NSAID-Based Coordination Compounds for Biomedical Applications: Recent Advances and Developments
Abstract
:1. Introduction
2. History and Applications of Metallodrugs
2.1. Biometal−NSAID Complexes: A Few Coordination Topics
2.1.1. Copper(II) Complexes of NSAIDs
2.1.2. Cobalt(II) Complexes of NSAIDs
2.1.3. Nickel(II) Complexes of NSAIDs
2.1.4. Manganese(II) Complexes of NSAIDs
2.1.5. Zinc(II) Complexes of NSAIDs
Chemical Formula | NSAID | Chemical Structure | Biological Activity | Ref. | |
---|---|---|---|---|---|
NSAID Ligand | NSAID Coordinating Group | ||||
[Cu(asa)(aroy)(H2O)2] (a) | Aspirin | Acetylated salicylate | (proposed structure) | Weaker antimicrobial activity comparing to free aspirin. | [86] |
[Cu(difl)2(py)2] (b) | Diflunisal | Non-acetylated salicylate | Moderate to strong DNA and albumin binding. | [83] | |
[Cu(nap)(tpy)Cl] (c) | Naproxen | Propionic acid | Hydrolytic DNA cleavage. Moderated cytotoxicity in a human breast cancer cell line (MCF-7). | [84] | |
[Cu(dicl)2(temed)] (d) | Diclofenac | Acetate | Significant reversible affinity for BSA, higher than the free NSAID sodium diclofenac. | [85] | |
[Cu(Hmel)2(dmf)] (e) | Meloxicam | Enolic acid | Possible beneficial effects as anticancer agent due to its anti-proliferative activity. | [87] | |
[Cu(tolf)2(py)2(MeOH)2] (f) | Tolfenamic acid | Anthranilate | Tight binding affinity to BSA and HSA. Scavenging activity (against hydroxyl and superoxide radicals) stronger than free tolfenamic acid. | [88] | |
[Cu(cxb)2Cl2] (g) | Celecoxib | Coxib | (proposed structure) | Inhibitory activity against Cyclooxygenase II. | [89] |
Chemical Formula | NSAID | Chemical Structure | Biological Activity | Ref. | |
---|---|---|---|---|---|
NSAID Ligand | NSAID Coordinating Group | ||||
[Co(asa)(Haroy)(H2O)Cl] (a) | Aspirin | Acetylated salicylate | (proposed structure) | Weaker antimicrobial activity comparing to free aspirin. | [86] |
[Co(difl)2(MeOH)4] (b) | Diflunisal | Non-acetylated salicylate | Radical scavenging ability and DNA and albumin binding. | [90] | |
[Co(nap)2(py)2(H2O)2] (c) | Naproxen | Propionic acid | Good binding affinity to BSA and HSA and to DNA. High scavenging activity against hydroxyl and superoxide radicals. | [91] | |
[Co(dicl)2(py)2(H2O)2] (d) | Diclofenac | Acetate | Antioxidant activity, DNA binding. | [19] | |
[Co(Hmel)2(EtOH)2] (e) | Meloxicam | Enolic acid | DNA biding and photocleavage of pUC57 plasmid DNA. | [92] | |
[Co(tolf)2(bipyam)] (f) | Tolfenamic acid | Anthranilate | Good binding affinity to BSA and HSA and higher affinity to bind DNA comparing to free tolfenamic acid. | [93] | |
[Co(cxb)2Cl2] (g) | Celecoxib | Coxib | (proposed structure) | Inhibitory activity against cyclooxygenase II | [89] |
Chemical Formula | NSAID | Chemical Structure | Biological Activity | Ref. | |
---|---|---|---|---|---|
NSAID Ligand | NSAID Coordinating Group | ||||
[Ni(asa)(aroy)(H2O)2] (a) | Aspirin | Acetylated salicylate | (proposed structure) | Weaker antimicrobial activity comparing to free aspirin. | [86] |
[Ni(difl)2(MeOH)4] (b) | Diflunisal | Non-acetylated salicylate | Albumin and DNA interaction, antioxidant activity. | [31] | |
[Ni(nap)2(phen)(H2O)] (c) | Naproxen | Propionic acid | Significant affinity for BSA and HSA, DNA-binding and antioxidant activity. | [94] | |
[Ni(dicl)(Hdicl)(Hpko)2](dicl) CH3OH•0.6H2O (d) | Diclofenac | Acetate | DNA and albumin binding. | [99] | |
[Ni(Hmel)2(H2O)2]•2H2O (e) | Meloxicam | Enolic acid | (theoretical structure) | Greater antibacterial activity than free meloxicam. | [100] |
[Νi(tolf)2(bipy)(CH3OH)2] (f) | Tolfenamic acid | Anthranilate | Significant affinity to bind BSA and HSA. Potent scavenging activity of hydroxyl and superoxide radicals. Better DNA binder comparing to free tolfenamic acid. | [101] | |
[Ni(cxb)2Cl2] (g) | Celecoxib | Coxib | (proposed structure) | Inhibitory activity against cyclooxygenase II. | [89] |
Chemical Formula | NSAID | Chemical Structure | Biological Activity | Ref. | |
---|---|---|---|---|---|
NSAID Ligand | NSAID Coordinating Group | ||||
[{Mn(asa)(nic)}2(H2O)Cl]Cl•2H2O (a) | Aspirin | Acetylated salicylate | (proposed structure) | Comparing to standard (ascorbic acid) similar antioxidant activities were observed for the Mn(II) complex and both free drugs. | [102] |
[Mn(nap)2(py)2(H2O)2] (b) | Naproxen | Propionic acid | Selective scavenging activity of hydroxyl and superoxide radicals. Binds tighter to CT-DNA than the corresponding free NSAID and exhibits significant affinity to BSA and HSA. | [95] | |
[Mn3(dicl)6(phen)2(MeOH)] (c) | Diclofenac | Acetate | Higher binding affinities to BSA and HSA comparing to those of free sodium diclofenac. Significant ability to scavenge ABTS and hydroxyl radicals. Potent inhibitory activity of soybean lipoxygenase. | [103] | |
[Mn(Hmel)(Gly)(H2O)2]•5H2O (d) | Meloxicam | Enolic acid | (DFT–optimized geometry) | No antifungal activity against A. niger, but antibacterial activities comparing to amoxycillin/clavulanic and cetaxime (antibacterial agents). | [104] |
[Mn(tolf)2(phen)(H2O)] (e) | Tolfenamic acid | Anthranilate | High scavenging activity against superoxide and hydroxyl radicals. It can also inhibit the activity of soybean lipoxygenase and shows tight binding affinity for BSA and HAS. | [96] |
Chemical Formula | NSAID | Chemical Structure | Biological Activity | Ref. | |
---|---|---|---|---|---|
NSAID Ligand | NSAID Coordinating Group | ||||
[Zn(asa)2] (a) | Aspirin | Acetylated salicylate | No crystal structure has been published to the best of our knowledge. | After oral administration to rats it caused a decrease in blood glucose levels, and type-2 diabetes-induced damage in rat cardiac tissue was alleviated. This complex also showed a better post-ischemic myocardial dysfunction- preventing effect than free aspirin. | [105,106,107] |
[Zn(difl)2(bipy)] (b) | Diflunisal | Non-acetylated salicylate | The complex is a more active radical scavenger and lipooxigenase inhibitor than free diflunisal. The complex also binds strongly to albumins. | [62] | |
