaponticum). Int. J. Environ. Anal. Chem. 2004, 84, 909–917. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, H.Y.; Qin, L.L.; Zhang, Z.X.; Wang, Q.; Zhang, Q.Q.; Lu, Z.W.; Wei, S.L.; Gao, X.Y.; Tu, P.F. Global chemical profiling based quality evaluation approach of rhubarb using ultra performance liquid chromatography with tandem quadrupole time-of-flight mass spectrometry. J. Sep. Sci. 2015, 38, 511–522. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, J.G. Health functions and structure–activity relationships of natural anthraquinones from plants. Food Funct. 2018, 9, 6063–6080. [Google Scholar] [CrossRef]
- Agarwal, S.K.; Singh, S.S.; Lakshmi, V.; Verma, S.; Kumar, S. Chemistry and pharmacology of rhubarb (Rheum species)—A review. JSIR 2001, 60, 1–9. [Google Scholar]
- Dong, X.X.; Fu, J.; Yin, X.B.; Cao, S.; Li, X.C.; Lin, L.F.; Hu, Y.L.G.Q.; Ni, J. Emodin: A review of its pharmacology, toxicity and pharmacokinetics. Phytother. Res. 2016, 30, 1207–1218. [Google Scholar] [CrossRef]
- Hu, H.C.; Zheng, L.T.; Yin, H.Y.; Tao, Y.; Luo, X.Q.; Wei, K.S.; Yin, L.P. A significant association between rhein and diabetic nephropathy in animals: A systematic review and meta-analysis. Front. Pharmacol. 2019, 10, 1473. [Google Scholar] [CrossRef] [Green Version]
- Mohtashami, L.; Amiri, M.S.; Ayati, Z.; Ramezani, M.; Jamialahmadi, T.; Emami, S.A.; Sahebkar, A. Ethnobotanical Uses, Phytochemistry and Pharmacology of Different Rheum Species (Polygonaceae): A Review. Pharmacol. Prop. Plant-Deriv. Nat. Prod. Implic. Hum. Health 2021, 1308, 309–352. [Google Scholar]
- Khatoon, Z.; Huang, S.L.; Rafique, M.; Fakhar, A.; Kamran, M.A.; Santoyo, G. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. J. Environ. Manag. 2020, 273, 111118. [Google Scholar] [CrossRef]
- Winding, A.; Binnerup, S.J.; Pritchard, H. Non-target effects of bacterial biological control agents suppressing root pathogenic fungi. FEMS Microbiol. Ecol. 2004, 47, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Basu, A.; Prasad, P.; Das, N.S.; Kalam, S.; Sayyed, R.Z.; Reddy, M.S.; Enshasy, H.E. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects. Sustainability 2021, 13, 1140. [Google Scholar] [CrossRef]
- Shen, N.; Cui, Y.L.; Xu, W.H.; Zhao, X.H.; Yang, L.C. Impact of phosphorus and potassium fertilizers on growth and anthraquinone content in Rheum tanguticum Maxim. ex Balf. Ind. Crops Prod. 2017, 107, 312–319. [Google Scholar] [CrossRef]
- Liu, S.F.; Hao, H.T.; Lu, X.; Zhao, X.; Wang, Y.; Zhang, Y.B.; Xie, Z.K.; Wang, R.Y. Transcriptome profiling of genes involved in induced systemic salt tolerance conferred by Bacillus amyloliquefaciens FZB42 in Arab thaliana. Sci. Rep. 2017, 7, 1–13. [Google Scholar]
- Lu, X.; Liu, S.F.; Yue, L.; Zhao, X.; Zhang, Y.B.; Xie, Z.K.; Wang, R.Y. Epsc involved in the encoding of exopolysaccharides produced by Bacillus amyloliquefaciens FZB42 act to boost the drought tolerance of Arabidopsis thaliana. Int. J. Mol. Sci. 2018, 19, 3795. [Google Scholar] [CrossRef] [Green Version]
- Mena-Violante, H.G.; Olalde-Portugal, V. Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Sci. Hortic. 2007, 113, 103–106. [Google Scholar] [CrossRef]
