Synthesis, Biological Activity and Molecular Docking Studies of Novel Nicotinic Acid Derivatives
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.2. Microbiology
2.3. Cytotoxicity Studies
2.4. Molecular Docking
3. Discussion
4. Materials and Methods
4.1. Chemistry
4.1.1. Synthesis of Acylhydrazones of Nicotinic Acid Hydrazide (2–13)
4.1.2. Synthesis of 3-Acetyl-2,5-disubstituted-1,3,4-oxadiazolines (14–25)
4.2. Microbiology
4.3. Cytotoxicity Studies
4.3.1. Cell Cultures
4.3.2. MTT Assay
4.3.3. Neutral Red (NR) Uptake Assay
4.3.4. Nitric Oxide (NO) Measurement
4.3.5. DPPH Free Radical Scavenging Test
4.3.6. Ferric-Reducing Antioxidant Power Assay
4.3.7. May–Grünwald–Giemsa (MGG) Staining
4.3.8. Statistical Analysis
4.4. Molecular Docking
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; et al. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.; Kapley, A. Antibiotic resistance: Global health crisis and metagenomics. Biotechnol. Rep. 2021, 29, e00604. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kashikar, A.; Brown, C.A.; Denys, G.; Bush, K. Unusual Escherichia coli PBP 3 insertion sequence identified from a collection of carbapenem-resistant Enterobacteriaceae tested in vitro with a combination of ceftazidime-, ceftaroline-, or aztreonam-avibactam. Antimicrob. Agents Chemother. 2017, 61, e00389-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maillard, J.Y.; Bloomfield, S.F.; Courvalin, P.; Essack, S.Y.; Gandra, S.; Gerba, C.P.; Rubino, J.R.; Scott, E.A. Reducing antibiotic prescribing and addressing the global problem of antibiotic resistance by targeted hygiene in the home and everyday life settings: A position paper. Am. J. Infect. Control 2020, 48, 1090–1099. [Google Scholar] [CrossRef]
- Christopher, K.C.; Rita, W.Y.; Leung, S.S.; Mamie, H.U.I.; Ip, M. Overcoming the rising incidence and evolving mechanisms of antibiotic resistance by novel drug delivery approaches—An overview. Adv. Drug Deliv. Rev. 2021, 181, 114078. [Google Scholar] [CrossRef]
- Edwards, F.; MacGowan, A.; Macnaughton, E. Antibiotic resistance. Medicine 2021, 49, 632–637. [Google Scholar] [CrossRef]
- Ventola, C.L. The Antibiotics Resistance Crisis. Pharm. Ther. 2015, 40, 277–283. [Google Scholar] [CrossRef]
- Faruki, H.; Sparling, P.F. Genetics of resistance in a non-β-lactamase-producing gonococcus with relatively high-level penicillin resistance. Antimicrob. Agents Chemother. 1986, 30, 856–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adler, M.; Anjum, M.; Andersson, D.I.; Sandegren, L. Influence of acquired β-lactamases on the evolution of spontaneous carbapenem resistance in Escherichia coli. J. Antimicrob. Chemother. 2013, 68, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liao, J.; Mehmood, K.; Chang, Y.F.; Tang, Z.; Zhang, H. Escherichia coli isolated in pigs, Guangdong, China: Emergence of extreme drug resistance (XDR) bacteria. J. Infect. 2020, 81, 318–356. [Google Scholar] [CrossRef]
