Versatile Oral Insulin Delivery Nanosystems: From Materials to Nanostructures
Abstract
:1. Introduction
2. Physiological Absorption Barrier of Oral Insulin
2.1. Destruction by Gastric Acid
2.2. Degradation by Digestive Enzymes
2.3. Retention by the Mucus Layer Barriers
2.4. Retardation by Intestinal Epithelial Cell Layer
3. Oral Insulin Delivery Nanosystems
3.1. Materials for Oral Insulin Delivery Nanosystems
3.1.1. Polylactic Acid (PLA)
3.1.2. Poly (lactic-co-glycolic acid) (PLGA)
3.1.3. Chitosan and Its Derivatives
3.1.4. Metal Organic Frameworks (MOFs)
3.1.5. Other Materials
3.2. The Structures of Oral Insulin Delivery Nanosystems
3.2.1. Liposomes
3.2.2. Polymer Micelles
3.2.3. Solid Lipid Nanoparticles (SLNs)
3.2.4. Organic Nanospheres/Nanocapsules
3.2.5. Nanogels
3.2.6. Organic/Inorganic Nanohybrids
4. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bennett, P.H. Diabetes mortality in the USA: Winning the battle but not the war? Lancet 2018, 391, 2392–2393. [Google Scholar] [CrossRef]
- Federation, I.D. IDF Diabetes Atlas, 9th ed.; International Diabetes Federation: Brussels, Belgium, 2019. [Google Scholar]
- Concannon, P.; Rich, S.S.; Nepom, G.T. Genetics of type 1A diabetes. N. Engl. J. Med. 2009, 360, 1646–1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warram, J.H.; Martin, B.C.; Krolewski, A.S.; Soeldner, J.S.; Kahn, C.R. Slow Glucose Removal Rate and Hyperinsulinemia Precede the Development of Type II Diabetes in the Offspring of Diabetic Parents. Ann. Intern. Med. 1990, 113, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Buse, M.G. Hexosamines, insulin resistance, and the complications of diabetes: Current status. Am. J. Physiol. Endoc. Metab. 2006, 290, 1. [Google Scholar] [CrossRef] [PubMed]
- Hamaty, M. Insulin treatment for type 2 diabetes: When to start, which to use. Clevel. Clin. J. Med. 2011, 78, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Pickup, J.; Keen, H. Continuous Subcutaneous Insulin Infusion at 25 Years: Evidence base for the expanding use of insulin pump therapy in type 1 diabetes. Diabetes Care 2002, 25, 593–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higueras, I.R.; Minguillón, M.A.A.; Soleta, J.P.G.D.V.; Saris, A.B. Gas gangrene secondary to subcutaneous insulin injection. Am. J. Emerg. Med. 1996, 14, 98–99. [Google Scholar] [CrossRef]
- Richardson, T.; Kerr, D. Skin-Related Complications of Insulin Therapy. Am. J. Clin. Dermatol. 2003, 4, 661–667. [Google Scholar] [CrossRef]
- Gao, M.; Huo, Y.; Shen, X.; Mao, S. Modification of in situ perfusion in study of nasal absorption of insulin. Acta. Pharm. Sin. 2018, 53, 1551–1556. [Google Scholar]
- Jintapattanakit, A.; Peungvicha, P.; Sailasuta, A.; Kissel, T.; Junyaprasert, V.B. Nasal absorption and local tissue reaction of insulin nanocomplexes of trimethyl chitosan derivatives in rats. J. Pharm. Pharmacol. 2010, 62, 583–591. [Google Scholar] [CrossRef]
- Mitra, R.; Pezron, I.; Chu, W.A.; Mitra, A.K. Lipid emulsions as vehicles for enhanced nasal delivery of insulin. Int. J. Pharm. 2000, 205, 127–134. [Google Scholar] [CrossRef]
- Patil, N.H.; Devarajan, P.V. Insulin-loaded alginic acid nanoparticles for sublingual delivery. Drug. Deliv. 2016, 23, 429–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, C.; Zhang, Y.; Zhang, Q.; Wang, G.; Lu, W.; Zhang, X.; Ding, X. Effects of various penetration enhancers on the sublingual absorption of insulin in rats. Chin. Pharm. J. 2004, 39, 279–282. [Google Scholar]
- Simamora, P.; Lee, Y.C.; Yalkowsky, S.H. Ocular device for the controlled systemic delivery of insulin. J. Pharm. Sci. 1996, 85, 1128–1130. [Google Scholar] [CrossRef] [PubMed]
- Arvind; Lamba, H.S.; Ali, A. In-situ gel system based on temperature and pH activation for sustained ocular delivery. Indo. Am. J. Pharm. Sci. 2017, 4, 558–4561. [Google Scholar]
- Chiou, G.C. Systemic delivery of polypeptide drugs through ocular route. Annu. Rev. Pharmacol. 1991, 31, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.C.; Simamora, P.; Yalkowsky, S.H. Effect of Brij-78 on systemic delivery of insulin from an ocular device. J. Pharm. Sci. 1997, 86, 430–433. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.C.; Yalkowsky, S.H. Systemic absorption of insulin from a Gelfoam (R) ocular device. Int. J. Pharm. 1999, 190, 35–40. [Google Scholar] [CrossRef]
- Chono, S.; Togami, K.; Itagaki, S. Aerosolized liposomes with dipalmitoyl phosphatidylcholine enhance pulmonary absorption of encapsulated insulin compared with co-administered insulin. Drug Dev. Ind. Pharm. 2017, 43, 1892–1898. [Google Scholar] [CrossRef]
- Zheng, H.; Zhen, R.; Zhao, N. The pharmacodynamics observation of enhanced pulmonary insulin absorption by admixture of liposome in diabetes rats model. China J. Mod. Med. 2011, 21, 408–411. [Google Scholar]
- He, L.; Gao, Y.; Lin, Y.; Katsumi, H. Improvement of pulmonary absorption of insulin and other water-soluble compounds by polyamines in rats. J. Control. Release 2007, 122, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Barichello, J.M.; Morishita, M.; Takayama, K.; Chiba, Y.; Tokiwa, S.; Nagai, T. Enhanced rectal absorption of insulin-loaded Pluronic (R) F-127 gels containing unsaturated fatty acids. Int. Pharm. 1999, 183, 125–132. [Google Scholar] [CrossRef]