- Persello-Cartieaux, F.; David, P.; Sarrobert, C.; Thibaud, M.C.; Achouak, W.; Robaglia, C.; Nussaume, L. Utilization of mutants to analyze the interaction between Arabidopsis thaliana and its naturally root-associated Pseudomonas. Planta 2001, 212, 190–198. [Google Scholar] [CrossRef]
- Tzipilevich, E.; Russ, D.; Dangl, J.L.; Benfey, P.N. Plant immune system activation is necessary for efficient root colonization by auxin-secreting beneficial bacteria. Cell Host Microbe 2021, 29, 1507–1520. [Google Scholar] [CrossRef]
- Wallenstein, M.D.; Burns, R.G. Ecology of extracellular enzyme activities and organic matter degradation in soil: A complex community-driven process. In Methods of Soil Enzymology; Soil Science Society of America: Madison, WI, USA, 2011; pp. 35–55. [Google Scholar]
- Yao, D.Y.; Gonzales-Vigil, E.; Mansfield, S.D. Arabidopsis sucrose synthase localization indicates a primary role in sucrose translocation in phloem. J. Exp. Bot. 2020, 71, 1858–1869. [Google Scholar] [CrossRef]
- Slugina, M.A.; Boris, K.V.; Kakimzhanova, A.A.; Kochieva, E.Z. Intraspecific polymorphism of the sucrose synthase genes in Russian and Kazakh potato cultivars. Russ. J. Genet. 2014, 50, 593–597. [Google Scholar] [CrossRef]
- Ruan, Y.L. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annu. Rev. Plant Biol. 2014, 65, 33–67. [Google Scholar] [CrossRef]
- Wan, H.J.; Wu, L.M.; Yang, Y.J.; Zhou, G.Z.; Ruan, Y.L. Evolution of sucrose metabolism: The dichotomy of invertases and beyond. Trends Plant Sci. 2018, 23, 163–177. [Google Scholar] [CrossRef]
- Nunes, C.; O’Hara, L.E.; Primavesi, L.F.; Delatte, T.L.; Schluepmann, H.; Somsen, G.W.; Silva, A.B.; Fevereiro, P.S.; Wingler, A.; Paul, M.J. The trehalose 6-phosphate/SnRK1 signaling pathway primes growth recovery following relief of sink limitation. Plant Physiol. 2013, 162, 1720–1732. [Google Scholar] [CrossRef] [Green Version]
- Ohto, M.A.; Onai, K.; Furukawa, Y.; Aoki, E.; Araki, T.; Nakamura, K. Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiol. 2001, 127, 252–261. [Google Scholar] [CrossRef] [Green Version]
- Bolouri Moghaddam, M.R.; Van den Ende, W. Sugars, the clock and transition to flowering. Front. Plant Sci. 2013, 4, 1–6. [Google Scholar]
- Piasecka, A.; Jedrzejczak-Rey, N.; Bednarek, P. Secondary metabolites in plant innate immunity: Conserved function of divergent chemicals. New Phytol. 2015, 206, 948–964. [Google Scholar] [CrossRef]
- Fatima, S.; Anjum, T.; Ali, R.H.B. PGPR mediated bio-fortification of tomato fruit metabolites with nutritional and pharmacological importance. Pak. J. Biotechnol. 2017, 14, 17–21. [Google Scholar]
- Bisht, N.; Chauhan, P.S. Comparing the growth-promoting potential of Paenibacillus lentimorbus and Bacillus amyloliquefaciens in Oryza sativa L. var. Sarju-52 under suboptimal nutrient conditions. Plant Physiol. Biochem. 2020, 146, 187–197. [Google Scholar] [CrossRef]
- Li, F.; Chen, L.; Redmile-Gordon, M.; Zhang, J.B.; Zhang, C.Z.; Ning, Q.; Li, W. Mortierellaelongata’s roles in organic agriculture and crop growth promotion in a mineral soil. Land Degrad. Dev. 2018, 29, 1642–1651. [Google Scholar] [CrossRef]