- Diallo, O.O.; Baron, S.A.; Abat, C.; Colson, P.; Chaudet, H.; Rolain, J.-M. Antibiotic Resistance Surveillance Systems: A Review. J. Glob. Antimicrob. Resist. 2020, 23, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Turner, J.M.; Tomberg, J.; Fedarovich, A.; Unemo, M.; Nicholas, R.A.; Davies, C. Mutations in penicillin-binding protein 2 from cephalosporin-resistant Neisseria gonorrhoeae hinder ceftriaxone acylation by restricting protein dynamics. J. Biol. Chem. 2020, 295, 7529–7543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Han, C.; Huang, X.; Liu, Y.; Guo, D.; Ye, X. A molecular epidemiological study of methicillin-resistant and methicillin-susceptible staphylococcus aureus contamination in the airport environment. Infect. Drug Resist. 2018, 11, 2363–2375. [Google Scholar] [CrossRef] [Green Version]
- García-Fernández, E.; Koch, G.; Wagner, R.M.; Fekete, A.; Stengel, S.T.; Schneider, J.; Mielich-Süss, B.; Geibel, S.; Markert, S.M.; Stigloher, C.; et al. Membrane Microdomain Disassembly Inhibits MRSA Antibiotic Resistance. Cell 2017, 171, 1354–1367.e20. [Google Scholar] [CrossRef]
- Fesatidou, M.; Petrou, A.; Athina, G. Heterocycle Compounds with Antimicrobial Activity. Curr. Pharm. Des. 2020, 26, 867–904. [Google Scholar] [CrossRef] [PubMed]
- Son, N.T.; Huong, V.T.T.; Lien, V.T.K.; Nga, D.T.Q.; Hai Au, T.T.; Nga, T.T.; Minh Hoa, L.N.; Binh, T.Q. First Report on Multidrug-Resistant Methicillin-Resistant Staphylococcus aureus Isolates in Children Admitted to Tertiary Hospitals in Vietnam S. J. Microbiol. Biotechnol. 2019, 29, 1460–1469. [Google Scholar] [CrossRef]
- Sikora, A.; Zahra, F. Nosocomial Infections. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK559312/ (accessed on 18 February 2022).
- Yang, X.; Guo, R.; Xie, B.; Lai, Q.; Xu, J.; Hu, N.; Wan, L.; Dai, M.; Zhang, B. Drug resistance of pathogens causing nosocomial infection in orthopedics from 2012 to 2017: A 6-year retrospective study. J. Orthop. Surg. Res. 2021, 16, 100. [Google Scholar] [CrossRef]
- Khan, H.A.; Baig, F.K.; Mehboob, R. Nosocomial infections: Epidemiology, prevention, control and surveillance. Asian Pac. J. Trop. Biomed. 2017, 7, 478–482. [Google Scholar] [CrossRef]
- Shoaib, N.F.; Ain, Q.U.; Iqbal, K.; Asif, M. Effect of ablution on Methicillin-resistant Staphylococcus aureus (MRSA) nasal colonisation in healthcare workers. J. Pak. Med. Assoc. 2021, 71, 1472–1475. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Zhuang, H.; Ji, S.; Xu, E.; Di, L.; Wang, Z.; Jiang, S.; Wang, H.; Sun, L.; Shen, P.; et al. Household transmission of community-associated Methicillin-resistant Staphylococcus aureus. Front. Public Health 2021, 31, 658638. [Google Scholar] [CrossRef] [PubMed]
- Reygaert, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018, 26, 482–501. [Google Scholar] [CrossRef] [PubMed]
- Megged, O. Coagulase-negative staphylococci: A rare cause of urinary tract infections in children with consequences on clinical practice. Eur. J. Pediatr. 2021, 4, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Heilbronner, S.; Foster, T.J. Staphylococcus lugdunensis: A skin commensal with invasive pathogenic potential. Clin. Microbiol. Rev. 2020, 23, e00205-20. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-negative staphylococci. Clin Microbiol Rev. 2014, 27, 870–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asante, J.; Hetsa, B.A.; Amoako, D.G.; Abia, A.L.K.; Bester, L.A.; Essack, S.Y. Multidrug-resistant coagulase-negative staphylococci isolated from bloodstream in the uMgungundlovu District of KwaZulu-Natal Province in South Africa: Emerging pathogens. Antibiotics 2021, 18, 198. [Google Scholar] [CrossRef]