[Zn(nap)2(N3)2]Na2 (c) | Naproxen | Propionic acid | The complex shows antibacterial activity against Gram-positive (S. aureus) and Gram-negative (E. coli) bacterial strains. | [80] | |
[Zn2(dicl)4(nic)2] (d) | Diclofenac | Acetate | Improved solubility of the complex in comparision with free NSAID. The complex probably interacts with the grooves of the secondary structure of CT-DNA by electrostatic attraction. | [97] | |
[Zn(Hmel)2(EtOH)2] (e) | Meloxicam | Enolic acid | The complex may interact with DNA through an electrostatic mode and promoted the photo cleavage of a plasmid DNA. | [92] | |
[Zn3(tolf)6(CH3OH)2] (f) | Tolfenamic acid | Anthranilate | Good binding constants for BSA and HSA, suggesting a possible release from the serum albumin to the target cell. | [98] |
3. Biological Effects of the Metal Complexes
3.1. Anti-Tumor Activity
3.2. Antimicrobial Activity
3.3. Antioxidant Activity
4. Interactions with Biomolecules
4.1. Nucleic Acids
Interactions of Cu(II)/Co(II)/Ni(II)/Mn(II)/Zn(II)−NSAID Complexes with DNA
4.2. Proteins
Interactions of Cu(II)/Co(II)/Ni(II)/Mn(II)/Zn(II)−NSAID Complexes with Serum Albumins
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mjos, K.D.; Orvig, C. Metallodrugs in Medicinal Inorganic Chemistry. Chem. Rev. 2014, 114, 4540–4563. [Google Scholar] [CrossRef] [PubMed]
- Schrader, S.M.; Vaubourgeix, J.; Nathan, C. Biology of antimicrobial resistance and approaches to combat it. Sci. Transl. Med. 2020, 12, eaaz6992. [Google Scholar] [CrossRef] [PubMed]
- Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambika, S.; Manojkumar, Y.; Arunachalam, S.; Gowdhami, B.; Sundaram, K.; Solomon, R.; Akbarsha, M.; Sundararaman, M. Biomolecular Interaction, Anti-Cancer and Anti-Angiogenic Properties of Cobalt(III) Schiff Base Complexes. Sci. Rep. 2019, 9, 2721. [Google Scholar] [CrossRef] [PubMed]
- Kwan Law, B.; Qing Qu, Y.; Mok, S.; Liu, H.; Zeng, W.; Han, Y.; Gordillo-Martinez, F.; Chan, W.; Wong, K.; Wong, V. New perspectives of cobalt tris(bipyridine) system: Anti-cancer effect and its collateral sensitivity towards multidrug-resistant (MDR) cancers. Oncotarget 2017, 8, 55003–55021. [Google Scholar]
- Wojciechowska, A.; Szuster-Ciesielska, A.; Sztandera, M.; Bregier-Jarzebowska, R.; Jarzab, A.; Rojek, T.; Komarnicka, U.; Bojarska-Junak, A.; Jezierska, J. L-argininato copper(II) complexes in solution exert significant selective anticancer and antimicrobial activities. Appl. Organometal. Chem. 2020, 34, e5698. [Google Scholar] [CrossRef]
- Selvaganapathy, M.; Raman, N. Pharmacological Activity of a Few Transition Metal Complexes: A Short Review. J. Chem. Biol. Ther. 2016, 1, 108. [Google Scholar] [CrossRef]
- Ndagi, U.; Mhlongo, N.; Soliman, M.E. Metal complexes in cancer therapy—An update from drug design perspective. Drug Des. Devel. Ther. 2017, 1, 599–616. [Google Scholar] [CrossRef] [Green Version]
- Savithri, K.; Kumar, B.C.V.; Vivek, H.K.; Revanasiddappa, H.D. Synthesis and Characterization of Cobalt(III) and Copper(II) Complexes of 2-((E)-(6-Fluorobenzo[d]thiazol-2-ylimino) methyl)-4-chlorophenol: DNA Binding and Nuclease Studies—SOD and Antimicrobial Activities. Int. J. Spectrosc. 2018, 2018, 8759372. [Google Scholar] [CrossRef]
- Housecroft, C.E.; Sharpe, A.G. Inorganic Chemistry, 4th ed.; Pearson: London, UK, 2012. [Google Scholar]
- Lawrance, G.A. Introduction to Coordination Chemistry, 1st ed.; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Pavelková, M.; Vysloužil, J.; Kubová, K.; Vetchý, D. Biological role of copper as an essential trace element in the human organism. Ces. Slov. Farm. 2018, 67, 143–153. [Google Scholar]
- Osredkar, J.; Sustar, N. Copper and Zinc, Biological Role and Significance of Copper/Zinc Imbalance. J. Clin. Toxicol. 2011, 3, 495–513. [Google Scholar] [CrossRef] [Green Version]
- Agotegaray, M.A.; Boeris, M.A.; Quinzani, O.V. Significant anti-inflammatory properties of a copper(II) fenoprofenate complex compared with its parent drug. Physical and chemical characterization of the complex. J. Braz. Chem. Soc. 2010, 21, 2294–2301. [Google Scholar] [CrossRef] [Green Version]
- Hamamci Alisir, S.; Dege, N.; Tapramaz, R. Synthesis, crystal structures and characterizations of three new copper(II) complexes including anti-inflammatory diclofenac. Acta Crystallogr. Sect. C Struct. Chem. 2019, 75, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Festa, R.A.; Thiele, D.J. Copper: An Essential Metal in Biology. Curr. Biol. 2011, 21, 877–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krstić, N.S.; Nikolić, R.S.; Stanković, M.N.; Nikolić, N.G.; Đorđević, D.M. Coordination Compounds of M(II) Biometal Ions with Acid- Type Anti-inflammatory Drugs as Ligands—A Review. Trop. J. Pharm. Res. 2015, 14, 337–349. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M.; Shimizu, S. Cobalt proteins. Eur. J. Biochem. 1999, 261, 1–9. [Google Scholar] [CrossRef]
- Perontsis, S.; Dimitriou, A.; Fotiadou, P.; Hatzidimitriou, A.G.; Papadopoulos, A.N.; Psomas, G. Cobalt(II) complexes with the non-steroidal anti-inflammatory drug diclofenac and nitrogen-donor ligands. J. Inorg. Biochem. 2019, 196, 110688. [Google Scholar] [CrossRef]
- Parada, J.; Atria, A.; Baggio, R.; Wiese, G.; Lagos, S.; Pavón, A.; Rivas, E.; Navarro, L.; Corsini, G. Antibacterial activity and human cell cytotoxic of cobalt(III) complexes with 1,10-phenanthroline and carbohydrate ligands. J. Chil. Chem. Soc. 2017, 62, 3746–3751. [Google Scholar] [CrossRef] [Green Version]
- Shalash, A.M.; Abu Ali, H.I. Synthesis, crystallographic, spectroscopic studies and biological activity of new cobalt(II) complexes with bioactive mixed sulindac and nitrogen-donor ligands. Chem. Cent. J. 2017, 11, 40. [Google Scholar] [CrossRef] [Green Version]
- Horning, K.J.; Caito, S.W.; Tipps, K.G.; Bowman, A.B.; Aschner, M. Manganese is Essential for Neuronal Health. Annu. Rev. Nutr. 2015, 35, 71–108. [Google Scholar] [CrossRef]