- Gholami, A.; Shahsavani, S.; Nezarat, S. The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. World Acad. Sci. Eng. Technol. 2009, 49, 19–24. [Google Scholar]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhalnina, K.; Dias, R.; de Quadros, P.D.; Davis-Richardson, A.; Camargo, F.A.; Clark, I.M.; Triplett, E.W. Soil pH determines microbial diversity and composition in the park grass experiment. Microb. Ecol. 2015, 69, 395–406. [Google Scholar] [CrossRef]
- Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 2017, 15, 579–590. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Hill, B.H.; Shah, J.J.F. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 2009, 462, 795–798. [Google Scholar] [CrossRef]
- Gallo, M.E.; Porras-Alfaro, A.; Odenbach, K.J.; Sinsabaugh, R.L. Photoacceleration of plant litter decomposition in an arid environment. Soil Biol. Biochem. 2009, 41, 1433–1441. [Google Scholar] [CrossRef]
- Ali, A.M.; Awad, M.Y.; Hegab, S.A.; Gawad, A.M.A.E.; Eissa, M.A. Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato. J. Plant Nutr. 2021, 44, 411–420. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Enhancing nitrogen use efficiency in crop plants. Adv. Agron. 2005, 88, 97–185. [Google Scholar]
- Li, H.Y.; Qiu, Y.Z.; Yao, T.; Ma, Y.C.; Zhang, H.R.; Yang, X.L. Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago sativa, and Cucumis sativus seedlings. Soil Tillage Res. 2020, 199, 104577. [Google Scholar] [CrossRef]
- Kozdrój, J.; Trevors, J.T.; Van Elsas, J.D. Influence of introduced potential biocontrol agents on maize seedling growth and bacterial community structure in the rhizosphere. Soil Biol. Biochem. 2004, 36, 1775–1784. [Google Scholar] [CrossRef]
- Nihorimbere, V.; Ongena, M.; Smargiassi, M.; Thonart, P. Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol. Agron. Société Environ. 2011, 15, 327–337. [Google Scholar]
- Araujo, R.; Dunlap, C.; Franco, C.M. Analogous wheat root rhizosphere microbial successions in field and greenhouse trials in the presence of biocontrol agents Paenibacillus peoriae SP9 and Streptomyces fulvissimus FU14. Mol. Plant Pathol. 2020, 21, 622–635. [Google Scholar] [CrossRef] [Green Version]
- Mhlongo, M.I.; Piater, L.A.; Madala, N.E.; Labuschagne, N.; Dubery, I.A. The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front. Plant Sci. 2018, 9, 112. [Google Scholar] [CrossRef] [Green Version]
- Gadhave, K.R.; Devlin, P.F.; Ebertz, A.; Ross, A.; Gange, A.C. Soil inoculation with Bacillus spp. modifies root endophytic bacterial diversity, evenness, and community composition in a context-specific manner. Microb. Ecol. 2018, 76, 741–750. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.J.; Geiser, D.M.; Proctor, R.H.; Rooney, A.P.; O’Donnell, K.; Trail, F.; Gardiner, D.M.; Manners, J.M.; Kazan, K. Fusarium pathogenomics. Annu. Rev. Microbiol. 2013, 67, 399–416. [Google Scholar] [CrossRef] [Green Version]
- Rasool, M.; Akhter, A.; Soja, G.; Haider, M.S. Role of biochar, compost and plant growth promoting rhizobacteria in the management of tomato early blight disease. Sci. Rep. 2021, 11, 1–16. [Google Scholar] [CrossRef]
- Tsao, P.H.; Guy, S.O. Inhibition of Mortierella and Pythium in a Phytophthora-isolation medium containing hymexazol. Phytopathology 1977, 67, 796–801. [Google Scholar] [CrossRef]