- Khajuria, A.; Praharaj, A.K.; Kumar, M.; Grover, N. Carbapenem resistance among Enterobacter species in a tertiary care hospital in central India. Chemother. Res. Pract. 2014, 2014, 972646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yahav, D.; Giske, C.G.; Grāmatniece, A.; Abodakpi, H.; Tam, V.H.; Leibovici, L. New β-Lactam-β-Lactamase inhibitor combinations. Clin. Microbiol. Rev. 2020, 11, e00115-20. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Patterson, T.F. Multidrug-resistant Candida: Epidemiology, molecular mechanisms, and treatment. J. Infect. Dis. 2017, 15 (Suppl. 3), 445–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.; Puumala, E.; Robbins, N.; Cowen, L.E. Antifungal drug resistance: Molecular mechanisms in Candida albicans and Beyond. Chem. Rev. 2021, 24, 3390–3411. [Google Scholar] [CrossRef]
- Apeh, V.O.; Njoku, O.U.; Nwodo, F.O.C.; Chukwuma, I.F.; Emmanuel, A.A. In silico drug-like properties prediction and in vivo antifungal potentials of Citrullus lanatus seed oil against Candida albicans. Arab. J. Chem. 2022, 15, 103578. [Google Scholar] [CrossRef]
- Bourbeau, K.; Gupta, S.; Wang, S. Candida albicans meningitis in AIDS patient: A case report and literature review. IDCases 2021, 25, e01216. [Google Scholar] [CrossRef] [PubMed]
- Spettel, K.; Bumberger, D.; Camp, I.; Kriz, R.; Willinger, B. Efficacy of octenidine against emerging echinocandin-, azole- and multidrug-resistant Candida albicans and Candida glabrata. J. Glob. Antimicrob. Resist. 2022; in press. [Google Scholar] [CrossRef] [PubMed]
- Küçükgüzel, S.G.; Mazi, A.; Sahin, F.; Öztürk, S.; Stables, J. Synthesis and biological activities of diflunisal hydrazide-hydrazones. Eur. J. Med. Chem. 2003, 38, 1005–1013. [Google Scholar] [CrossRef]
- Metwally, K.A.; Abdel-Aziz, L.M.; Lashine, E.S.M.; Husseiny, M.I.; Badawy, R.H. Hydrazones of 2-aryl-quinoline-4-carboxylic acid hydrazides: Synthesis and preliminary evaluation as antimicrobial agents. Bioorg. Med. Chem. 2006, 14, 8675–8682. [Google Scholar] [CrossRef] [PubMed]
- Haiba, N.S.; Khalil, H.H.; Moniem, M.A.; El-Wakil, M.H.; Bekhit, A.A.; Khattab, S.N. Design, synthesis and molecular modeling studies of new series of s-triazine derivatives as antimicrobial agents against multi-drug resistant clinical isolates. Bioorg. Chem. 2019, 89, 103013. [Google Scholar] [CrossRef] [PubMed]
- Backes, G.L.; Neumann, D.M.; Jursic, B.S. Synthesis and antifungal activity of substituted salicylaldehyde hydrazones, hydrazides and sulfohydrazides. Bioorg. Med. Chem. 2014, 22, 4629–4636. [Google Scholar] [CrossRef] [PubMed]
- Savini, L.; Chiasserini, L.; Gaeta, A.; Pellerano, C.; Moro, V.A. Synthesis and Anti-tubercular Evaluation of 4-Quinolylhydrazones. Bioorg. Med. Chem. 2002, 10, 2193–2198. [Google Scholar] [CrossRef]