- Li, L.; Yang, X. The essential element manganese, oxidative stress, and metabolic diseases: Links and interactions. Oxid. Med. Cell. Longev. 2018, 2018, 7580707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peres, T.V.; Schettinger, M.R.C.; Chen, P.; Carvalho, F.; Avila, D.S.; Bowman, A.; Aschner, M. Manganese-induced neurotoxicity: A review of its behavioral consequences and neuroprotective strategies. BMC Pharmacol. Toxicol. 2016, 17, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouabid, S.; Tinakoua, A.; Lakhdar-Ghazal, N.; Benazzouz, A. Manganese neurotoxicity: Behavioral disorders associated with dysfunctions in the basal ganglia and neurochemical transmission. J. Neurochem. 2016, 136, 677–691. [Google Scholar] [CrossRef] [PubMed]
- Becatti, M.; Bencini, A.; Nistri, S.; Conti, L.; Fabbrini, M.G.; Lucarini, L.; Ghini, V.; Severi, M.; Fiorillo, C.; Giorgi, C.; et al. Different Antioxidant Efficacy of Two MnII-Containing Superoxide Anion Scavengers on Hypoxia/Reoxygenation-Exposed Cardiac Muscle Cells. Sci. Rep. 2019, 9, 10320. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, F.A. Why did Nature choose manganese to make oxygen? Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 1263–1270. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Richards, N.G.J. Biological functions controlled by manganese redox changes in mononuclear Mn-dependent enzymes. Essays Biochem. 2017, 61, 259–270. [Google Scholar]
- Godwin, C.M.; Zehnpfennig, J.R.; Learman, D.R. Biotic and Abiotic Mechanisms of Manganese(II) Oxidation in Lake Erie. Front. Environ. Sci. 2020, 8, 57. [Google Scholar] [CrossRef]
- Kumar, S.; Trivedi, A.V. A Review on Role of Nickel in the Biological System. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 719–727. [Google Scholar] [CrossRef]
- Perontsis, S.; Hatzidimitriou, A.G.; Papadopoulos, A.N.; Psomas, G. Nickel-diflunisal complexes: Synthesis, characterization, in vitro antioxidant activity and interaction with DNA and albumins. J. Inorg. Biochem. 2016, 162, 9–21. [Google Scholar] [CrossRef]
- Zamble, D. Introduction to the Biological Chemistry of Nickel. In The Biological Chemistry of Nickel; RSC Met: London, UK, 2017; pp. 1–11. [Google Scholar]
- Ahn, Y.; Jun, Y. Nickel-Dependent Metalloenzymes. Arch. Biochem. Biophys 2014, 544, 142–152. [Google Scholar]
- Bregadze, V.; Khutsishvili, I.; Melikishvili, S.; Melikishvili, Z. Nickel(II) Ions Interaction with Polynucleotides and DNA of Different GC Composition. arXiv 2009, arXiv:0912.4866. [Google Scholar]
- McNaught, A.D.; Wilkinson, A. IUPAC. Compendium of Chemical Terminology. In Gold Book, 2nd ed.; Blackwell Science Publisher: Oxford, UK, 1997; Volume 1077, p. 2740. [Google Scholar]
- Krężel, A.; Maret, W. The biological inorganic chemistry of zinc ions. Arch. Biochem. Biophys. 2016, 611, 3–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonaventura, P.; Benedetti, G.; Albarede, F.; Miossec, P. Zinc and its role in immunity and inflammation. Autoimmun. Rev. 2014, 14, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Khomskii, D.I. Transition Metal Compounds; Cambridge U. Press: Cambridge, UK, 2014. [Google Scholar]
- Tylkowski, B.; Jastrzab, R.; Odani, A. Developments in platinum anticancer drugs. Phys. Sci. Rev. 2019, 3, 160–173. [Google Scholar]
- Makovec, T. Cisplatin and beyond: Molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol. Oncol. 2019, 53, 148–158. [Google Scholar] [CrossRef] [Green Version]
- Kovala-Demertzi, D.; Hadjipavlou-Litina, D.; Staninska, M.; Primikiri, A.; Kotoglou, C.; Demertzis, M.A. Anti-oxidant, in vitro, in vivo anti-inflammatory activity and antiproliferative activity of mefenamic acid and its metal complexes with manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II). J. Enzyme Inhib. Med. Chem. 2009, 24, 742–752. [Google Scholar] [CrossRef]
- Leung, C.H.; Lin, S.; Zhong, H.J.; Ma, D.L. Metal complexes as potential modulators of inflammatory and autoimmune responses. Chem. Sci. 2015, 6, 871–884. [Google Scholar] [CrossRef] [Green Version]
- Annunziata, A.; Cucciolito, M.; Esposito, R.; Ferraro, G.; Monti, D.M.; Merlino, A.; Ruffo, F. Five-Coordinate Platinum(II) Compounds as Potential Anticancer Agents. Eur. J. Inorg. Chem. 2020, 2020, 918–929. [Google Scholar] [CrossRef]
- Saddam Hossain, M. Selected Pharmacological Applications of 1stRow Transition Metal Complexes: A review. Clin. Med. Res. 2017, 6, 177–191. [Google Scholar] [CrossRef] [Green Version]
- Anthony, E.J.; Bolitho, E.M.; Bridgewater, H.E.; Carter, O.W.L.; Donnelly, J.M.; Imberti, C.; Lant, E.C.; Lermyte, F.; Needham, R.J; Palau, M.; et al. Metallodrugs are unique: Opportunities and challenges of discovery and development. Chem. Sci. 2020, 11, 12888–12917. [Google Scholar] [CrossRef]
- Bin Ou, Z.; Lu, Y.H.; Lu, Y.M.; Chen, S.; Xiong, Y.H.; Zhou, X.H.; Mao, Z.W.; Le, X.Y. A copper(II) complex with 2-(2’-pyridyl)benzimidazole and L-arginine: Synthesis, structure, antibacterial activities, and DNA interaction. J. Coord. Chem. 2013, 66, 2152–2165. [Google Scholar]
- Raman, N.; Joseph, J.; Velan, A.S.K.; Pothiraj, C. Antifungal Activities of Biorelevant Complexes of Copper(II) with Biosensitive Macrocyclic Ligands. Mycobiology 2006, 34, 214–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhasin, H.; Bhatt, V. The State of Art in Coordination Compounds with Antifungal Activity. J. Chem. Chem. Sci. 2018, 8, 595–605. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Joseph, J. Antifungal Activities of Copper(II) with Biosensitive Macrocyclic Schiff Base Ligands Derived from 4-Aminoantipyrine Derivatives. Mycobiology 2009, 37, 141–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, M.; Kumar, G.; Kant, A.; Masram, D.T. Role of Metallodrugs in Medicinal Inorganic Chemistry. In Advances in Metallodrugs: Preparation and Applications in Medicinal Chemistry, 1st ed.; Wiley: Hoboken, NJ, USA, 2020; pp. 71–113. [Google Scholar]
- Pradines, B.; Fusai, T.; Daries, W.; Laloge, V.; Rogier, C.; Millet, P.; Panconi, E.; Kombila, M.; Parzy, D. Ferrocene-chloroquine analogues as antimalarial agents: In vitro activity of ferrochloroquine against 103 Gabonese isolates of Plasmodium falciparum. J. Antimicrob. Chemother. 2001, 48, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Iakovidis, I.; Delimaris, I.; Piperakis, S.M. Copper and Its Complexes in Medicine: A Biochemical Approach. Mol. Biol. Int. 2011, 2011, 594529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weser, U.; Richter, C.; Wendel, A.; Younes, M. Reactivity of antiinflammatory and superoxide dismutase active Cu(II)-salicylates. Bioinorg. Chem. 1978, 8, 201–213. [Google Scholar] [CrossRef]