- Woudenberg, J.H.C.; Seidl, M.F.; Groenewald, J.Z.; De Vries, M.; Stielow, J.B.; Thomma, B.P.H.J.; Crous, P.W. Alternaria section Alternaria: Species, formaespeciales or pathotypes? Stud. Mycol. 2015, 82, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Custer, G.F.; van Diepen, L.T.; Stump, W. An Examination of Fungal and Bacterial Assemblages in Bulk and Rhizosphere Soils under Solanum tuberosum in Southeastern Wyoming, USA. Appl. Microbiol. 2021, 1, 162–176. [Google Scholar] [CrossRef]
- Galal, H.R.M.; Salem, W.M.; Nasr El-Deen, F. Biological control of some pathogenic fungi using marine algae. Res. J. Microbiol. 2011, 6, 645–657. [Google Scholar] [CrossRef] [Green Version]
- Sezonov, G.; Joseleau-Petit, D.; d’Ari, R. Escherichia coli physiology in Luria-Bertani broth. J. Bacteriol. 2007, 189, 8746–8749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, A.L.; Hons, F.M.; Lemon, R.G.; McFarland, M.L.; Nichols, R.L. Microbial activity and soil C sequestration for reduced and conventional tillage cotton. Appl. Soil Ecol. 2008, 38, 168–173. [Google Scholar] [CrossRef]
- Ding, L.G.; Wu, J.S.; Xiao, H.; Zhou, P.; Syers, J.K. Mobilisation of inorganic phosphorus induced by rice straw in aggregates of a highly weathered upland soil. J. Sci. Food Agric. 2012, 92, 1073–1079. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.D. Agricultural and Chemistry Analysis of Soil; Agric. Press: Beijing, China, 2005. [Google Scholar]
- DeForest, J.L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA. Soil Biol. Biochem. 2009, 41, 1180–1186. [Google Scholar] [CrossRef]
- Wu, J.; Brookes, P.C.; Jenkinson, D.S. Evidence for the use of a control in the fumigation-incubation method for measuring microbial biomass carbon in soil. Soil Biol. Biochem. 1996, 28, 511–518. [Google Scholar] [CrossRef]
- Jenkinson, D.S.; Powlson, D.S. The effects of biocidal treatments on metabolism in soil—V: A method for measuring soil biomass. Soil Biol. Biochem. 1976, 8, 209–213. [Google Scholar] [CrossRef]
- Brookes, P.C.; Landman, A.; Pruden, G.; Jenkinson, D.S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 1985, 17, 837–842. [Google Scholar] [CrossRef]
- Fraga, C.G.; Clowers, B.H.; Moore, R.J.; Zink, E.M. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography− mass spectrometry, XCMS, and chemometrics. Anal. Chem. 2010, 82, 4165–4173. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics A J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, R.S.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Langille, M.G.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Thurber, R.L.V.; Knight, R.; et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef]
- Friedman, J.; Alm, E.J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 2012, 8, e1002687. [Google Scholar] [CrossRef] [Green Version]
Treatment | pH | SWC | SOM | TC | TN | C/N | NO3-N | NH4-N | AP | AK | TP | TK |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(%) | (g/kg) | (g/kg) | (g/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (g/kg) | (g/kg) | ||
CK | 8.5 | 13.55 ± 2.59 | 16.77 ± 0.33 ab | 24.64 ± 0.43 | 1.05 ± 0.05 | 23.66 ± 1.41 | 14.65 ± 1.03 b | 10.29 ± 1.17 | 30.25 ± 2.73 bc | 321.67 ± 58.54 a | 1.04 ± 0.03 ab | 19.01 ± 0.08 b |
LS | 8.6 | 12.34 ± 1.31 | 16.87 ± 0.38 ab | 25.14 ± 1.17 | 1.10 ± 0.01 | 22.84 ± 1.30 | 13.70 ± 1.08 b | 9.55 ± 1.15 | 26.25 ± 2.19 cd | 173.33 ± 17.53 b | 1.07 ± 0.02 ab | 19.17 ± 0.14 ab |