- Degim, Z.; Degim, T.; Acarturk, F.; Erdogan, D.; Ozogul, C.; Koksal, M. Rectal and vaginal administration of insulin-chitosan formulations: An experimental study in rabbits. J. Drug Target. 2005, 13, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Xia, D.; Zhu, Q.; Hu, L.; Gan, Y. Intracellular transport of nanocarriers across the intestinal epithelium. Drug Discov. Today 2016, 21, 856–863. [Google Scholar] [CrossRef]
- Puigserver, P.; Rhee, J.; Donovan, J.; Walkey, C.J.; Yoon, C.J.; Oriente, F.; Kitamura, Y.; Altomonte, J.; Dong, H.; Accili, D.; et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1a interaction. Nature 2003, 423, 550–555. [Google Scholar] [CrossRef]
- Alvestrand, A.; Wahren, J.; Smith, D.; Defronzo, R.A. Insulin-mediated potassium uptake is normal in uremic and healthy subjects. Am. J. Physiol. 1984, 246, 174–180. [Google Scholar] [CrossRef]
- Ullrich, A.; Be Ll, J.R.; Chen, E.Y.; Herrera, R.; Petruzzelli, L.M.; Dull, T.J.; Gray, A.; Coussens, L.; Liao, Y.C.; Tsubokawa, M. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 1985, 313, 756–761. [Google Scholar] [CrossRef]
- Lilong, S.; Zhijia, L.; Houkuan, T.; Zhicheng, L.; Lixin, L.; Leong, K.W.; Hai-Quan, M.; Yongming, C. Scalable Manufacturing of Enteric Encapsulation Systems for Site-Specific Oral Insulin Delivery. Biomacromolecules 2020, 20, 528–538. [Google Scholar]
- Xu, Y.; Zheng, Y.; Wu, L.; Zhu, X.; Zhang, Z.; Huang, Y. Novel solid lipid nanoparticle with endosomal escape function for oral delivery of insulin. ACS Appl. Mater. Interfaces 2018, 10, 9315–9324. [Google Scholar] [CrossRef]
- Shrestha, N.; Araujo, F.; Shahbazi, M.A.; Makila, E.; Gomes, M.J.; Herranz-Blanco, B.; Lindgren, R.; Granroth, S.; Kukk, E.; Salonen, J. Thiolation and Cell-Penetrating Peptide Surface Functionalization of Porous Silicon Nanoparticles for Oral Delivery of Insulin. Adv. Funct. Mater. 2016, 26, 3405–3416. [Google Scholar] [CrossRef]
- Ruedy, J. Applied pharmacology. Can. Med. Assoc. J. 1976, 115, 988. [Google Scholar]
- Xin, H.Z. Overcoming enzymatic and absorption barriers to non-parenterally administered protein and peptide drugs. J. Control. Release 1994, 29, 239–252. [Google Scholar]
- Hamman, J.H.; Enslin, G.M.; Kotz, A.F. Oral Delivery of Peptide Drugs. BioDrugs 2005, 19, 165–177. [Google Scholar] [CrossRef]
- Eldor, R.; Arbit, E.; Corcos, A.; Kidorn, M. Glucose-reducing effect of the ORMD-0801 oral insulin preparation in patients with uncontrolled type 1 diabetes: A pilot study. PLoS ONE 2013, 8, e59524. [Google Scholar]
- Wright, J. Nanotechnology: Deliver on a promise. Nature 2014, 509, 58–59. [Google Scholar] [CrossRef]
- Peplow, M. Nanotechnology offers alternative ways to fight COVID-19 pandemic with antivirals. Nat. Biotechnol. 2021, 39, 1172–1174. [Google Scholar] [CrossRef] [PubMed]
- Almáši, M.; Matiašová, A.A.; Šuleková, M.; Beňová, E.; Ševc, J.; Váhovská, L.; Lisnichuk, M.; Girman, V.; Zeleňáková, A.; Hudák, A.; et al. In vivo study of light-driven naproxen release from gated mesoporous silica drug delivery system. Sci. Rep. 2021, 11, 20191. [Google Scholar] [CrossRef]
- Lamson, N.G.; Berger, A.; Fein, K.C.; Whitehead, K.A. Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability. Nat. Biomed. Eng. 2019, 4, 84–96. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, Y.; Wang, J.; Wen, D.; Kahkoska, A.R.; Buse, J.B.; Gu, Z. Glucose-responsive oral insulin delivery for postprandial glycemic regulation. Nano Res. 2019, 12, 1539–1545. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y.; Yu, S.; Zhang, Z.; He, C.; Chen, X. pH- and amylase-responsive carboxymethyl starch/poly (2-isobutyl-acrylic acid) hybrid microgels as effective enteric carriers for oral insulin delivery. Biomacromolecules 2018, 19, 2123–2136. [Google Scholar] [CrossRef]
- Fan, W.; Xia, D.; Zhu, Q.; Li, X.; He, S.; Zhu, C.; Gao, S.; Hovgaard, L.; Yang, M.; Gan, Y. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery. Biomaterials 2018, 151, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Mohd, S.; Wu, S.; Liu, S.; Pei, Y.; Luo, X. pH-responsive cellulose-based microspheres designed as an effective oral delivery system for insulin. ACS Omega 2021, 6, 2734–2741. [Google Scholar] [CrossRef] [PubMed]
- Cikrikci, S.; Mert, H.; Oztop, M.H. Development of pH sensitive alginate/gum tragacanth-based hydrogels for oral insulin delivery. J. Agric. Food Chem. 2018, 66, 11784–11796. [Google Scholar] [CrossRef]
- Qi, X.; Yuan, Y.; Zhang, J.; Bulte, J.W.M.; Dong, W. Oral administration of salecan-based hydrogels for controlled insulin delivery. J. Agric. Food Chem. 2018, 66, 10479–10489. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Qin, H.; Li, J.; Qiu, J.N.; Guan, Y.Q. Preparation and characterization of layer-by-layer hypoglycemic nanoparticles with pH-sensitivity for oral insulin delivery. J. Mater. Chem. B 2018, 6, 7451–7461. [Google Scholar] [CrossRef]
- Hu, W.Y.; Wu, Z.M.; Yang, Q.Q.; Liu, Y.J.; Li, J.; Zhang, C.Y. Smart pH-responsive polymeric micelles for programmed oral delivery of insulin. Colloids Surf. B 2019, 183, 110443. [Google Scholar] [CrossRef]
- He, Y.; Wang, M.; Zhang, H.; Zhang, Y.; Gao, Y.; Wang, S. Protective properties of mesocellular silica foams against aggregation and enzymatic hydrolysis of loaded proteins for oral protein delivery. J. Colloid Interf. Sci. 2020, 560, 690–700. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Ban, Q.; Li, J.; Li, C.H.; Guan, Y.Q. Preparation and characterization of hydroxyapatite nanoparticles carrying insulin and gallic acid for insulin oral delivery. Nanomed. Nanotechnol. Biol. Med. 2017, 14, 353–364. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, X.; Qin, L.; Huo, Y.; Cui, Z.; Liu, C.; Sun, Y.; Guan, J.; Mao, S. Design of self-polymerized insulin loaded poly(n-butylcyanoacrylate) nanoparticles for tunable oral delivery. J. Control. Release 2020, 321, 641–653. [Google Scholar] [CrossRef]
