Mechanisms and Applications of Bacterial Sporulation and Germination in the Intestine
Abstract
:1. Introduction
2. Sporulation and Germination
2.1. Sporulation
2.1.1. Initiation of Sporulation
2.1.2. Chromosome Segregation and Cell Division
2.1.3. Septation and Differential Gene Expression
2.1.4. Engulfment
2.2. Spore Structure and Survival
2.2.1. Exosporium and Crust
2.2.2. Coat
2.2.3. Outer Membrane
2.2.4. Cortex
2.2.5. Germ Cell Wall
2.2.6. Inner Membrane
2.2.7. Core
2.3. Germination and Outgrowth
2.3.1. Germinants and Germination Receptors in the Gut Environment
2.3.2. Activation
2.3.3. Stage I Germination
2.3.4. Stage II Germination
2.3.5. Outgrowth
3. The Role of Sporobiota in Gut in Health and Disease
3.1. Sporobiota in the Gut, an Evolutionary Trade Off
3.2. Pathogenic Spore Formers
3.3. Beneficial Spore Formers Play a Role in Gut Homeostasis
4. Potential of Sporobiota as Treatment
4.1. Spores as Probiotics
4.2. Spores as Vaccine or Drug Vehicles
5. Challenges in the Use of Spores as Therapeutics
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Vergès, M.-C.C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.H.; et al. Microbiome Definition Re-Visited: Old Concepts and New Challenges. Microbiome 2020, 8, 103. [Google Scholar] [CrossRef] [PubMed]
- Browne, H.P.; Forster, S.C.; Anonye, B.O.; Kumar, N.; Neville, B.A.; Stares, M.D.; Goulding, D.; Lawley, T.D. Culturing of ‘Unculturable’ Human Microbiota Reveals Novel Taxa and Extensive Sporulation. Nature 2016, 533, 543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egan, M.; Dempsey, E.; Ryan, C.A.; Ross, R.P.; Stanton, C. The Sporobiota of the Human Gut. Gut Microbes 2021, 13, 1863134. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Pedersen, O. Gut Microbiota in Human Metabolic Health and Disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Tetz, G.; Tetz, V. Introducing the Sporobiota and Sporobiome. Gut Pathog. 2017, 9, 38. [Google Scholar] [CrossRef]
- Wunderlin, T.; Junier, T.; Paul, C.; Jeanneret, N.; Junier, P. Physical Isolation of Endospores from Environmental Samples by Targeted Lysis of Vegetative Cells. J. Vis. Exp. 2016, 107, e53411. [Google Scholar] [CrossRef] [Green Version]
- Koransky, J.R.; Allen, S.D.; Dowell, V.R. Use of Ethanol for Selective Isolation of Sporeforming Microorganisms. Appl. Environ. Microbiol. 1978, 35, 762–765. [Google Scholar] [CrossRef] [Green Version]
- Onizuka, S.; Tanaka, M.; Mishima, R.; Nakayama, J. Cultivation of Spore-Forming Gut Microbes Using a Combination of Bile Acids and Amino Acids. Microorganisms 2021, 9, 1651. [Google Scholar] [CrossRef]
- Avershina, E.; Larsen, M.G.; Aspholm, M.; Lindback, T.; Storrø, O.; Øien, T.; Johnsen, R.; Rudi, K. Culture Dependent and Independent Analyses Suggest a Low Level of Sharing of Endospore-Forming Species between Mothers and Their Children. Sci. Rep. 2020, 10, 1832. [Google Scholar] [CrossRef]
- Kearney, S.M.; Gibbons, S.M.; Poyet, M.; Gurry, T.; Bullock, K.; Allegretti, J.R.; Clish, C.B.; Alm, E.J. Endospores and Other Lysis-Resistant Bacteria Comprise a Widely Shared Core Community within the Human Microbiota. ISME J. 2018, 12, 2403–2416. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Onizuka, S.; Mishima, R.; Nakayama, J. Cultural Isolation of Spore-Forming Bacteria in Human Feces Using Bile Acids. Sci. Rep. 2020, 10, 15041. [Google Scholar] [CrossRef] [PubMed]