- Chohan, Z.H.; Iqbal, M.S.; Iqbal, H.S.; Scozzafava, A.; Supuran, C.T. Transition metal acetylsalicylates and their anti-inflammatory activity. J. Enzyme Inhib. Med. Chem. 2002, 17, 87–91. [Google Scholar] [CrossRef] [Green Version]
- Fokunang, C. Overview of non-steroidal anti-inflammatory drugs (nsaids) in resource limited countries. MOJ Toxicol. 2018, 4, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Wongrakpanich, S.; Wongrakpanich, A.; Melhado, K.; Rangaswami, J. A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging Dis. 2018, 9, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Banti, C.N.; Hadjikakou, S.K. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in Metal Complexes and Their Effect at the Cellular Level. Eur. J. Inorg. Chem. 2016, 2016, 3048–3071. [Google Scholar] [CrossRef]
- Ghlichloo, I.; Gerriets, V. Nonsteroidal Anti-inflammatory Drugs (NSAIDs), 1st ed.; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Gałczyńska, K.; Ciepluch, K.; Madej, L.; Kurdziel, K.; Maciejewska, B.; Drulis-Kawa, Z.; Wegierek-Ciuk, A.; Lankoff, A.; Arabski, M. Selective cytotoxicity and antifungal properties of copper(II) and cobalt(II) complexes with imidazole-4-acetate anion or 1-allylimidazole. Sci. Rep. 2019, 9, 9777. [Google Scholar] [CrossRef] [PubMed]
- Gwaram, N.S. Synthesis and characterization of a Schiff base Cobalt(III) complex and assessment of its anti-cancer activity. Chem. Search J. 2017, 8, 56–67. [Google Scholar]
- El-Tabl, A.S.; Mohamed Abd El-Waheed, M.; Wahba, M.A.; Abd El-Halim Abou El-Fadl, N. Synthesis, characterization, and anticancer activity of new metal complexes derived from 2-hydroxy-3-(hydroxyimino)-4-oxopentan-2-ylidene)benzohydrazide. Bioinorg. Chem. Appl. 2015, 2015, 126023. [Google Scholar] [CrossRef] [Green Version]
- Tarushi, A.; Kakoulidou, C.; Raptopoulou, C.P.; Psycharis, V.; Kessissoglou, D.P.; Zoi, I.; Papadopoulos, A.N.; Psomas, G. Zinc complexes of diflunisal: Synthesis, characterization, structure, antioxidant activity, and in vitro and in silico study of the interaction with DNA and albumins. J. Inorg. Biochem. 2017, 170, 85–97. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, P.; Singh, K.; Verma, M.; Sivakumar, S.; Patra, A.K. Photoactive platinum(II) complexes of nonsteroidal anti-inflammatory drug naproxen: Interaction with biological targets, antioxidant activity and cytotoxicity. Eur. J. Med. Chem. 2018, 144, 243–254. [Google Scholar] [CrossRef]
- Crichton, R.R. Biological Inorganic Chemistry—A New Introduction to Molecular Structure and Function, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Fraústo da Silva, J.J.R.; Williams, R.J.P. The Biological Chemistry of the Elements: The Inorganic Chemistry of Life, 2nd ed.; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Bertini, I.; Gray, H.B.; Stiefel, E.; Valentine, J. Biological Inorganic Chemistry: Structure and Reactivity, 3rd ed.; University Science Books: Herndon, VA, USA, 2007. [Google Scholar]
- Solomon, E.I.; Hadt, R.G. Recent advances in understanding blue copper proteins. Coord. Chem. Rev. 2011, 255, 774–789. [Google Scholar] [CrossRef]
- Blackman, A.G. Cobalt: Inorganic & Coordination Chemistry. In Encyclopedia of Inorganic Chemistry, 1st ed.; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Renfrew, A.K.; O’Neill, E.S.; Hambley, T.W.; New, E.J. Harnessing the properties of cobalt coordination complexes for biological application. Coord. Chem. Rev. 2018, 375, 221–233. [Google Scholar] [CrossRef]
- Chang, E.L.; Simmers, C.; Knight, D.A. Cobalt complexes as antiviral and antibacterial agents. Pharmaceuticals 2010, 3, 1711–1728. [Google Scholar] [CrossRef] [Green Version]
- Vlasiou, M. Synthesis and Structure of Cobalt Coordinated Molecules with Anticancer Activity: Recent Advances and Some General Considerations. EC Chem. 2015, 2, 35–47. [Google Scholar]
- Cieslik, P.; Comba, P.; Dittmar, B.; Ndiaye, D.; Tóth, É.; Velmurugan, G.; Wadepohl, H. Exceptional Manganese(II) Stability and Manganese(II)/Zinc(II) Selectivity with Rigid Polydentate Ligands. Angew. Chemie. Int. Ed. 2022, 61, e20211558. [Google Scholar] [CrossRef] [PubMed]
- Crowley, J.D.; Traynor, D.A.; Weatherburn, D.C. Enzymes and proteins containing manganese: An overview. In Metal Ions in Biological Systems, 1st ed.; CRC Press: Boca Raton, FL, USA, 2000; Volume 37, pp. 209–278. [Google Scholar]
- Charles Dismukes, G. Manganese enzymes with binuclear active sites. Chem. Rev. 1996, 96, 2909–2926. [Google Scholar] [CrossRef] [PubMed]
- Eaton, D.R.; Zaw, K. Geometry of Nickel(II) Complexes. J. Am. Chem. Soc. 1972, 94, 4394–4395. [Google Scholar] [CrossRef]
- Rasyda, Y.A.; Rahardjo, S.B.; Nurdiyah, F. Synthesis and Characterization Complex Nickel(II) with Diphenylamine. IOP Conf. Ser. Mater. Sci. Eng. 2019, 578, 1–6. [Google Scholar] [CrossRef]
- Maret, W. New perspectives of zinc coordination environments in proteins. J. Inorg. Biochem. 2012, 111, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Dudev, T.; Lim, C. Tetrahedral vs octahedral zinc complexes with ligands of biological interest: A DFT/CDM study. J. Am. Chem. Soc. 2000, 122, 11146–11153. [Google Scholar] [CrossRef]
- Gouda, A.A.; Kotb El-Sayed, M.I.; Amin, A.S.; El Sheikh, R. Spectrophotometric and spectrofluorometric methods for the determination of non-steroidal anti-inflammatory drugs: A review. Arab. J. Chem. 2013, 6, 145–163. [Google Scholar] [CrossRef] [Green Version]
- Chiniforoshan, H.; Tabrizi, L.; Hadizade, M.; Sabzalian, M.R.; Chermahini, A.N.; Rezapour, M. Anti-inflammatory drugs interacting with Zn(II) metal ion based on thiocyanate and azide ligands: Synthesis, spectroscopic studies, DFT calculations and antibacterial assays. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 128, 183–190. [Google Scholar] [CrossRef]
- La Manna, S.; Di Natale, C.; Florio, D.; Marasco, D. Peptides as therapeutic agents for inflammatory-related diseases. Int. J. Mol. Sci. 2018, 19, 2714. [Google Scholar] [CrossRef] [Green Version]