- Liu, C.; Xu, H.; Sun, Y.; Zhang, X.; Mao, S. Design of Virus-Mimicking Polyelectrolyte Complexes for Enhanced Oral Insulin Delivery. J. Pharm. Sci. 2019, 108, 3408–3415. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Deng, H.; Zhang, Y.; Wu, P.; Wang, X. Thiolated nanoparticles overcome the mucus barrier and epithelial barrier for oral delivery of insulin. Mol. Pharm. 2019, 17, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zheng, Y.; Liu, M.; Shan, W.; Zhang, Z.; Huang, Y. Biomimetic viruslike and charge reversible nanoparticles to sequentially overcome mucus and epithelial barriers for oral insulin delivery. ACS Appl. Mater. Interfaces 2018, 10, 9916–9928. [Google Scholar] [CrossRef] [PubMed]
- Shan, W.; Zhu, X.; Liu, M.; Li, L.; Zhong, J.; Sun, W.; Zhang, Z.; Huang, Y. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. ACS Nano 2015, 9, 2345–2356. [Google Scholar] [CrossRef]
- Banerjee, A.; Ibsen, K.; Brown, T.; Chen, R.; Mitragotri, S. Ionic liquids for oral insulin delivery. Proc. Natl. Acad. Sci. USA 2018, 115, 7296–7301. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Choi, J.U.; Kim, K.; Byun, Y. Bile acid transporter mediated endocytosis of oral bile acid conjugated nanocomplex. Biomaterials 2017, 147, 145–154. [Google Scholar] [CrossRef]
- Han, X.; Lu, Y.; Xie, J.; Zhang, E.; Zhu, H.; Du, H.; Wang, K.; Song, B.; Yang, C.; Shi, Y.; et al. Zwitterionic micelles efficiently deliver oral insulin without opening tight junctions. Nat. Nanotechnol. 2020, 15, 605–621. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Yi, L.; Qi, J.; Zhao, W.; Dong, X.; Wei, W. Biomimetic thiamine- and niacin-decorated liposomes for enhanced oral delivery of insulin. Acta Pharm. Sin. B 2018, 8, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Daugherty, A.L.; Mrsny, R.J. Transcellular uptake mechanisms of the intestinal epithelial barrier Part one. Pharm. Sci. Technol. Today 1999, 4, 144–152. [Google Scholar] [CrossRef]
- Wilson, C.G.; Parr, G.D.; Kennerlev, J.W.; Taylor, M.J.; Davis, S.S.; Hardy, J.G.; Rees, J.A. Pharmacokinetics and in vivo scintigraphic monitoring of a sustained release acetylsalicylic acid formulation. Int. J. Pharm. 1984, 18, 1–8. [Google Scholar] [CrossRef]
- Armbrecht, U.; Jensen, J.; Eden, S.; Stockbrügger, R. Assessment of orocoecal transit time by means of a hydrogen (H2) breath test as compared with a radiologic control method. Scand. J. Gastroentero. 1986, 21, 669–677. [Google Scholar] [CrossRef]
- Smart, A.L.; Gaisford, S.; Basit, A.W. Oral peptide and protein delivery: Intestinal obstacles and commercial prospects. Expert. Opin. Drug Del. 2014, 11, 1323–1335. [Google Scholar] [CrossRef] [PubMed]
- Langguth, P.; Bohner, V.; Heizmann, J.; Merkle, H.P.; Wolffram, S.; Amidon, G.L.; Yamashita, S. The challenge of proteolytic enzymes in intestinal peptide delivery. J. Control. Release 1997, 46, 39–57. [Google Scholar] [CrossRef]
- Whitcomb, D.C.; Lowe, M.E. Human Pancreatic Digestive Enzymes. Digest. Dis. Sci. 2007, 52, 1–17. [Google Scholar] [CrossRef]
- Su, F.Y.; Lin, K.J.; Sonaje, K.; Wey, S.P.; Yen, T.C.; Ho, Y.C.; Panda, N.; Chuang, E.Y.; Maiti, B.; Sung, H.W. Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery. Biomaterials 2012, 33, 2801–2811. [Google Scholar] [CrossRef] [PubMed]
- Licciardi, M.; Pitarresi, G.; Cavallaro, G.; Giammona, G. Nanoaggregates based on new poly-hydroxyethyl-aspartamide copolymers for oral insulin absorption. Mol. Pharm. 2013, 10, 1644–1654. [Google Scholar] [CrossRef] [PubMed]
- Bank, S.; Ghosh, A.; Bhattacharya, S.; Maiti, S.; Khan, G.A.; Sinha, A.K. The control of hyperglycemia by a novel trypsin resistant oral insulin preparation in alloxan induced type I diabetic mice. Sci. Rep. 2016, 6, 26789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereza-Vilar, J.; Hill, R.L. The structure and assembly of secreted mucins. J. Biol. Chem. 1999, 274, 31751–31754. [Google Scholar] [CrossRef] [Green Version]
- Murgia, X.; Loretz, B.; Hartwig, O.; Hittinger, M.; Lehr, C.M. The role of mucus on drug transport and its potential to affect therapeutic outcomes. Adv. Drug Deliver. Rev. 2018, 124, 82–97. [Google Scholar] [CrossRef]
- Karlsson, J.; Wikman, A.; Artursson, P. The mucus layer as a barrier to drug absorption in monolayers of human intestinal epithelial HT29-H goblet cells. Int. J. Pharm. 1993, 99, 209–218. [Google Scholar] [CrossRef]
- Renukuntla, J.; Vadlapudi, A.D.; Patel, A.; Boddu, S.; Mitra, A.K. Approaches for enhancing oral bioavailability of peptides and proteins. Int. J. Pharm. 2013, 447, 75–93. [Google Scholar] [CrossRef] [Green Version]
- Allaire, J.M.; Crowley, S.M.; Law, H.T. The intestinal epithelium: Central coordinator of mucosal immunity. Trends Immunol. 2018, 39, 677–696. [Google Scholar] [CrossRef] [PubMed]
- Lei, N.Y.; Ziyad, J.; Wang, J.; Joshi, V.S.; Brinkley, G.J.; Hassan, K.; Wang, F.; Artur, J.; Matteo, P.; Li, L. Intestinal subepithelial myofibroblasts support the growth of intestinal epithelial stem cells. PLoS ONE 2014, 9, e84651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, D.; He, Y.; Li, Q.; Hu, C.; Huang, W.; Zhang, Y.; Wan, F.; Wang, C.; Gan, Y. Transport mechanism of lipid covered saquinavir pure drug nanoparticles in intestinal epithelium. J. Control. Release 2017, 269, 159–170. [Google Scholar] [CrossRef]