- Vicini, P.; Incerti, M.; Doytchinova, I.A.; La Colla, P.; Busonera, B.; Loddo, R. Synthesis and antiproliferative activity of benzo[d]isothiazole hydrazones. Eur. J. Med. Chem. 2006, 41, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Mohareb, R.M.; Fleita, D.H.; Sakka, O.K. Novel synthesis of hydrazide-hydrazone derivatives and their utilization in the synthesis of coumarin, pyridine, thiazole and thiophene derivatives with antitumor activity. Molecules 2011, 16, 16–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, S.D.; Vagdevi, H.M.; Vaidya, V.P.; Gadaginamath, G.S. Synthesis of new 4-pyrrol-1-yl benzoic acid hydrazide analogs and some derived oxadiazole, triazole and pyrrole ring systems: A novel class of potential antibacterial and antitubercular agents. Eur. J. Med. Chem. 2008, 43, 1989–1996. [Google Scholar] [CrossRef]
- Joshi, S.D.; More, U.A.; Pansuriya, K.; Aminabhavi, T.M.; Gadad, A.K. Synthesis and molecular modeling studies of novel pyrrole analogs as antimycobacterial agents. J. Saudi Chem. Soc. 2017, 21, 42–57. [Google Scholar] [CrossRef] [Green Version]
- Rollas, S.; Gulerman, N.; Erdeniz, H. Synthesis and antimicrobial activity of some new hydrazones of 4-fluorobenzoic acid hydrazide and 3-acetyl-2,5-disubstituted-1,3,4-oxadiazolines. Farmaco 2002, 57, 171–174. [Google Scholar] [CrossRef]
- Dewangan, D.; Pandey, A.; Sivakumar, T.; Rajavel, R.; Dubey, R.D. Synthesis of some novel 2, 5-disubstituted 1, 3, 4-oxadiazole and its analgesic, anti-inflammatory, anti-bacterial and anti-tubercular activity. Int. J. ChemTech Res. 2010, 2, 1397–1412. [Google Scholar]
- Koçyiğit-Kaymakçıoğlu, B.; Oruç-Emre, E.E.; Ünsalan, S.; Tabanca, N.; Khan, S.I.; Wedge, D.E.; İşcan, G.; Demirci, F.; Rolla, S. Synthesis and biological activity of hydrazide-hydrazones and their corresponding 3-Acetyl-2,5-disubstituted-2,3-dihydro-1,3,4-oxadiazoles. Med. Chem. Res. 2012, 21, 3499–3508. [Google Scholar] [CrossRef]
- Jadhav, G.R.; Deshmukh, D.G.; Medhane, V.J.; Gaikwad, V.B.; Bholay, A.D. 2,5-Disubstituted 1,3,4-oxadiazole derivatives of chromeno[4,3-b]pyridine: Synthesis and study of antimicrobial potency. Heterocycl. Commun. 2016, 22, 123–130. [Google Scholar] [CrossRef]
- Jin, L.; Chen, J.; Song, B.; Chen, Z.; Yang, S.; Li, Q.; Hu, D.; Xu, R. Synthesis, structure, and bioactivity of N′-substituted benzylidene-3,4,5-trimethoxybenzohydrazide and 3-acetyl-2-substituted phenyl-5-(3,4,5-trimethoxyphenyl)-2,3-dihydro-1,3,4-oxadiazole derivatives. Bioorg. Med. Chem. Lett. 2006, 16, 5036–5040. [Google Scholar] [CrossRef] [PubMed]
- Salum, L.B.; Mascarello, A.; Canevarolo, R.R.; Altei, W.F.; Laranjeira, A.B.A.; Neuenfeldt, P.D.; Stumpf, T.R.; Chiaradia-Delatorre, L.D.; Vollmer, L.L.; Daghestani, H.N.; et al. N-(1′-naphthyl)-3,4,5-trimethoxybenzohydrazide as microtubule destabilizer: Synthesis, cytotoxicity, inhibition of cell migration and in vivo activity against acute lymphoblastic leukemia. Eur. J. Med. Chem. 2015, 96, 504–518. [Google Scholar] [CrossRef]
- Pasqualoto, K.F.M.; Ferreira, E.I.; Santos-Filho, O.A.; Hopfinger, A.J. Rational design of new antituberculosis agents: Receptor-independent four-dimensional quantitative structure-activity relationship analysis of a set of isoniazid derivatives. J. Med. Chem. 2004, 47, 3755–3764. [Google Scholar] [CrossRef] [PubMed]
- Baquero, E.; Quiñones, W.; Ribon, W.; Caldas, M.L.; Sarmiento, L.; Echeverri, F. Effect of an Oxadiazoline and a Lignan on Mycolic Acid Biosynthesis and Ultrastructural Changes of Mycobacterium tuberculosis. Tuberc. Res. Treat. 2011, 2011, 1–6. [Google Scholar] [CrossRef]