- Psomas, G.; Kessissoglou, D.P. Quinolones and non-steroidal anti-inflammatory drugs interacting with copper(II), nickel(II), cobalt(II) and zinc(II): Structural features, biological evaluation and perspectives. Dalton Trans. 2013, 42, 6252–6276. [Google Scholar] [CrossRef]
- Fountoulaki, S.; Perdih, F.; Turel, I.; Kessissoglou, D.P.; Psomas, G. Non-steroidal anti-inflammatory drug diflunisal interacting with Cu(II). Structure and biological features. J. Inorg. Biochem. 2011, 105, 1645–1655. [Google Scholar] [CrossRef] [PubMed]
- Mahendiran, D.; Gurumoorthy, P.; Gunasekaran, K.; Senthil Kumar, R.; Rahiman, A.K. Structural modeling, in vitro antiproliferative activity, and the effect of substituents on the DNA fastening and scission actions of heteroleptic copper(II) complexes with terpyridines and naproxen. New J. Chem. 2015, 39, 7895–7911. [Google Scholar] [CrossRef]
- Kumar, S.; Pal, R.; Venugopalan, P.; Ferretti, V.; Perontsis, S.; Psomas, G. Copper(II) diclofenac complexes: Synthesis, structural studies and interaction with albumins and calf-thymus DNA. J. Inorg. Biochem. 2018, 187, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Folorunso Akinyele, O.; Oluwatola Akinnusi, T.; Adekunle Ajayeoba, T.; Olaolu Ayeni, A.; Moyosore Durosinmi, L. Synthesis, Characterization and Antimicrobial Activities of Cobalt(II), Nickel(II) and Copper(II) Complexes of Aroylhydrazone Mixed with Aspirin. Sci. J. Chem. 2019, 7, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Cini, R.; Tamasi, G.; Defazio, S.; Hursthouse, M.B. Unusual coordinating behavior by three non-steroidal anti-inflammatory drugs from the oxicam family towards copper(II). Synthesis, X-ray structure for copper(II)-isoxicam, -meloxicam and -cinnoxicam-derivative complexes, and cytotoxic activity for a copper(II)-piroxicam complex. J. Inorg. Biochem. 2007, 101, 1140–1152. [Google Scholar]
- Tarushi, A.; Perontsis, S.; Hatzidimitriou, A.G.; Papadopoulos, A.N.; Kessissoglou, D.P.; Psomas, G. Copper(II) complexes with the non-steroidal anti-inflammatory drug tolfenamic acid: Structure and biological features. J. Inorg. Biochem. 2015, 149, 68–79. [Google Scholar] [CrossRef]
- Vadivel, E.; Korgaonkar, K.U. Synthesis, Characterization and Docking Studies of Metal (II) Complexes of Anti-inflammatory Drug Celecoxib. J. Chem. Pharm. Res. 2018, 10, 137–141. [Google Scholar]
- Tsiliou, S.; Kefala, L.-A.; Hatzidimitriou, A.G.; Kessissoglou, D.P.; Perdih, F.; Papadopoulos, A.N.; Turel, I.; Psomas, G. Cobalt(II) complexes with non-steroidal anti-inflammatory drugs and α-diimines. J. Inorg. Biochem. 2016, 160, 125–139. [Google Scholar] [CrossRef]
- Dimiza, F.; Papadopoulos, A.N.; Tangoulis, V.; Psycharis, V.; Raptopoulou, C.P.; Kessissoglou, D.P.; Psomas, G. Biological evaluation of cobalt(II) complexes with non-steroidal anti-inflammatory drug naproxen. J. Inorg. Biochem. 2012, 107, 54–64. [Google Scholar] [CrossRef]
- Sanatkar, T.H.; Hadadzadeh, H.; Simpson, J.; Jannesari, Z. The meloxicam complexes of Co(II) and Zn(II): Synthesis, crystal structures, photocleavage and in vitro DNA-binding. J. Mol. Struct. 2013, 1049, 336–344. [Google Scholar] [CrossRef]
- Tsiliou, S.; Kefala, L.A.; Perdih, F.; Turel, I.; Kessissoglou, D.P.; Psomas, G. Cobalt(II) complexes with non-steroidal anti-inflammatory drug tolfenamic acid: Structure and biological evaluation. Eur. J. Med. Chem. 2012, 48, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Totta, X.; Hatzidimitriou, A.G.; Papadopoulos, A.N.; Psomas, G. Nickel(II)-naproxen mixed-ligand complexes: Synthesis, structure, antioxidant activity and interaction with albumins and calf-thymus DNA. N. J. Chem. 2017, 41, 4478–4492. [Google Scholar] [CrossRef]
- Dimiza, F.; Raptopoulou, C.P.; Psycharis, V.; Papadopoulos, A.N.; Psomas, G. Manganese(II) complexes with the non-steroidal anti-inflammatory drugs naproxen and mefenamic acid: Synthesis, structure, antioxidant capacity, and interaction with albumins and DNA. New J. Chem. 2018, 42, 16666–16681. [Google Scholar] [CrossRef]
- Zampakou, M.; Rizeq, N.; Tangoulis, V.; Papadopoulos, A.N.; Perdih, F.; Turel, I.; Psomas, G. Manganese(II) complexes with the non-steroidal anti-inflammatory drug tolfenamic acid: Structure and biological perspectives. Inorg. Chem. 2014, 53, 2040–2052. [Google Scholar] [CrossRef]
- dos Santos, P.R.; Pich, C.T.; Back, D.; Smiderle, F.; Dumas, F.; Moura, S. Synthesis, chemical characterization and DNA interaction study of new diclofenac and ibuprofen zinc (II)-nicotinamide ternary complexes as cyclooxygenase inhibitor prototypes. J. Inorg. Biochem. 2020, 206, 111046–111057. [Google Scholar] [CrossRef]
- Tarushi, A.; Totta, X.; Raptopoulou, C.P.; Psycharis, V.; Psomas, G.; Kessissoglou, D.P. Structural features of mono- and tri-nuclear Zn(ii) complexes with a non-steroidal anti-inflammatory drug as ligand. Dalton Trans. 2012, 41, 7082–7091. [Google Scholar] [CrossRef]
- Kyropoulou, M.; Raptopoulou, C.P.; Psycharis, V.; Psomas, G. Ni(II) complexes with non-steroidal anti-inflammatory drug diclofenac: Structure and interaction with DNA and albumins. Polyhedron 2013, 61, 126–136. [Google Scholar] [CrossRef]
- Franzé, J.A.; Carvalho, T.F.; Gaglieri, C.; Caires, F.J.; Bannach, G.; Castro, R.C.; Treu-Filho, O.; Ionashiro, M.; Mendes, R.A. Synthesis, characterization, thermal and spectroscopic studies and bioactivity of complexes of meloxicam with some bivalent transition metals. J. Therm. Anal. Calorim. 2017, 127, 1393–1405. [Google Scholar] [CrossRef] [Green Version]
- Totta, X.; Hatzidimitriou, A.G.; Papadopoulos, A.N.; Psomas, G. Nickel(II) complexes of the non-steroidal anti-inflammatory drug tolfenamic acid: Synthesis, structure, antioxidant activity and interaction with albumins and calf-thymus DNA. Polyhedron 2016, 117, 172–183. [Google Scholar] [CrossRef]