- Yong, J.M.; Mantaj, J.; Cheng, Y.; Vllasaliu, D. Delivery of Nanoparticles across the Intestinal Epithelium via the Transferrin Transport Pathway. Pharmaceutics 2019, 11, 298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 2009, 3, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Niemeyer, C.M. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew. Chem. Int. Edit. 2010, 40, 4128–4158. [Google Scholar] [CrossRef]
- Phillips, M.A.; Gran, M.L.; Peppas, N.A. Targeted nanodelivery of drugs and diagnostics. Nano Today 2010, 5, 143–159. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Meng, Z.G.; Wang, Y.; Chen, W.J.; Sun, C.J.; Cui, B.; Cui, J.H.; Yu, M.L.; Zeng, Z.H.; Guo, S.D.; et al. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat. Plants 2017, 3, 956–3964. [Google Scholar] [CrossRef]
- Zhao, H.; Ye, H.; Zhou, J.; Tang, G.; Bai, H. Montmorillonite-enveloped zeolitic imidazolate framework as a nourishing oral nano-platform for gastrointestinal drug delivery. ACS Appl. Mater. Interfaces 2020, 12, 49431–49441. [Google Scholar] [CrossRef]
- Tang, Y.; Liang, J.; Wu, A.; Chen, Y.; Zhao, P.; Lin, T.; Zhang, M.; Xu, Q.; Wang, J.; Huang, Y. Co-Delivery of Trichosanthin and Albendazole by nano-self-assembly for overcoming tumor multidrug-resistance and metastasis. ACS Appl. Mater. Interfaces 2017, 9, 26648–26664. [Google Scholar] [CrossRef]
- Shen, L.; Li, J.; Liu, Q.; Song, W.; Zhang, X.; Tiruthani, K.; Hu, H.; Das, M.; Goodwin, T.J.; Liu, R.; et al. Local blockade of interleukin 10 and C-X-C Motif chemokine ligand 12 with nano-delivery promotes antitumor response in murine cancers. ACS Nano 2018, 12, 9830–9841. [Google Scholar] [CrossRef] [PubMed]
- Javed, A.; Madhur, S.; Saima, A.; Md, R.; Sohail, A.; Mohammad, A.K.; Nafis, H.; Patrick, M.; Chantal, P. Bile salt stabilized vesicles (bilosomes): A novel nano-pharmaceutical design for oral delivery of proteins and peptides. Curr. Pharm. Design 2017, 23, 1575–1588. [Google Scholar]
- Kecman, S.; Skrbic, R.; Cengic, A.B.; Mooranian, A.; Al-Salami, H.; Mikov, M.; Golocorbin-Kon, S. Potentials of human bile acids and their salts in pharmaceutical nano delivery and formulations adjuvants. Technol. Health Care 2020, 28, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.Y.; Li, Y.P.; Li, Z.L.; Zhou, C.L.; Tam, K.C.; Liu, Z.Y.; Xie, G.X. Vesicles from pluronic/poly (lactic acid) block copolymers as new carriers for oral insulin delivery. J. Control. Release 2007, 120, 11–17. [Google Scholar] [CrossRef]
- Cui, F.; Shi, K.; Zhang, L.; Tao, A.; Kawashima, Y. Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: Preparation, in vitro characterization and in vivo evaluation. J. Control. Release 2006, 114, 242–250. [Google Scholar] [CrossRef]
- Israel, E.J.; Taylor, S.; Wu, Z.; Mizoguchi, E.; Blumberg, R.S.; Bhan, A.; Simister, N.E. Expression of the neonatal Fc receptor, FcRn, on human intestinal epithelial cells. Immunology 1997, 92, 69–74. [Google Scholar] [CrossRef]
- Yu, F.; Li, Y.; Liu, C.S.; Chen, Q.; Wang, G.H.; Guo, W.; Wu, X.E.; Li, D.H.; Wu, W.D.; Chen, X.D. Enteric-coated capsules filled with mono-disperse micro-particles containing PLGA-lipid-PEG nanoparticles for oral delivery of insulin. Int. J. Pharm. 2015, 484, 181–191. [Google Scholar] [CrossRef]
- Sheng, J.; Han, L.; Qin, J.; Ru, G.; Li, R.; Wu, L.; Cui, D.; Yang, P.; He, Y.; Wang, J. N-trimethyl chitosan chloride-coated PLGA nanoparticles overcoming multiple barriers to oral insulin absorption. ACS Appl. Mater. Interfaces 2015, 7, 15430. [Google Scholar] [CrossRef]
- Guo, F.; Ouyang, T.; Peng, T.; Zhang, X.; Xie, B.; Yang, X.; Liang, D.; Zhong, H. Enhanced oral absorption of insulin using colon-specific nanoparticles co-modified with amphiphilic chitosan derivatives and cell-penetrating peptides. Biomater. Sci. 2019, 7, 1493–1506. [Google Scholar] [CrossRef]
- Xu, B.; Jiang, G.; Yu, W.; Liu, D.; Liu, Y.; Kong, X.; Yao, J. Preparation of poly (lactic-co-glycolic acid) and chitosan composite nanocarriers via electrostatic self-assembly for oral delivery of insulin. Mat. Sci. Eng. C-Mater. 2017, 78, 420. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, L.; Cao, Y.; Yu, S.; Chen, X.A. Nanocomposite vehicle based on metal-organic framework nanoparticle incorporated biodegradable microspheres for enhanced oral insulin delivery. ACS Appl. Mater. Interfaces 2020, 12, 22581–22592. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Peng, L.; Modica, J.A.; Drout, R.J.; Farha, O.K. Acid-resistant mesoporous metal–organic framework toward oral inslin delivery: Protein encapsulation, protection & release. J. Am.Chem. Soc. 2018, 140, 5678–5681. [Google Scholar] [PubMed]
- Sung, H.W.; Sonaje, K.; Liao, Z.X.; Hsu, L.W.; Chuang, E.Y. pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: From mechanism to therapeutic applications. Acc. Chem. Res. 2012, 45, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Qin, L.; Guo, S.; Cheng, H.; Zhang, X.; Guan, J.; Mao, S. Design of biotin decorated enterocyte targeting muco-inert nanocomplexes for enhanced oral insulin delivery. Carbohydr. Polym. 2021, 261, 117873. [Google Scholar] [CrossRef]