- Elliott, B.; Androga, G.O.; Knight, D.R.; Riley, T.V. Clostridium Difficile Infection: Evolution, Phylogeny and Molecular Epidemiology. Infect. Genet. Evol. 2017, 49, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos-Silva, P.; Serrano, M.; Henriques, A.O. From Root to Tips: Sporulation Evolution and Specialization in Bacillus Subtilis and the Intestinal Pathogen Clostridioides Difficile. Mol. Biol. Evol. 2019, 36, 2714–2736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, M.D.; Lawson, P.A.; Willems, A.; Cordoba, J.J.; Fernandez-Garayzabal, J.; Garcia, P.; Cai, J.; Hippe, H.; Farrow, J.A.E. The Phylogeny of the Genus Clostridium: Proposal of Five New Genera and Eleven New Species Combinations. Int. J. Syst. Evol. Microbiol. 1994, 44, 812–826. [Google Scholar] [CrossRef] [Green Version]
- Errington, J. Regulation of Endospore Formation in Bacillus Subtilis. Nat. Rev. Microbiol. 2003, 1, 117–126. [Google Scholar] [CrossRef]
- Piggot, P.J.; Hilbert, D.W. Sporulation of Bacillus Subtilis. Curr. Opin. Microbiol. 2004, 7, 579–586. [Google Scholar] [CrossRef]
- Higgins, D.; Dworkin, J. Recent Progress in Bacillus Subtilis Sporulation. FEMS Microbiol. Rev. 2012, 36, 131–148. [Google Scholar] [CrossRef] [Green Version]
- Tan, I.S.; Ramamurthi, K.S. Spore Formation in Bacillus Subtilis. Environ. Microbiol. Rep. 2014, 6, 212–225. [Google Scholar] [CrossRef] [Green Version]
- Grossman, A.D. Genetic Networks Controlling the Initiation of Sporulation and the Developement of Genetic Competence in Bacillus Subtilis. Annu. Rev. Genet. 1995, 29, 477–508. [Google Scholar] [CrossRef]
- Sonenshein, A.L. Control of Sporulation Initiation in Bacillus Subtilis. Curr. Opin. Microbiol. 2000, 3, 561–566. [Google Scholar] [CrossRef]
- Janoir, C.; Denève, C.; Bouttier, S.; Barbut, F.; Hoys, S.; Caleechum, L.; Chapetón-Montes, D.; Pereira, F.C.; Henriques, A.O.; Collignon, A.; et al. Adaptive Strategies and Pathogenesis of Clostridium Difficile from in Vivo Transcriptomics. Infect. Immun. 2013, 81, 3757–3769. [Google Scholar] [CrossRef] [Green Version]
- Hoch, J.A. The Phosphorelay Signal Transduction Pathway in the Initiation of Bacillus Subtilis Sporulation. J. Cell. Biochem. 1993, 51, 55–61. [Google Scholar] [CrossRef]
- Fujita, M.; Losick, R. Evidence That Entry into Sporulation in Bacillus Subtilis Is Governed by a Gradual Increase in the Level and Activity of the Master Regulator Spo0A. Genes Dev. 2005, 19, 2236–2244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fawcett, P.; Eichenberger, P.; Losick, R.; Youngman, P. The Transcriptional Profile of Early to Middle Sporulation in Bacillus Subtilis. Proc. Natl. Acad. Sci. USA 2000, 97, 8063–8068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burbulys, D.; Trach, K.A.; Hoch, J.A. Initiation of Sporulation in B. Subtilis Is Controlled by a Multicomponent Phosphorelay. Cell 1991, 64, 545–552. [Google Scholar] [CrossRef]
- Hoch, J.A. Regulation of the Phosphorelay and the Initiation of Sporulation in Bacillus Subtilis. Annu. Rev. Microbiol. 1993, 47, 441–465. [Google Scholar] [CrossRef]