- Osowole, A.; Odutemu, A.E. Synthesis, Physicochemical and Antioxidant Properties of Some Metal(II) Complexes of Mixed Drugs, Aspirin and Nicotinamide. Lett. Health Biol. Sci. 2016, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Zampakou, M.; Tangoulis, V.; Raptopoulou, C.P.; Psycharis, V.; Papadopoulos, A.N.; Psomas, G. Structurally diverse manganese(II)-diclofenac complexes showing enhanced antioxidant activity and affinity to serum albumins in comparison to sodium diclofenac. Eur. J. Inorg. Chem. 2015, 2015, 2285–2294. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Sadeek, S.A.; Zordok, W.A.; Mohamed, A.A. Meloxicam and study of their antimicrobial effects against phyto- and human pathogens. Molecules 2021, 26, 1480. [Google Scholar] [CrossRef] [PubMed]
- Singla, A.K.; Wadhwa, H. Zinc-aspirin complex: Synthesis, physicochemical and biological evaluation. Int. J. Pharm. 1994, 108, 173–185. [Google Scholar] [CrossRef]
- Korkmaz-Icöz, S.; Atmanli, A.; Li, S.; Radovits, T.; Hegedus, P.; Barnucz, E.; Hirschberg, K.; Loganathan, S.; Yoshikawa, Y.; Yasui, H.; et al. Superiority of zinc complex of acetylsalicylic acid to acetylsalicylic acid in preventing postischemic myocardial dysfunction. Exp. Biol. Med. 2015, 240, 1247–1255. [Google Scholar] [CrossRef] [Green Version]
- Korkmaz-Icöz, S.; Al Said, S.; Radovits, T.; Li, S.; Brune, M.; Hegedus, P.; Atmanli, A.; Ruppert, M.; Brlecic, P.; Lehmann, L.H.; et al. Oral treatment with a zinc complex of acetylsalicylic acid prevents diabetic cardiomyopathy in a rat model of type-2 diabetes: Activation of the Akt pathway. Cardiovasc. Diabetol. 2016, 15, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Kleinzeller, A. Charles Ernest Overton’s Concept of a Cell Membrane. In Membrane Permeability, 1st ed.; Deamer, D.W., Kleinzeller, A., Fambrough, D.M., Eds.; Academic Press: Cambridge, MA, USA, 1999; Volume 48, pp. 1–22. [Google Scholar]
- Raman, N.; Kulandaisamy, A.; Thangaraja, C.; Manisankar, P.; Viswanathan, S.; Vedhi, C. Synthesis, structural characterisation and electrochemical and antibacterial studies of Schiff base copper complexes. Transit. Met. Chem. 2004, 29, 129–135. [Google Scholar] [CrossRef]
- Al-Amiery, A.A.; Kadhum, A.A.H.; Mohamad, A.B. Antifungal and antioxidant activities of pyrrolidone thiosemicarbazone complexes. Bioinorg. Chem. Appl. 2012, 2012, 1–7. [Google Scholar] [CrossRef]
- Panchal, P.K.; Pansuriya, P.B.; Patel, M.N. In-vitro biological evaluation of some ONS and NS donor Schiff’s bases and their metal complexes. J. Enzyme Inhib. Med. Chem. 2006, 21, 453–458. [Google Scholar] [CrossRef]
- Zappavigna, S.; Cossu, A.M.; Grimaldi, A.; Bocchetii, M.; Ferraro, G.A.; Nicoletii, G.F.; Filosa, R.; Caraglia, M. Anti-inflammatory drugs as anticancer agents. Int. J. Mol. Sci. 2020, 21, 2605. [Google Scholar] [CrossRef] [Green Version]
- Philip, M.; Rowley, D.A.; Schreiber, H. Inflammation as a tumor promoter in cancer induction. Semin. Cancer Biol. 2004, 14, 433–439. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, F.; Shang, L. Advances in antitumor effects of NSAIDs. Cancer Manag. Res. 2018, 10, 4631–4640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weder, J.E.; Dillon, C.T.; Hambley, T.W.; Kennedy, B.J.; Lay, P.A.; Biffin, J.R.; Regtop, H.L.; Davies, N.M. Copper complexes of non-steroidal anti-inflammatory drugs: An opportunity yet to be realized. Coord. Chem. Rev. 2002, 232, 95–126. [Google Scholar] [CrossRef]
- Roy, S.; Banerjee, R.; Sarkar, M. Direct binding of Cu(II)-complexes of oxicam NSAIDs with DNA backbone. J. Inorg. Biochem. 2006, 100, 1320–1331. [Google Scholar] [CrossRef] [PubMed]
- Deb, J.; Lakshman, T.R.; Ghosh, I.; Jana, S.S.; Paine, T.K. Mechanistic studies of in vitro anti-proliferative and anti-inflammatory activities of the Zn(II)–NSAID complexes of 1,10-phenanthroline5,6-dione in MDA-MB-231 cells. Dalton Trans. 2020, 49, 11375–11384. [Google Scholar] [CrossRef]
- Dendrinou-Samara, C.; Tsotsou, G.; Ekateriniadou, L.V.; Kortsaris, A.H.; Raptopoulou, C.P.; Terzis, A.; Kyriakidis, D.A.; Kessissoglou, D.P. Anti-inflammatory drugs interacting with Zn(II), Cd(II) and Pt(II) metal ions. J. Inorg. Biochem. 1998, 71, 171–179. [Google Scholar] [CrossRef]
- Sayen, S.; Carlier, A.; Tarpin, M.; Guillon, E. A novel copper(II) mononuclear complex with the non-steroidal anti-inflammatory drug diclofenac: Structural characterization and biological activity. J. Inorg. Biochem. 2013, 120, 39–43. [Google Scholar] [CrossRef]
- Shi, X.; Fang, H.; Guo, Y.; Yuan, H.; Guo, Z.; Wang, X. Anticancer copper complex with nucleus, mitochondrion and cyclooxygenase-2 as multiple targets. J. Inorg. Biochem. 2019, 190, 38–44. [Google Scholar] [CrossRef]
- Yin, Z.; Wang, Y.; Whittell, L.; Jergic, S.; Liu, M.; Harry, E.; Dizon, N.E.; Kelso, M.J.; Beck, J.L.; Oakley, A.J. DNA replication is the target for the antibacterial effects of nonsteroidal anti-inflammatory drugs. Chem. Biol. 2014, 21, 481–487. [Google Scholar] [CrossRef] [Green Version]
- Lagadinou, M.; Onisor, M.O.; Rigas, A.; Musetescu, D.-V.; Gkentzi, D.; Assimakopoulos, S.F.; Panos, G.; Marangos, M. Antimicrobial properties on non-antibiotic drugs in the era of increased bacterial resistance. Antibiotics 2020, 9, 107. [Google Scholar] [CrossRef] [Green Version]
- Obad, J.; Šušković, J.; Kos, B. Antimicrobial activity of ibuprofen: New perspectives on an ‘old’ non-antibiotic drug. Eur. J. Pharm. Sci. 2015, 71, 93–98. [Google Scholar] [CrossRef]
- Hersh, E.V.; Hammond, B.F.; Fleury, A.A. Antimicrobial activity of flurbiprofen and ibuprofen in vitro against six common periodontal pathogens. J. Clin. Dent. 1991, 3, 1–5. [Google Scholar]
- Sanyal, A.K.; Roy, D.; Chowdhury, B.; Banerjee, A.B. Ibuprofen, a unique anti-inflammatory compound with antifungal activity against dermatophytes. Lett. Appl. Microbiol. 1993, 17, 109–111. [Google Scholar] [CrossRef]
- Abu Ali, H.; Omar, S.N.; Darawsheh, M.D.; Fares, H. Synthesis characterization and antimicrobial activity of zinc(II) ibuprofen complexes with nitrogen-based ligands. J. Coord. Chem. 2016, 69, 1110–1122. [Google Scholar] [CrossRef]
- Lawal, A.; Obaleye, J. Synthesis, characterization and antibacterial activity of aspirin and paracetamolmetal complexes. Biokemistri 2010, 19, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Ashouri, F.; Reza, A.; Molaeian, S.; Fall, M.A.; Butcher, R.J. The novel cobalt and manganese polymeric complex with the non- steroidal anti-inflammatory drug diclofenac: Synthesis, characterization and antibacterial studies. J. Mol. Struct. 2020, 1204, 127483. [Google Scholar] [CrossRef]