HS | 8.6 | 14.51 ± 1.58 | 18.04 ± 0.90 a | 25.37 ± 0.37 | 1.17 ± 0.10 | 22.00 ± 1.91 | 12.12 ± 1.18 b | 7.70 ± 0.42 | 39.85 ± 3.20 a | 232.00 ± 15.95 b | 1.15 ± 0.05 a | 19.38 ± 0.11 a |
LB | 8.6 | 13.90 ± 2.01 | 16.96 ± 1.82 ab | 24.24 ± 0.63 | 0.98 ± 0.06 | 24.93 ± 1.59 | 10.26 ± 0.40 b | 8.61 ± 0.63 | 20.08 ± 2.14 b | 226.33 ± 15.21 b | 0.97 ± 0.02 b | 19.12 ± 0.11 ab |
LB + LS | 8.6 | 14.88 ± 0.27 | 16.14 ± 1.13 ab | 24.38 ± 0.53 | 1.09 ± 0.09 | 22.80 ± 1.65 | 11.65 ± 0.27 b | 8.82 ± 0.50 | 34.45 ± 3.34 b | 228.67 ± 0.33 b | 1.04 ± 0.05 ab | 19.10 ± 0.02 a |
LB + HS | 8.7 | 14.28 ± 1.57 | 14.81 ± 0.92 b | 24.99 ± 0.91 | 1.06 ± 0.12 | 23.91 ± 1.88 | 10.05 ± 0.94 b | 7.78 ± 0.13 | 23.22 ± 1.77 b | 321.67 ± 58.54 a | 1.00 ± 0.04 b | 19.09 ± 0.09 ab |
Bulk soil | 8.5 | 13.82 ± 1.59 | 14.95 ± 0.08 b | 24.86 ± 0.04 | 0.99 ± 0.03 | 25.35 ± 0.85 | 33.19 ± 2.98 a | 6.43 ± 1.37 | 23.38 ± 1.08 b | 173.33 ± 17.53 b | 1.00 ± 0.02 b | 19.13 ± 0.08 ab |
Treatment | 16S rRNA Gene-Based Bacteria | ITS rRNA Gene-Based Fungi | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
ACE | Chao1 | Simpson | Shannon | PD Whole Tree | ACE | Chao1 | Simpson | Shannon | PD Whole Tree | |
CK | 1482.56 ± 23.88 | 1459.98 ± 23.60 | 0.9966 ± 0.0001 | 9.11 ± 0.04 | 71.93 ± 2.28 | 211.57 ± 12.60 | 209.90 ± 10.78 | 0.8651 ± 0.05 | 4.46 ± 0.50 | 36.50 ± 0.44 |
LS | 1384.83 ± 60.32 | 1341.31 ± 67.73 | 0.9958 ± 0.0003 | 8.87 ± 0.12 | 63.74 ± 6.85 | 213.19 ± 10.85 | 213.63 ± 10.31 | 0.8900 ± 0.03 | 4.68 ± 0.25 | 36.60 ± 1.36 |
LB | 1464.27 ± 40.35 | 1410.03 ± 30.48 | 0.9960 ± 0.0003 | 8.97 ± 0.06 | 72.17 ± 2.77 | 183.84 ± 19.97 | 182.62 ± 19.96 | 0.9201 ± 0.03 | 5.00 ± 0.33 | 33.84 ± 2.52 |
LB + LS | 1463.71 ± 23.12 | 1409.60 ± 17.86 | 0.9962 ± 0.0001 | 9.02 ± 0.01 | 70.53 ± 1.78 | 171.36 ± 11.86 | 171.17 ± 12.00 | 0.9437 ± 0.02 | 5.32 ± 0.22 | 32.08 ± 1.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Liu, Y.; Yue, L.; Uwaremwe, C.; Zhao, X.; Zhou, Q.; Wang, Y.; Wang, R. Bacterial Inoculant and Sucrose Amendments Improve the Growth of Rheum palmatum L. by Reprograming Its Metabolite Composition and Altering Its Soil Microbial Community. Int. J. Mol. Sci. 2022, 23, 1694. https://doi.org/10.3390/ijms23031694
Tian Y, Liu Y, Yue L, Uwaremwe C, Zhao X, Zhou Q, Wang Y, Wang R. Bacterial Inoculant and Sucrose Amendments Improve the Growth of Rheum palmatum L. by Reprograming Its Metabolite Composition and Altering Its Soil Microbial Community. International Journal of Molecular Sciences. 2022; 23(3):1694. https://doi.org/10.3390/ijms23031694
Chicago/Turabian StyleTian, Yuan, Yang Liu, Liang Yue, Constantine Uwaremwe, Xia Zhao, Qin Zhou, Yun Wang, and Ruoyu Wang. 2022. "Bacterial Inoculant and Sucrose Amendments Improve the Growth of Rheum palmatum L. by Reprograming Its Metabolite Composition and Altering Its Soil Microbial Community" International Journal of Molecular Sciences 23, no. 3: 1694. https://doi.org/10.3390/ijms23031694
APA StyleTian, Y., Liu, Y., Yue, L., Uwaremwe, C., Zhao, X., Zhou, Q., Wang, Y., & Wang, R. (2022). Bacterial Inoculant and Sucrose Amendments Improve the Growth of Rheum palmatum L. by Reprograming Its Metabolite Composition and Altering Its Soil Microbial Community. International Journal of Molecular Sciences, 23(3), 1694. https://doi.org/10.3390/ijms23031694