- Mukhopadhyay, P.; Chakraborty, S.; Bhattacharya, S.; Mishra, R.; Kundu, P.P. pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery. Int. J. Biol. Macromol. 2015, 72, 640–648. [Google Scholar] [CrossRef]
- Mumuni, M.A.; Kenechukwu, F.C.; Ofokansi, K.C.; Attama, A.A.; Díaz, D. Insulin-loaded mucoadhesive nanoparticles based on mucin-chitosan complexes for oral delivery and diabetes treatment. Carbohydr. Polym. 2019, 229, 115506. [Google Scholar] [CrossRef]
- Sudhakar, S.; Chandran, S.V.; Selvamurugan, N.; Nazeer, R.A. Biodistribution and pharmacokinetics of thiolated chitosan nanoparticles for oral delivery of insulin in vivo. Int. J. Biol. Macromol. 2020, 150, 281–288. [Google Scholar] [CrossRef]
- Lei, L.; Jiang, G.; Yu, W.; Liu, D.; Hua, C.; Liu, Y.; Tong, Z.; Kong, X.; Yao, J. Preparation of chitosan-based multifunctional nanocarriers overcoming multiple barriers for oral delivery of insulin. Mat. Sci. Eng. C-Mater. 2017, 70, 278–286. [Google Scholar] [CrossRef]
- Lope, M.; Shrestha, N.; Correia, A.; Shahbazi, M.A.; Sarmento, B.; Hirvonen, J.; Veiga, F.; Seica, R.; Ribeiro, A. Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin. J. Control. Release 2016, 232, 29–41. [Google Scholar] [CrossRef]
- Ji, N.; Hong, Y.; Gu, Z.; Cheng, L.; Li, Z.; Li, C. Binary and tertiary complex based on short-chain glucan and proanthocyanidins for oral insulin delivery. J. Agr. Food. Chem. 2017, 65, 8866–8874. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, Q.; Lin, X.; Jin, X.; Yang, D.; Gao, S.; Wang, X.; Yang, M.; Shi, K. Gastrointestinal responsive polymeric nanoparticles for oral delivery of insulin: Optimized preparation, characterization and in vivo evaluation. J. Pharm. Sci. 2019, 108, 2994–3002. [Google Scholar] [CrossRef] [PubMed]
- Na, J.; Yan, H.; Zgab, C.; Li, C.; Zlab, C.; Clab, C. Chitosan coating of zein-carboxymethylated short-chain amylose nanocomposites improves oral bioavailability of insulin in vitro and in vivo. J. Control. Release 2019, 313, 1–13. [Google Scholar]
- Pridgen, E.M.; Alexis, F.; Kuo, T.T.; Levy-Nissenbaum, E.; Karnik, R.; Blumberg, R.S.; Langer, R.; Farokhzad, O.C. Transepithelial transport of Fc-targeted nanoparticles by the neonatal fc receptor for oral delivery. Sci. Transl. Med. 2013, 5, 213ra167. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.K.; Wang, C.N.; Guo, L.; Xu, C.C.; Wang, Y.; Sun, C.J.; Cui, H.X.; Zhao, X. Preparation and Sustained-Release Performance of PLGA Microcapsule Carrier System. Nanomaterials 2021, 11, 1758. [Google Scholar] [CrossRef] [PubMed]
- Yeh, T.H.; Hsu, L.W.; Tseng, M.T.; Lee, P.L.; Sonjae, K.; Ho, Y.C.; Sung, H.W. Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials 2011, 32, 6164–6173. [Google Scholar] [CrossRef] [PubMed]
- Thanou, M.M.; Verhoef, J.C.; Romeijn, S.G.; Nagelkerke, J.F.; Merkus, F.W.H.M.; Junginger, H.E. Effects of N-trimethyl chitosan chloride, a novel absorption enhancer, on Caco-2 intestinal epithelia and the ciliary beat frequency of chicken embryo trachea. Int. J. Pharm. 1999, 185, 73. [Google Scholar] [CrossRef]
- Thanou, M.M.; Verhoef, J.C.; Marbach, P.; Junginger, H.E. Intestinal absorption of octreotide: N-trimethyl chitosan chloride (TMC) ameliorates the permeability and absorption properties of the somatostatin analogue in vitro and in vivo. J. Pharm. Sci. 2015, 89, 951–957. [Google Scholar] [CrossRef]
- Roberto, N.; Noemi, P.; Sabrina, M.; Federica, D.S.; Maurizio, F. The multirole of liposomes in therapy and prevention of infectious diseases. Front. Immunol. 2018, 9, 1–23. [Google Scholar]
- Rowland, R.N.; Woodley, J.F. The stability of liposomes in vitro to pH, bile salts and pancreatic lipase. Biochim. Biophys. Acta 1980, 620, 400–409. [Google Scholar] [CrossRef]
- Shaker, S.; Gardouh, A.R.; Ghorab, M.M. Factors affecting liposomes particle size prepared by ethanol injection method. Res. Pharm. Sci. 2017, 12, 346–352. [Google Scholar] [CrossRef]
- Wang, A.; Yang, T.; Fan, W.; Yang, Y.; Zhu, Q.; Guo, S.; Zhu, C.; Yuan, Y.; Zhang, T.; Gan, Y. Protein corona liposomes achieve efficient oral insulin delivery by overcoming mucus and epithelial barriers. Adv. Healthc. Mater. 2018, 8, 1801123. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Kwag, D.S.; Hwang, H.S.; Lee, E.S.; Bae, Y.H. Immense insulin intestinal uptake and lymphatic transport using bile acid conjugated partially uncapped liposome. Mol. Pharm. 2018, 15, 4756–4763. [Google Scholar] [CrossRef] [PubMed]
- Yazdi, J.R.; Tafaghodi, M.; Sadri, K.; Mashreghi, M.; Nikpoor, A.R.; Nikoofal-Sahlabadi, S.; Chamani, J.; Vakil, R.; Moosavian, S.A.; Jaafari, M.R. Folate targeted PEGylated liposomes for the oral delivery of insulin: In vitro and in vivo studies. Colloid. Surf. B 2020, 194, 111203. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.K.; Harde, H.; Thanki, K.; Jain, S. Improved stability and antidiabetic potential of insulin containing folic acid functionalized polymer stabilized multilayered liposomes following oral administration. Biomacromolecules 2014, 15, 350–360. [Google Scholar] [CrossRef]
- Costa, C.; Liu, Z.; Martins, J.P.; Correia, A.; Figueiredo, P.; Rahikkala, A.; Li, W.; Seitsonen, J.; Ruokolainen, J.; Hirvonen, S.P.; et al. All-in-one microfluidic assembly of insulin-loaded pH-responsive nano-in-microparticles for oral insulin delivery. Biomater. Sci. 2020, 8, 3270–3277. [Google Scholar] [CrossRef]