- Pan, T.; Peng, Z.; Tan, L.; Zou, F.; Zhou, N.; Liu, B.; Liang, L.; Chen, C.; Liu, J.; Wu, L.; et al. Nonsteroidal Anti-inflammatory Drugs Potently Inhibit the Replication of Zika Viruses by Inducing the Degradation of AXL. J. Virol. 2018, 92, e01018-18. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, K.-A.S.; Ahmed, J.H.; Jawad, A.M. Non-Steroidal Anti-Inflammatory Drugs (Nsaids), Free Radicals and Reactive Oxygen Species (Ros): A Review of Literature. Med. J. Basrah Univ. 2009, 27, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Lorente, L.; Martín, M.M.; Abreu-González, P.; Domínguez-Rodriguez, A.; Labarta, L.; Díaz, C.; Solé-Violán, J.; Ferreres, J.; Cabrera, J.; Igeño, J.C.; et al. Sustained high serum malondialdehyde levels are associated with severity and mortality in septic patients. Crit. Care 2013, 17, R290. [Google Scholar] [CrossRef] [Green Version]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Kadam, C.; Abhang, S.A. Evaluation of serum levels of reduced glutathione, glutathione-s-transferase and nitric oxide in breast cancer patients undergoing adjuvant chemotherapy. Int. J. Curr. Res. 2014, 5, 51–57. [Google Scholar]
- Costa, D.; Gomes, A.; Lima, J.L.F.C.; Fernandes, E. Singlet oxygen scavenging activity of non-steroidal anti-inflammatory drugs. Redox Rep. 2008, 13, 153–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Končič, M.; Rajič, Z.; Petrič, N.; Zorc, B. Antioxidant activity of NSAID hydroxamic acids. Acta Pharm. 2009, 59, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Alajmi, M.F.; Rehman, T.; Amir, S.; Khan, R.A. Copper(II) complexes as potential anticancer and Nonsteroidal anti- inflammatory agents: In vitro and in vivo studies. Sci. Rep. 2019, 9, 5237–5254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouithys-Mickalad, A.M.L.; Zheng, S.X.; Deby-Dupont, G.P.; Deby, C.M.; Lamy, M.M.; Reginster, J.Y.; Henrotin, Y.E. In vitro study of the antioxidant properties of non steroidal anti-inflammatory drugs by chemiluminescence and electron spin resonance (ESR). Free Radic. Res. 2000, 33, 607–621. [Google Scholar] [CrossRef]
- Tarushi, A.; Karaflow, Z.; Kljun, J.; Turel, I.; Psomas, G.; Papadopoulos, A.N.; Kessissoglou, D.P. Antioxidant capacity and DNA-interaction studies of zinc complexes with a non-steroidal anti-inflammatory drug, mefenamic acid. J. Inorg. Biochem. 2013, 128, 85–96. [Google Scholar] [CrossRef]
- Tarushi, A.; Totta, X.; Papadopoulos, A.; Kljun, J.; Turel, I.; Kessissoglou, D.P.; Psomas, G. Antioxidant activity and interaction with DNA and albumins of zinc-tolfenamato complexes. Crystal structure of [Zn(tolfenamato) 2(2,2′-dipyridylketoneoxime)2]. Eur. J. Med. Chem. 2014, 74, 187–198. [Google Scholar] [CrossRef]
- Goswami, S.; Ray, S.; Sarkar, M. Spectroscopic studies on the interaction of DNA with the copper complexes of NSAIDs lornoxicam and isoxicam. Int. J. Biol. Macromol. 2016, 93, 47–56. [Google Scholar] [CrossRef]
- LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. National Institute of Diabetes and Digestive and Kidney Diseases; Bethesda: Maryland, USA. 2012. Available online: www.livertox.nih.gov (accessed on 23 January 2022).
- Laster, J.; Satoskar, R. Aspirin-Induced Acute Liver Injury. ACG Case Rep. J. 2014, 2, 48–49. [Google Scholar] [CrossRef]
- Gibson, D. Drug-DNA interactions and novel drug design. Pharmacogenomics J. 2002, 2, 275–276. [Google Scholar] [CrossRef]
- Shahabadi, N.; Maghsudi, M.; Mahdavi, M.; Pourfoulad, M. Interaction of calf thymus dna with the antiviral drug lamivudine. DNA Cell Biol. 2012, 31, 122–127. [Google Scholar] [CrossRef]
- Packianathan, S.; Arun, T.; Raman, N. DNA interaction and efficient antimicrobial activities of 4N chelating metal complexes. J. Photochem. Photobiol. B Biol. 2015, 148, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Anitha, P.; Chitrapriya, N.; Jang, Y.J.; Viswanathamurthi, P. Synthesis, characterization, DNA interaction, antioxidant and anticancer activity of new ruthenium(II) complexes of thiosemicarbazone/semicarbazone bearing 9,10-phenanthrenequinone. J. Photochem. Photobiol. B Biol. 2013, 129, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Pages, B.J.; Ang, D.L.; Wright, E.P.; Aldrich-Wright, J.R. Metal complex interactions with DNA. Dalton Trans. 2015, 44, 3505–3526. [Google Scholar] [CrossRef] [PubMed]
- Goodsell, D.S. The Molecular Perspective: Cisplatin. Oncologist 2006, 11, 316–317. [Google Scholar] [CrossRef] [Green Version]
- Erxleben, A. Investigation of Non-covalent Interactions of Metal Complexes with DNA in Cell-free Systems. Bioorganometallic Chem. Mech. 2017, 71, 102–111. [Google Scholar] [CrossRef]
- Komor, A.C.; Barton, J.K. The Path for Metal Complexes to a DNA Target. Chem. Commun. 2013, 49, 3617–3630. [Google Scholar] [CrossRef] [Green Version]
- Yousuf, M.; Youn, I.S.; Yun, J.; Rasheed, L.; Valero, R.; Shi, G.; Kim, K.S. Violation of DNA neighbor exclusion principle in RNA recognition. Chem. Sci. 2016, 7, 3581–3588. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, G.M.; Gait, J.M.; Loakes, D.; Williams, M.D. Nucleic Acids in Chemistry and Biology, 3rd ed.; RSC Publishing: London, UK, 2006. [Google Scholar]
- Smith, J.A.; Keene, F.R.; Li, F.; Collins, J.G. Noncovalent DNA Binding of Metal Complexes. In Comprehensive Inorganic Chemistry II, 2nd ed.; Reedijk, J., Poeppelmeier, K., Eds.; Elsevier: Oxford, UK, 2013; Volume 3, pp. 709–750. [Google Scholar]
- Li, S.; Cooper, V.R.; Thonhauser, T.; Lundqvist, B.I.; Langreth, D.C. Stacking interactions and DNA intercalation. J. Phys. Chem. B 2009, 113, 11166–11172. [Google Scholar] [CrossRef]
- Thamilarasan, V.; Sengottuvelan, N.; Stalin, N.; Srinivasan, P.; Chakkaravarthi, G. Synthesis, interactions, molecular structure, biological properties and molecular docking studies on Mn, Co, Zn complexes containing acetylacetone and pyridine ligands with DNA duplex. J. Photochem. Photobiol. B Biol. 2016, 160, 110–120. [Google Scholar] [CrossRef]