- Kyme, P.; Thoennissen, N.H.; Tseng, C.W.; Thoennissen, G.B.; Wolf, A.J.; Shimada, K.; Krug, U.O.; Lee, K.; Müller-Tidow, C.; Berdel, W.E.; et al. C/EBPε mediates nicotinamide-enhanced clearance of Staphylococcus aureus in mice. J. Clin. Investig. 2012, 122, 3316–3329. [Google Scholar] [CrossRef] [Green Version]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2009, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Olender, D.; Żwawiak, J.; Zaprutko, L. Multidirectional efficacy of biologically active nitro compounds included in medicines. Pharmaceuticals 2018, 11, 54. [Google Scholar] [CrossRef] [Green Version]
- Bot, C.; Hall, B.S.; Álvarez, G.; Di Maio, R.; González, M.; Cerecetto, H.; Wilkinsona, S.R. Evaluating 5-nitrofurans as trypanocidal agents. Antimicrob. Agents Chemother. 2013, 57, 1638–1647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Race, P.R.; Lovering, A.L.; Green, R.M.; Ossor, A.; White, S.A.; Searle, P.F.; Wrighton, C.J.; Hyde, E.I. Structural and mechanistic studies of Escherichia coli nitroreductase with the antibiotic nitrofurazone: Reversed binding orientations in different redox states of the enzyme. J. Biol. Chem. 2005, 280, 13256–13264. [Google Scholar] [CrossRef] [Green Version]
- Reeve, S.M.; Scocchera, E.; Ferreira, J.J.; G-Dayanandan, N.; Keshipeddy, S.; Wright, D.L.; Anderson, A.C. Charged propargyl-linked antifolates reveal mechanisms of antifolate resistance and inhibit trimethoprim-resistant MRSA strains possessing clinically relevant mutations. J. Med. Chem. 2016, 59, 6493–6500. [Google Scholar] [CrossRef] [PubMed]
- Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules 2020, 16, 1340. [Google Scholar] [CrossRef] [Green Version]
- Paruch, K.; Popiołek, Ł.; Wujec, M. Antimicrobial and antiprotozoal activity of 3-acetyl-2,5-disubstituted-1,3,4-oxadiazolines: A review. Med. Chem. Res. 2020, 29, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Popiołek, Ł.; Biernasiuk, A.; Paruch, K.; Malm, A.; Wujec, M. Synthesis and in Vitro Antimicrobial Activity Screening of New 3-Acetyl-2,5-disubstituted-1,3,4-oxadiazoline Derivatives. Chem. Biodivers. 2019, 16, e1900082. [Google Scholar] [CrossRef] [PubMed]
- Paruch, K.; Popiołek, Ł.; Biernasiuk, A.; Berecka-rycerz, A.; Malm, A.; Gumieniczek, A.; Wujec, M. Novel derivatives of 4-methyl-1,2,3-thiadiazole-5-carboxylic acid hydrazide: Synthesis, lipophilicity, and in vitro antimicrobial activity screening. Appl. Sci. 2021, 11, 1180. [Google Scholar] [CrossRef]
- Popiołek, Ł.; Piątkowska-Chmiel, I.; Gawrońska-Grzywacz, M.; Biernasiuk, A.; Izdebska, M.; Herbet, M.; Sysa, M.; Malm, A.; Dudka, J.; Wujec, M. New hydrazide-hydrazones and 1,3-thiazolidin-4-ones with 3-hydroxy-2-naphthoic moiety: Synthesis, in vitro and in vivo studies. Biomed. Pharmacother. 2018, 103, 1337–1347. [Google Scholar] [CrossRef] [PubMed]
- Popiołek, Ł.; Biernasiuk, A.; Berecka, A.; Gumieniczek, A.; Malm, A.; Wujec, M. New hydrazide–hydrazones of isonicotinic acid: Synthesis, lipophilicity and in vitro antimicrobial screening. Chem. Biol. Drug Des. 2018, 91, 915–923. [Google Scholar] [CrossRef] [PubMed]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Inf. Dis. 2003, 9, 9–15. [Google Scholar]
- CLSI Standard M27; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. 4th ed. Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2017.