- Shalaby, T.I.; El-Refaie, W.M. Bioadhesive chitosan-coated cationic nanoliposomes with improved insulin encapsulation and prolonged oral hypoglycemic effect in diabetic mice. J. Pharm. Sci. 2018, 107, 2136–2143. [Google Scholar] [CrossRef]
- Ommura, Y.; Imai, S.; Takenaka, M.; Ouchi, M.; Terashima, T. Selective coupling and polymerization of folded polymer micelles to nanodomain self-assemblies. ACS Macro. Lett. 2020, 9, 426–430. [Google Scholar] [CrossRef]
- Miyamoto, T.; Tsuchiya, K.; Numata, K. Endosome-escaping micelle complexes dually equipped with cell-penetrating and endosome-disrupting peptides for efficient DNA delivery into intact plants. Nanoscale 2021, 13, 5679–5692. [Google Scholar] [CrossRef]
- Lin, H.R.; Chen, W.J.; Ling, M.H. PH-sensitive dioctadecylamine-501 polymeric micelles for delivery of insulin. J. Nanosci. Nanotechnol. 2011, 11, 1823–1833. [Google Scholar] [CrossRef]
- Duan, Y.; Dhar, A.; Patel, C.; Khimani, M.; Vekariya, R.L. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC Adv. 2020, 10, 26777–26791. [Google Scholar] [CrossRef]
- Taylor, E.N.; Kummer, K.M.; Dyondi, D.; Webster, T.J.; Banerjee, R. Multi-scale strategy to eradicate Pseudomonas aeruginosa on surfaces using solid lipid nanoparticles loaded with free fatty acids. Nanoscale 2013, 6, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Lobovkina, T.; Jacobson, G.B.; Gonzalez-Gonzalez, E.; Hickerson, R.P.; Zare, R.N. In vivo sustained release of siRNA from solid lipid nanoparticles. ACS Nano 2011, 5, 9977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irvine, D.J.; Hanson, M.C.; Rakhra, K.; Tokatlian, T. Synthetic nanoparticles for vaccines and immunotherapy. Chem. Rev. 2015, 115, 11109–11146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boushra, M.; Tous, S.; Fetih, G.; Korzekwa, K.; Lebo, D.B.; Xue, H.Y.; Wong, H.L. Development and evaluation of viscosity-enhanced nanocarrier (VEN) for oral insulin delivery. Int. J. Pharm. 2016, 511, 462–472. [Google Scholar] [CrossRef]
- Alsulays, B.B.; Anwer, M.K.; Soliman, G.A.; Alshehri, S.M.; Khafagy, E.S. Impact of penetratin stereochemistry on the oral bioavailability of insulin-loaded solid lipid nanoparticles. Int. J. Nanomed. 2019, 14, 9127–9138. [Google Scholar] [CrossRef] [Green Version]
- Niu, Z.G.; Tedesco, E.; Benetti, F.; Mabondzo, A.; Montagner, I.; Marigo, I.; Gonzalez-Touceda, D.; Tovar, S.; Dieguez, C.; Santander-Ortega, M.J.; et al. Rational design of polyarginine nanocapsules intended to help peptides overcoming intestinal barriers. J. Control. Release 2017, 263, 4–17. [Google Scholar] [CrossRef]
- Zhu, R.Y.; Hu, X.J.; Chen, K.; Dang, J.; Wang, H. Double-shelled hollow carbon nanospheres as an enclosed electrochemical reactor to enhance the lithium storage performance of silicon nanodots. J. Mater. Chem. A 2020, 8, 12502–12517. [Google Scholar] [CrossRef]
- Frick, S.U.; Domogalla, M.P.; Baier, G.; Wurm, F.R.; MailNder, V.; Landfester, K.; Steinbrink, K. Interleukin-2 functionalized nanocapsules for t cell-based immunotherapy. ACS Nano 2016, 10, 9216–9226. [Google Scholar] [CrossRef]
- Biswas, A.; Joo, K.I.; Liu, J.; Zhao, M.; Fan, G.; Wang, P.; Gu, Z.; Tang, Y. Endoprotease-mediated intracellular protein delivery using nanocapsules. ACS Nano 2011, 5, 1385–1394. [Google Scholar] [CrossRef]
- Fu, S.; Zhang, Y.; Huang, Q.; Guan, S.; Wang, R.; Zang, M.; Tian, R.; Qiao, S.; Zhang, X.; Liu, S. Reductive-responsive, single-molecular-layer polymer nanocapsules prepared by lateral-functionalized pillararenes for targeting anticancer drug delivery. ACS Appl. Mater. Interfaces 2018, 10, 14281–14286. [Google Scholar] [CrossRef]
- He, Z.; Liu, Z.; Tian, H.; Hu, Y.; Liu, L.; Leong, K.; Mao, H.Q.; Chen, Y. Scalable production of core-shell nanoparticles by flash nanocomplexation to enhance mucosal transport for oral delivery of insulin. Nanoscale 2018, 10, 3307–3319. [Google Scholar] [CrossRef]
- Si, X.; Song, W.; Yang, S.; Ma, L.; Yang, C.; Tang, Z. Glucose and pH dual-responsive nanogels for efficient protein delivery. Macromol. Biosci. 2019, 19, 1900148. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Jiang, G.; Yu, W.; Liu, D.; Hua, C.; Liu, Y.; Qin, H.; Tong, Z.; Yao, J.; Kong, X.A. Composite hydrogel system containing glucose-responsive nanocarriers for oral delivery of insulin. Mater. Sci. Eng. C-Mater. 2016, 69, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xiong, M.; Ni, X.; Wang, J.; Rong, H.; Su, Y.; Yu, S.; Mohammad, I.S.; Leung, S.S.Y.; Hu, H. Virus-mimicking mesoporous silica nanoparticles with an electrically neutral and hydrophilic surface to improve the oral absorption of insulin by breaking through dual barriers of the mucus layer and the intestinal epithelium. ACS Appl. Mater. Interfaces 2021, 13, 18077–18088. [Google Scholar] [CrossRef]
- Lei, S.; Zhang, X.; Wu, Z.; Chao, Z.; Li, C. Oral glucose- and pH-sensitive nanocarriers for simulating insulin release in vivo. Polym. Chem. 2014, 5, 1999–2009. [Google Scholar]
- Rao, R.; Liu, X.; Li, Y.; Tan, X.; Zhou, H.; Bai, X.; Yang, X.; Liu, W. Bioinspired zwitterionic polyphosphoester modified porous silicon nanoparticles for efficient oral insulin delivery. Biomater. Sci. 2021, 9, 685–699. [Google Scholar] [CrossRef] [PubMed]
Physiological Barriers | Constitution | Mechanisms to Overcome | References |
---|---|---|---|
Destruction by gastric acid | Gastric acid, pH 1.0–2.0 | pH responsiveness | [43,44,45,46,47] |
Degradation by digestive enzymes | Pepsin, trypsin, chymotrypsin, elastase, and carboxypeptidase | Shielding effect, hydrophobic effect | [48,49,50,51] |