- Alberti, E.; Zampakou, M.; Donghi, D. Covalent and non-covalent binding of metal complexes to RNA. J. Inorg. Biochem. 2016, 163, 278–291. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.Y.; Tabassum, S.; Arjmand, F. Evaluation of cytotoxic potential of structurally well-characterized RNA targeted ionic non-steroidal anti-inflammatory (NSAID) Cu(II) & Zn(II) DACH-mefenamato drug conjugates against human cancer cell lines. RSC Adv. 2020, 10, 166–178. [Google Scholar]
- Hostetter, A.A.; Osborn, M.F.; DeRose, V.J. RNA-Pt adducts following cisplatin treatment of Saccharomyces cerevisiae. ACS Chem. Biol. 2012, 7, 218–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lejal, N.; Tarus, B.; Bouguyon, E.; Chenavas, S.; Bertho, N.; Delmas, B.; Ruigrok, R.W.H.; Di Primo, C.; Slama-Schwok, A. Structure-based discovery of the novel antiviral properties of naproxen against the nucleoprotein of influenza a virus. Antimicrob. Agents Chemother. 2013, 57, 2231–2242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, M.P.; Holtkamp, H.U.; Hartinger, C.G. Antitumor Metallodrugs that Target Proteins. Met. Ions Life Sci. 2018, 18, 351–386. [Google Scholar]
- Cicenas, J.; Zalyte, E.; Bairoch, A.; Gaudet, P. Kinases and Cancer. Cancers 2018, 10, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filippakopoulos, P.; Kräling, K.; Celik, M.A.; Harms, K. Structurally Sophisticated Octahedral Metal Complexes as Highly Selective Protein Kinase Inhibitors. J. Am. Chem. Soc. 2011, 133, 5976–5986. [Google Scholar]
- Kunick, C.; Ott, I. Metal Complexes as Protein Kinase Inhibitors. Bioorganometallic Chem. 2010, 49, 5226–5227. [Google Scholar] [CrossRef]
- He, H.; Xia, H.; Wang, J.D.; Gu, Q.; Lin, M.C.M; Zou, B.; Lam, S.K.; Chan, A.O.O.; Yuen, M.F.; Kung, H.F.; et al. Inhibition of human telomerase reverse transcriptase by nonsteroidal antiinflammatory drugs in colon carcinoma. Cancer 2006, 106, 1243–1249. [Google Scholar] [CrossRef]
- Rana, C.; Piplani, H.; Vaish, V.; Nehru, B.; Sanyal, S.N. Downregulation of telomerase activity by diclofenac and curcumin is associated with cell cycle arrest and induction of apoptosis in colon cancer. Tumor Biol. 2015, 36, 5999–6010. [Google Scholar] [CrossRef]
- Bruijnincx, P.; Sadler, P. New trends for metal complexes with anticancer activity. Chem. Biol. 2008, 12, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Ishizuka, T.; Yang, J.; Ito, K.; Katada, H.; Komiyama, M.; Hayashi, T. Oligonucleotide Models of Telomeric DNA and RNA Form a Hybrid G-quadruplex Structure as a Potential Component of Telomeres. J. Biol. Chem. 2012, 287, 41787–41796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, I.M.; Lopez, F.; Tejera, A.M.; Estève, J.-P.; Blasco, M.A.; Pratviel, G.; Meunier, B. A G-quadruplex ligand with 10000-fold selectivity over duplex DNA. J. Am. Chem. Soc. 2007, 129, 1502–1503. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.T.; Kuhlmann, M.; Hvam, M.L.; Howard, K.A. Albumin-based drug delivery: Harnessing nature to cure disease. Mol. Cell. Ther. 2016, 4, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topala, T.; Bodoki, A.; Oprean, L.; Oprean, R. Bovine Serum Albumin Interactions with Metal Complexes. Clujul Med. 2014, 87, 215–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
NSAIDs | Kb (M−1) | Cu(II) | Kb (M−1) | Co(II) | Kb (M−1) | Ni(II) | Kb (M−1) | Mn(II)/ Zn(II) | Kb (M−1) |
---|---|---|---|---|---|---|---|---|---|
Diflunisal (difl) | 3.08 (±0.15) × 103 | Cu(II)-difl | 7.36 (±0.11) × 104 | Co(II)-difl | 2.26 (±0.12) × 105 | Ni(II)-difl | 2.00 (±0.17) × 105 | - | - |
Naproxen (nap) | 2.67 (±0.22) × 104 | Cu(II)-nap | 2.24 (±0.25) × 105 | Co(II)-nap | 3.15 (±0.57) × 104 | Ni(II)-nap | 1.54 (±0.12) × 105 | Mn(II)-nap | 2.29 (±0.13) × 105 |
Diclofenac (dicl) | 3.16 (±0.14) × 104 | - | - | Co(II)-dicl | 6.41 (±2.04) × 105 | Ni(II)-dicl | 3.63 (±0.12) × 105 | - | - |
Meloxicam (melox) | 5.5 × 103 | - | - | Co(II)-melox | 1.15 × 104 | - | - | Zn(II)-melox | 5.34 × 104 |
Tolfenamic acid (tolf) | 5.00 (±0.10) × 104 | - | - | Co(II)-tolf | 6.78 (±0.50) × 105 | Ni(II)-tolf | 2.35 (±0.12) × 105 | - | - |
NSAIDs | K (M−1) | Cu(II) | K (M−1) | Co(II) | K (M−1) | Ni(II) | K (M−1) | Mn(II)/ Zn(II) | K (M−1) |
---|---|---|---|---|---|---|---|---|---|
Diflunisal (difl) | 1.22 (±0.07) × 105 | Cu(II)-difl | 7.36 (±0.11) × 104 | Co(II)-difl | 2.26 (±0.12) × 105 | Ni(II)-difl2 | 1.41 (±0.08) × 105 | Zn(II)-dilf2 | 9.94 (±0.35) × 105 |
Naproxen (nap) | 5.35 × 103 | - | - | Co(II)-nap | 3.15 (±0.57) × 104 | Ni(II)-nap2 | 2.73 (±0.25) × 104 | Mn(II)-nap2 | 6.50 (±0.30) × 104 |
Diclofenac (dicl) | 3.55 × 103 | Cu(II)-dicl | 2.23 (±0.09) × 103 | Co(II)-dicl | 6.41 (±2.04) × 105 | Ni(II)-dicl | 2.54 (±0.27) × 104 | Mn(II)-dicl | 1.86 (7) × 105 |
Tolfenamic acid (tolf) | 3.12 (±0.25) × 105 | Cu(II)-tolf | 4.16 (±0.24) × 105 | Co(II)-tolf | 6.78 (±0.50) × 105 | Ni(II)-tolf2 | 2.23 (±0.11) × 105 | Mn(II)-tolf2 | 3.56 (±0.13) × 105 |
Zn(II)-tolf | 4.12 × 105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, A.C.F.; Monteiro, L.P.G.; Gomes, A.C.C.; Martel, F.; Santos, T.M.; Ferreira, B.J.M.L. NSAID-Based Coordination Compounds for Biomedical Applications: Recent Advances and Developments. Int. J. Mol. Sci. 2022, 23, 2855. https://doi.org/10.3390/ijms23052855
Santos ACF, Monteiro LPG, Gomes ACC, Martel F, Santos TM, Ferreira BJML. NSAID-Based Coordination Compounds for Biomedical Applications: Recent Advances and Developments. International Journal of Molecular Sciences. 2022; 23(5):2855. https://doi.org/10.3390/ijms23052855
Chicago/Turabian StyleSantos, Ariana C. F., Luís P. G. Monteiro, Adriana C. C. Gomes, Fátima Martel, Teresa M. Santos, and Bárbara J. M. Leite Ferreira. 2022. "NSAID-Based Coordination Compounds for Biomedical Applications: Recent Advances and Developments" International Journal of Molecular Sciences 23, no. 5: 2855. https://doi.org/10.3390/ijms23052855
APA StyleSantos, A. C. F., Monteiro, L. P. G., Gomes, A. C. C., Martel, F., Santos, T. M., & Ferreira, B. J. M. L. (2022). NSAID-Based Coordination Compounds for Biomedical Applications: Recent Advances and Developments. International Journal of Molecular Sciences, 23(5), 2855. https://doi.org/10.3390/ijms23052855