Microorganisms | Antibiotic Resistance | Type of Caused Infections/Diseases | References |
---|---|---|---|
Staphylococcus spp. (e.g., Staphylococcus aureus, Coagulase-negative staphylococci) | methicillin (methicillin-resistant S. aureus—MRSA and methicillin-resistant coagulase-negative staphylococci—MRCNS); vancomycin (VISA—vancomycin-intermediate S. aureus or VRSA—vancomycin-resistant S. aureus) | skin and soft-tissue infections (furuncles, carbuncles), abscesses, osteomyelitis, surgical site infections, bloodstream infections, sepsis, pneumonia, endocarditis, meningitis, urinary tract infections, bone and joint infections, osteoarticular infections, infections associated with indwelling devices, severe life-threatening systemic infections | [17,18,19,20,21,22,23,24,25,26] |
Enterococcus spp. (e.g., E. faecalis, E. faecium) | vancomycin (VRE—vancomycin-resistant enterococci) | bloodstream infections, urinary tract infections, surgical site infections, meningitis, catheter-related infections | [17,22] |
Streptococcus spp. (e.g., S. pneumoniae) | penicillin (PRP—penicillin-resistant S. pneumoniae) | bloodstream infections, surgical site infections, pneumonia, upper respiratory tract infections, meningitis, ear and sinus infections | [17,22] |
Enterobacterales (e.g., E. coli, K. pneumoniae, K. oxytoca, Enterobacter spp.) | beta-lactams (ESBL—extended spectrum beta-lactamase producing Enterobacterales), carbapenems (CRE—carbapenem resistant Enterobacterales) | intra-abdominal infections and diseases of abdomen, bloodstream infections, urinary tract infections, surgical site infections, pneumonia, upper respiratory tract infections, meningeal, eye, bone infections, skin and soft-tissue infections, febrile neutropenia, surgical wound infections | [17,18,19,22,27,28] |
Non-fermenting Gram-negative rods (e.g., Pseudomonas aeruginosa, Acinetobacter spp.) | carbapenems (multi-drug resistant P. aeruginosa, carbapenem resistant Acinetobacter) | pneumonia, bloodstream infections, skin and soft-tissue infection (burns), complicated urinary tract infections and abdominal infections, heart, brain, catheter-related, and at surgical sites | [17,19,22,28] |
Candida spp. (e.g., C. auris, C. glabrata) | azoles | bloodstream infections, urinary tract infections, pneumonia, superficial and mucosal infections, life-threatening disseminated candidiasis | [17,19,22,29,30] |
Species/ Compound | MIC (MBC or MFC) (µg/mL) and {MBC/MIC or MFC/MIC} of Compounds and Reference Substances | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 7 | 9 | 13 | 14 | 15 | 16 | 17 | 18 | 23 | 24 | 25 | CIP/ VA*/ NY** | NIT | CFX | APC | ||
Gram-positive bacteria | Staphylococcus aureus ATCC 6538 | 7.81 (15.62) {2} | - | 500 (>1000) {>2} | 3.91 (3.91) {1} | 1000 (1000) {1} | 125 (>1000) {>8} | 1000 (>1000) {>1} | 15.62 (62.5) {4} | - | - | 500 (500) {1} | 7.81 (7.81) {1} | 0.24 (0.24) {1} | 15.62 (15.62) | 0.98 | nd |
Staphylococcus aureus ATCC 43300 | 15.62 (31.25) {2} | - | - | 7.81 (31.25) {4} | - | 250 (> 1000) {>4} | - | 31.25 (31.25) {1} | - | - | - | 15.62 (31.25) {2} | 0.24 (0.24) {1} | 7.81 (15.62) | nd | nd | |