Retention by the mucus layer barriers | Water, glycoproteins, proteins, electrolytes and lipids | Charge-reversing, “Mucus-inert” electroneutral surface | [52,53,54,55] |
Retardation by intestinal epithelial cell layer | Tight junction, apical endocytosis, degradation of lysosomes, and basolateral to the circulation | Permeation enhancer, increase the active transportation | [31,42,56,57,58] |
Materials | Carrier Components | Method | Active Components | EE%; LE% | Size (nm); PDI | Zeta-Potential (mV) | In Vitro Release Study (Condition, Time, Insulin Release) | Dose (IU kg−1) | In Vivo Studies | References |
---|---|---|---|---|---|---|---|---|---|---|
PLA | PLA, F127 [(PLA-F127-PLA) aggregates)] | Self-assembly | - | -; - | 56; - | - | pH 7.4, 2 h, 55% | 50 | BGL, 5 h a, 25% b | [85] |
PLA, PEG | Nanoprecipitation | IgG Fc | -; 0.5 | 63; - | −5.6 | pH 7.4, 2 h, 60%, 10 h, 100% | 1.1 | BGL 7 h, 55% | [86] | |
PLGA | PLGA (9.5 kDa) PLGA (100 kDa) | Reverse micelle-solvent evaporation method | SPC | 80~90; - | 200; - | −17~−12 | pH 1.2, 2 h, 45%; pH 6.8, 6 h, 65% | 20 | rBA, 7.7% | [87] |
Double emulsion solvent evaporation | SPC, DSPE-PEG (2000) | 92.36; 2.4 | 176; - | −31.1 | - | 40 | rBA, 12.2% | [88] | ||
PLGA (50:50 c, 20 kDa) | Double emulsion method | N-Trimethyl chitosan | 47.0; 7.8 | 247; - | 45.2 | SGF, 6 h, 54.6%; SIF, 6 h, 72.5% | 20 | rPA, 11.8% | [89] | |
PLGA (50:50, 8 kDa) | Double emulsion method | TDCS, Tat (YGRKKRRQRRR) | 58.95; 1.38 | 157; 0.220 | 41.8 | pH 1.2, 6 h, 20%; pH 7.4, 48 h, 15% | 10 | BGL, 12 h, 40%; BGL, 36 h, 80% | [90] | |
PLGA polymer (50:50; 20 kDa) | Double emulsion method | Folic acid, Chitosan | 41; 6.83 | 252; 0.237 | 5.99 | pH 1.2, 6 h, 32.2%; pH 7.4, 6 h, 34.9% | 70 | rBA, 7.77% | [91] | |
MOFs | Fe-based mesoporous MOF | Physical absorption | SDS | 51.6; 35.0 | 100; - | −18.3 | pH 7.4, 14 h, 50%; pH 6.8, 14 h, 20%; pH 5.4, 14 h, 0 | 50 | rPA, 7.8% | [92] |
Zr6-based MOF | Physical absorption | - | -; 40 | - | - | pH 1.29, 1 h, 10%; pH 7.4, 1 h, 91% | - | - | [93] | |
Chitosan | Chitosan, γ-PGA | electrostatic interaction | - | 75; 15 | 250; - | 25 | pH < 7, 100% pH > 7.0, disintegrating | 30 | rBA, 15% | [94] |
Chitosan (100 kDa, 90%) | self-assembly method | Hyaluronic acids (200 kDa), Biotin | 71.72; - | 277; 0.06 | −27.90 | 250 U/mL trypsin, 2 h, 30% | 50 | rBA, 4.6% | [95] | |
Chitosan (365 and 222 kDa, 86% d), alginate | Electrostatic interaction and Chemical cross-linking | - | 78.3; - | 104; - | 3.89 | pH 1.2, 2 h, 25%; pH 6.8, 2~14 h, 60%~70%; pH 7.4, 14~24 h, 80~85% | 100 | rBA, 8.11% | [96] | |
Chitosan (200–300 kDa, 85%), snail mucin | Self-gelation method | - | 92.5; 21.4 | 504; 0.185 | 31.2 | pH 1.2, 2 h, 10%; pH 7.4, 10 h, 87% | 50 | rBA, 10.6% | [97] | |
Chitosan (150 kDa, 85.8%) | Self-assembly method | SDS, L-Phenylalanine | 93.4; - | 131; 0.227 | 30.71 | pH 1.2, 2 h, 45%; pH 6.8, 4 h, 82% | 50 | rPA, 5.8% | [51] | |
Chitosan (29.80 kDa, 80.2%) | Chemical cross-linking | Pentaerythritol tetrakis (3-mercaptopropionate) | 79.63; 19.82 | 220; 0.091 | 2.3 | pH 2, 12 h, 96%; pH 5.3, 24 h, 92% | 50 | 3 h, 50% | [98] | |
Carboxymethyl chitosan | Ionic cross-linking method | L-valine, PBA | 67; 9.8 | 190; - | - | SGF, 24 h, 16.6%; SIF, 24 h, 50.7%; pH 7.4, 24 h, 55.4%; pH 7.4 (10 mM), 24 h, 68%; pH 7.4 (20 mM), 24 h, 92% | 75 | rPA, 7.55% | [99] | |
Others | Alginate, dextran sulfate | Emulsification/internal gelation, polyelectrolyte complexation | low molecular weight chitosan, bovine serum albumin | 30.7; 6.2 | 300; - | 28.9 | pH 1.2, 2 h, 35%; pH 5.5, 2–4 h, 100%; pH 7.4, 2~8 h, 100% | - | - | [100] |
Proanthocyanidins, short-chain glucans | Recrystallization | - | 70.2; 3.5 | 100~200; - | - | pH 1.2, 8 h, 60%; pH 6.8, 8 h, 75% | 100 | rPA, 6.98% | [101] | |
HPMCP | Spontaneous emulsification solvent diffusion method | 90.8; 8.13 | 200; <0.27 | −15~0 | pH 3.0, 4 h, 8.2%; pH 6.0, 4 h, 39.7%; pH 6.8, 4 h, 77.4%; pH 7.4, 4 h, 82.0% | 25 | rBA, 8.6% | [102] | ||
Waxy corn starch (approximately 99% amylopectin), Chitosan (140 kDa, 90%), | Self-assembly | - | 89.6; 6.8 | 311; 0.227 | −43.7 | pH 7.4, 8 h, 50% | 50 | rBA, 15.19% | [103] | |
Silica | - | SiO2 | 20~100; - | 10 | rBA, 23.4% | [39] |
Materials | Method | Active Components | EE%; LE% | Size (nm); PDI | Zeta-Potential (mV) | In Vitro Release Study | Dose (IU kg−1) | In Vivo Studies | References |
---|---|---|---|---|---|---|---|---|---|
DOTAP, EPC | Thin-film hydration method | BSA | 28.7; 1.5 | 195; - | −10.9 | pH 6.8, 6 h, 45% | 75 | rBA, 11.9% | [112] |
DDAB, DOCA | Thin-film hydration method | CST, SPION | 75; 33 | 194; - | - | pH 1.2, 2 h, 10–14%; pH 7.4, 25 h, 47% | 20 | rBA, 34% | [113] |
Mpeg2000-DSPE, HSPC | Extrusion, thin film hydration method | FA, PEG | 70; - | 180; <0.2 | −12.9~−4.0 | pH 1.2, 1 h, 25%; pH 6.8, 1 h, 48% | 50 | rBA, 19.08% | [114] |
EPC, CH, SA | Thin film hydration Method, alternating electrostatic deposition | PAA, FA-PEG-PAH | >88; - | 250; <0.27 | 25.4 | pH 1.2, 2 h, 15%; pH 6.8, 1 h, 25%; pH 7.4, 25 h, 75% | 50 | rBA, 20% | [115] |
PC, DSPE-PEG2000, CH | Microfluidic technique, nanoprecipitation | Chitosan, HPMCAS-MF, PEG | 91; - | 363; 0.315 | 23 | pH 1.2, 2 h, 1%; pH 6.8, 8 h, 25% | - | - | [116] |
EP, CH, DOTAP | Thin-film hydration technique | Chitosan | 87.5; - | 439; - | 29.9 | pH 1.2, 50 h, 18.9%; pH 7.4, 50 h, 73.3% | 250 | - | [117] |