Staphylococcus aureus ATCC 29213 | 7.81 (15.62) {2} | - | - | 7.81 (7.81) {1} | - | 1000 (> 1000) {>1} | 1000 (>1000) {>1} | 31.25 (125) {4} | - | - | - | 15.62 (15.62) {1} | 0.48 (0.48) {1} | nd | nd | nd | |
Staphylococcus epidermidis ATCC 12228 | 7.81 (7.81) {1} | - | 62.5 (500) {8} | 1.95 (3.91) {2} | - | 500 (1000) {2} | - | 7.81 (7.81) {1} | - | - | - | 15.62 (15.62) {1} | 0.12 (0.12) {1} | 3.91 (7.81) | 0.24 | nd | |
Enterococcus faecalis ATCC 29212 | 7.81 (31.25) {4} | - | - | 15.62 (31.25) {2} | - | - | - | 31.25 (125) {4} | - | - | - | 62.5 (125) {2} | 0.98 * (1.95) {2} | nd | nd | nd | |
Micrococcus luteus ATCC 10240 | 7.81 (15.62) {2} | 1000 (>1000) {>1} | 1000 (>1000) {>1} | 15.62 (15.62) {1} | 500 (1000) {2} | 1000 (1000) {1} | 500 (1000) {2} | 31.25 (125) {4} | - | 500 (>1000) {>2} | 250 (500) {2} | 15.62 (31.25) {2} | 0.98 (1.95) {2} | 62.5 (62.5) | 0.98 | nd | |
Bacillus subtilis ATCC 6633 | 15.62 (15.62) {1} | - | - | 7.81 (7.81) {1} | - | 1000 (>1000) {>1} | - | 62.5 (125) {2} | - | - | 1000 (>1000) {>1} | 7.81 (7.81) {1} | 0.03 (0.03) {1} | 3.91 (3.91) | 15.62 | 62.5 | |
Bacillus cereus ATCC 10876 | 7.81 (31.25) {4} | - | - | 15.62 (31.25) {2} | - | 500 (>1000) {>2} | - | 31.25 (62.5) {2} | - | - | - | 31.25 (62.5) {2} | 0.06 (0.12) {2} | 7.81 (15.62) | 31.25 | nd | |
Gram-negative bacteria | Bordetella bronchiseptica ATCC 4617 | 62.5 (125) {2} | - | - | 500 (1000) {2} | - | - | - | - | - | - | - | 125 (125) {1} | 0.98 (0.98) {1} | 125 (>1000) | nd | nd |
Klebsiella pneumoniae ATCC 13883 | - | - | - | 250 (1000) {4} | - | - | - | - | - | - | - | 125 (125) {1} | 0.12 (0.24) {2} | 15.62 (31.25) | nd | nd | |
Proteus mirabilis ATCC 12453 | - | - | - | 62.5 (125) {2} | - | - | - | - | - | - | - | 62.5 (125) {2} | 0.03 (0.03) {1) | 62.5 (125) | nd | nd | |
Salmonella typhimurium ATCC 14028 | - | - | - | 31.25 (31.25) {1} | - | - | - | - | - | - | - | 62.5 (125) {2} | 0.06 (0.06) {1} | 31.25 (62.5) | nd | nd | |
Escherichia coli ATCC 25922 | - | - | - | 31.25 (31.25) {1} | - | - | - | - | - | - | - | 31.25 (62.5) {2} | 0.004 (0.008) {2} | 7.81 (15.62) | nd | nd | |
Pseudomonas aeruginosa ATCC 9027 | - | - | - | 250 (500) {2} | - | - | - | - | - | - | - | 250 (250) {1} | 0.48 (0.98) {2} | nd | nd | nd | |
Fungi | Candida albicans ATCC 2091 | 250 (1000) {4} | - | - | - | 1000 (>1000) {>1} | 1000 (>1000) {>1} | - | - | 1000 (>1000) {>1} | 1000 (1000) {1} | 500 (500) {1} | 125 (125) {1} | 0.24 ** (0.24) {1} | na | na | na |
Candida albicans ATCC 10231 | 125 (1000) {8} | - | - | - | 1000 (>1000) {>1} | 1000 (>1000) {>1} | - | - | 1000 (>1000) {>1} | 500 (>1000) {>2} | 500 (1000) {2} | 15.62 (31.25) {2} | 0.48 ** (0.48) {1} | na | na | na | |
Candida parapsilosis ATCC 22019 | 250 (1000) {4} | - | - | - | 1000 (>1000) {>1} | 1000 (>1000) {>1} | - | - | 500 (>1000) {>2} | 1000 (>1000) {>1} | 500 (1000) {2} | 15.62 (31.25) {2} | 0.24 ** (0.48) {2} | na | na | na | |
Candida glabrata ATCC 90030 | 62.5 (500) {8} | - | - | - | 1000 (> 1000) {>1} | - | - | - | - | 1000 (>1000) {>1} | 500 (1000) {2} | 500 (500) {1} | 0.24 ** (0.48) {2} | na | na | na | |