EPC, DOPE, CH | Lipid film hydration method | Glucose-sensitive hyaluronic acid shell; Fc Rn | 20.7; 17.1 | 94; - | −28.1 | pH 2.5, 12 h, <10%; pH 7.4, 12 h, <10% | 10 | - | [40] |
Materials | Method | Active Components | EE%; LE% | Size (nm); PDI | Zeta-Potential (mV) | In Vitro Release Study | Dose (IU kg−1) | In Vivo Studies | References |
---|---|---|---|---|---|---|---|---|---|
P(MMA-co-MAA)-b-PAEMA | Electron transfer, atom transfer radical Polymerization and self-assembled | MAA.MMA. AEMA | -; 9.1 | neutral pH 200; - | 15–25 | pH 1.2, 10 h, 36%~40%; pH 7.4, 10 h, 50%~65% | - | - | [47,53] |
PCB, DSPE-PCB | Zinc ion | 25; - | −41 | - | 20 | rBA, 41.2% | [104] | ||
DODA-501, NIP AAm, AAC | Free radical polymerization | 59; - | 94~200; - | pH 1.55, 2 h, 45%; pH 7.4, 2 h, 60% | - | - | [120] |
Materials | Method | Active Components | EE%; LE% | Size (nm); PDI | Zeta-Potential (mV) | In Vitro Release Study | Dose (IU kg−1) | In Vivo Studies | References |
---|---|---|---|---|---|---|---|---|---|
Soybean lecithin | double emulsion method | Peptide: GLFEAIEGFIENGWEGMIDGWYG | 98.16; 7.52 | 161.6, 0.25 | −16.1 | pH 5.5, 12 h, 50%; pH 6.8, 12 h, 70% | 50 | rBA, 5.47% | [30] |
Soy lecithin | Emulsification solvent-evaporation technique | propylene glycol | 54.5; - | 203.6, 0.175 | −43.3 | pH 2.5 (pepsin), 0.5 h, 40% | 50 | rBA, 5.1% | [125] |
Glyceryl Trimyristate, Soya Lecithin | Double emulsification | L-penetratin | 67.42; 1.82 | 745.3, 0.227 | −23.7 | pH 1.2, 6 h, 91%; pH 7.4, 6 h, 76% | 10 | rBA, 13.1% | [126] |
Materials | Method | Active Components | EE%; LE% | Size (nm); PDI | Zeta-Potential (mV) | In Vitro Release Study | Dose (IU kg−1) | In Vivo Studies | References |
---|---|---|---|---|---|---|---|---|---|
Poly(N-butylcyanoacrylate) | Self-polymerization | - | 100; 20~60 | 120; - | −20–−10 | pH 6.8, 2 h, 73.3% | 50 | rBA, 7.74% | [50] |
Hyaluronic acid (190 kDa), HPMCP | FNC | Penetratin peptide (Ste-RQIKIWFQNRRMKWKK) | 96.6; 66.7 | 103; 0.07 | −19.7 | pH 7.4, 12 h, 75% | 80 | rBA, 11% | [132] |
PLGA | Self-assembly nanoprecipitation | DSPE-PEG2000-R8, DSPE-PEG2000-Pho | ~35; - | 81.8; 0.191 | −2.39 | pH 2.5, 0–2 h, 35%; pH 6.8, 2–8 h, 52% | 50 | rBA, 5.96% | [53] |
Sodium tripolyphosphate, Chitosan (50 kDa, 95%) | FNC | N-(2-hydroxy)-propyl-3-trimethylammonium chloride modified chitosan | 81.9; 35.6 | 106; 0.15 | −24.6 | pH 2.5, 0–2 h, 20%; pH 6.8, 2–8 h, 45%; pH 7.4, 8–24 h, 80% | 80 | rBA, 13.3% | [29] |
Materials | Method | Active Components | EE%; LE% | Size (nm); PDI | Zeta-Potential (mV) | In Vitro Release Study | Dose (IU kg−1) | In Vivo Studies | References |
---|---|---|---|---|---|---|---|---|---|
(CMS-g-AA), iBAA | Aqueous dispersion copolymerization | Acrylic acid, carboxymethyl starch | - | pH 1.2, 480; pH 6.8, 700 | - | pH 1.2, 4 h, 25%; pH 6.8, 4 h, 75% | 60 | rPA, 5.7% | [41] |
PLG, dextran | Covalent cross-linking | PBA, PEG | 44; - | 43.7; - | −40 | pH7.4, 72 h, 40.2% (Cg: 1 mg mL−1), 72.8% (Cg: 3 mg mL−1), 81.5% | - | - | [133] |
EGDMA | - | VPBA, folic acid | 68; - | 166; - | - | pH 1.2, 0–2 h, 10%; pH 6.8, 2–8 h, 50%; pH 7.4, 0–24 h, 90% (Cg: 15 mM) | 75 | BLG, 5 h, 42.9%; | [134] |
Materials | Method | Active Components | EE%; LE% | Size (nm); PDI | Zeta-Potential (mV) | In Vitro Release Study | Dose (IU kg−1) | In Vivo Studies | Reference |
---|---|---|---|---|---|---|---|---|---|
Mesoporous silica nanoparticles | Physical adsorption method | KLPVM peptide | 80; 18 | 263.5; 0.175 | −0.49 | pH 6.8, 6 h, 40.52% | 100 | rBA, 2.84% | [135] |
Hydroxyapatite, PEG | Homogeneous precipitation method, esterification reaction, amidation reaction | Gallic acid | 45–60; - | 150; - | 30–40 | - | 50 | - | [49] |
Iron-based MOF, mPEG-b-PLLA, SDS | Oil/water emulsion | SDS, PEG | 51.6; 35 | ~100; - | −18.33 | pH 6.8, 12 h, 20%; pH 7.4, 12 h, 50%; pH 5.4, 12 h, 0% | 50 | rPA, 7.8% | [93] |
Mesoporous silica nanoparticles | Aqueous polymerization and physical adsorption | APBA | 77~89; 18~21 | 202.8; 0.078 | −27.3 | pH 1.2, 5 h, 15.2%; pH 7.4, 5 h, 18.8%; pH 7.4 (glucose 5 mM), 5 h, 80% | 25 | rBA, 3.1% | [136] |
Porous silicon nanoparticles | Immersion method | Poly (pyridyl di-sulfide ethylene phosphate), Dodecyl sulfobetaine | ~74; 10.3 | 241; 0.29 | 6.6 | pH 1.2, 0~2 h, <1%; pH 6.8, 2~8 h, 35% | 50 | rBA, 4.36% | [137] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Wang, C.; Ren, S.; Pan, J.; Wang, Y.; Shen, Y.; Zeng, Z.; Cui, H.; Zhao, X. Versatile Oral Insulin Delivery Nanosystems: From Materials to Nanostructures. Int. J. Mol. Sci. 2022, 23, 3362. https://doi.org/10.3390/ijms23063362
Wang M, Wang C, Ren S, Pan J, Wang Y, Shen Y, Zeng Z, Cui H, Zhao X. Versatile Oral Insulin Delivery Nanosystems: From Materials to Nanostructures. International Journal of Molecular Sciences. 2022; 23(6):3362. https://doi.org/10.3390/ijms23063362
Chicago/Turabian StyleWang, Mengjie, Chunxin Wang, Shuaikai Ren, Junqian Pan, Yan Wang, Yue Shen, Zhanghua Zeng, Haixin Cui, and Xiang Zhao. 2022. "Versatile Oral Insulin Delivery Nanosystems: From Materials to Nanostructures" International Journal of Molecular Sciences 23, no. 6: 3362. https://doi.org/10.3390/ijms23063362
APA StyleWang, M., Wang, C., Ren, S., Pan, J., Wang, Y., Shen, Y., Zeng, Z., Cui, H., & Zhao, X. (2022). Versatile Oral Insulin Delivery Nanosystems: From Materials to Nanostructures. International Journal of Molecular Sciences, 23(6), 3362. https://doi.org/10.3390/ijms23063362