Candida krusei ATCC 14243 | 250 (1000) {4} | - | - | - | 1000 (>1000) {>1} | 1000 (>1000) {>1} | - | - | - | - | 500 (500) {1} | 250 (250) {1} | 0.24 ** (0.24) {1} | na | na | na |
Concentration (μg/mL) | Reduction Value, which Corresponds to the following Trolox Concentration (μg/mL) | |||
---|---|---|---|---|
17 | 20 | 21 | 22 | |
Control | 0 | 0 | 0 | 0 |
25 | 2.037 ± 0.210 | 0.418 ± 0.154 | 0.264 ± 0.256 | 0.227 ± 0.205 |
75 | 2.472 ± 0.307 | 0.748 ± 0.512 | 1.060 ± 0.051 | 0.336 ± 0.263 |
150 | 3.558 ± 0.717 | 0.662 ± 0.410 | 1.241 ± 0.102 | 0.698 ± 0.154 |
200 | 2.725 ± 0.256 | 0.879 ± 0.768 | 2.037 ± 0.307 | 1.205 ± 0.870 |
Concentration (μg/mL) | Reduction Value, which Corresponds to the following—Ascorbic Acid Concentration (μg/mL) | |||
---|---|---|---|---|
17 | 20 | 21 | 22 | |
Control | 0 | 0 | 0 | 0 |
25 | 0.81 ± 0.54 | 1.08 ± 0.54 | 0.54 ± 0.01 | 0.27 ± 0.14 |
75 | 0.81 ± 0.54 | 1.89 ± 0.27 | 0.81 ± 0.14 | 0.81 ± 0.27 |
150 | 1.08 ± 0.54 | 2.97 ± 1.89 | 1.35 ± 0.54 | 0.54 ± 0.14 |
200 | 1.35 ± 0.90 | 3.51 ± 1.35 | 1.62 ± 0.27 | 0.81 ± 0.14 |
Compound | 13 | 25 | Nitrofurazone | Nitrofuratoin |
---|---|---|---|---|
Binding Energy (kcal/mol) | −7.1 | −8.5 | −6.5 | −7.3 |
Comp./PDB code: | 5 | 17 | Ligand (UCP1106) | 13 | 25 | Ligand (SB-239629) |
---|---|---|---|---|---|---|
5ISP | −7.5 | −7.7 | −9.5 | −6.9 | −8.2 | _ |
1JIJ | −8.4 | −8.2 | _ | −8.8 | −8.9 | −8.7 |
Compounds | MW a | TPSA b | XlogP c | GA d | BBB e | LR f | TC g | LD50 h |
---|---|---|---|---|---|---|---|---|
5 | 493.04 | 74.58 | 2.71 | High | Yes | Yes | 4 | 375 |
13 | 260.21 | 113.31 | 1.39 | High | No | Yes | 4 | 1500 |
17 | 535.08 | 75.02 | 2.82 | High | Yes | Yes, 1 violation | 5 | 2930 |
25 | 302.24 | 113.75 | 1.14 | High | No | Yes | 5 | 3200 |
Ciprofloxacin | 331.34 | 74.57 | −1.08 | High | No | Yes | 4 | 2000 |
Nitrofurantoin | 238.16 | 120.73 | −0.47 | High | No | Yes | 4 | 1000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paruch, K.; Biernasiuk, A.; Khylyuk, D.; Paduch, R.; Wujec, M.; Popiołek, Ł. Synthesis, Biological Activity and Molecular Docking Studies of Novel Nicotinic Acid Derivatives. Int. J. Mol. Sci. 2022, 23, 2823. https://doi.org/10.3390/ijms23052823
Paruch K, Biernasiuk A, Khylyuk D, Paduch R, Wujec M, Popiołek Ł. Synthesis, Biological Activity and Molecular Docking Studies of Novel Nicotinic Acid Derivatives. International Journal of Molecular Sciences. 2022; 23(5):2823. https://doi.org/10.3390/ijms23052823
Chicago/Turabian StyleParuch, Kinga, Anna Biernasiuk, Dmytro Khylyuk, Roman Paduch, Monika Wujec, and Łukasz Popiołek. 2022. "Synthesis, Biological Activity and Molecular Docking Studies of Novel Nicotinic Acid Derivatives" International Journal of Molecular Sciences 23, no. 5: 2823. https://doi.org/10.3390/ijms23052823
APA StyleParuch, K., Biernasiuk, A., Khylyuk, D., Paduch, R., Wujec, M., & Popiołek, Ł. (2022). Synthesis, Biological Activity and Molecular Docking Studies of Novel Nicotinic Acid Derivatives. International Journal of Molecular Sciences, 23(5), 2823. https://doi.org/10.3390/ijms23052823