- Steiner, E.; Dago, A.E.; Young, D.I.; Heap, J.T.; Minton, N.P.; Hoch, J.A.; Young, M. Multiple Orphan Histidine Kinases Interact Directly with Spo0A to Control the Initiation of Endospore Formation in Clostridium Acetobutylicum. Mol. Microbiol. 2011, 80, 641–654. [Google Scholar] [CrossRef] [Green Version]
- Shen, A.; Edwards, A.N.; Sarker, M.R.; Paredes-Sabja, D. Sporulation and Germination in Clostridial Pathogens. Microbiol. Spectr. 2019, 7, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Nawrocki, K.L.; Edwards, A.N.; Daou, N.; Bouillaut, L.; McBride, S.M. CodY-Dependent Regulation of Sporulation in Clostridium Difficile. J. Bacteriol. 2016, 198, 2113–2130. [Google Scholar] [CrossRef] [Green Version]
- Ratnayake-Lecamwasam, M.; Serror, P.; Wong, K.W.; Sonenshein, A.L. Bacillus Subtilis CodY Represses Early-Stationary-Phase Genes by Sensing GTP Levels. Genes Dev. 2001, 15, 1093–1103. [Google Scholar] [CrossRef] [Green Version]
- Hauser, P.M.; Karamata, D. A Method for the Determination of Bacterial Spore DNA Content Based on Isotopic Labelling, Spore Germination and Diphenylamine Assay; Ploidy of Spores of Several Bacillus Species. Biochimie 1992, 74, 723–733. [Google Scholar] [CrossRef]
- Quisel, J.D.; Lin, D.C.-H.; Grossman, A.D. Control of Development by Altered Localization of a Transcription Factor in B. Subtilis. Mol. Cell 1999, 4, 665–672. [Google Scholar] [CrossRef]
- Sigal, B.-Y.; Rudner, D.Z.; Richard, L. RacA, a Bacterial Protein That Anchors Chromosomes to the Cell Poles. Science 2003, 299, 532–536. [Google Scholar] [CrossRef] [Green Version]
- Edwards, D.H.; Errington, J. The Bacillus Subtilis DivIVA Protein Targets to the Division Septum and Controls the Site Specificity of Cell Division. Mol. Microbiol. 1997, 24, 905–915. [Google Scholar] [CrossRef]
- Burkholder, W.F.; Kurtser, I.; Grossman, A.D. Replication Initiation Proteins Regulate a Developmental Checkpoint in Bacillus Subtilis. Cell 2001, 104, 269–279. [Google Scholar] [CrossRef] [Green Version]
- Veening, J.-W.; Murray, H.; Errington, J. A Mechanism for Cell Cycle Regulation of Sporulation Initiation in Bacillus Subtilis. Genes Dev. 2009, 23, 1959–1970. [Google Scholar] [CrossRef] [Green Version]
- Bejerano-Sagie, M.; Oppenheimer-Shaanan, Y.; Berlatzky, I.; Rouvinski, A.; Meyerovich, M.; Ben-Yehuda, S. A Checkpoint Protein That Scans the Chromosome for Damage at the Start of Sporulation in Bacillus Subtilis. Cell 2006, 125, 679–690. [Google Scholar] [CrossRef] [Green Version]
- Abanes-De Mello, A.; Sun, Y.-L.; Aung, S.; Pogliano, K. A Cytoskeleton-like Role for the Bacterial Cell Wall during Engulfment of the Bacillus Subtilis Forespore. Genes Dev. 2002, 16, 3253–3264. [Google Scholar] [CrossRef] [Green Version]
- Setlow, P. Spores of Bacillus Subtilis: Their Resistance to and Killing by Radiation, Heat and Chemicals. J. Appl. Microbiol. 2006, 101, 514–525. [Google Scholar] [CrossRef]
- Vreeland, R.H.; Rosenzweig, W.D.; Powers, D.W. Isolation of a 250 Million-Year-Old Halotolerant Bacterium from a Primary Salt Crystal. Nature 2000, 407, 897–900. [Google Scholar] [CrossRef]
- Henriques, A.O.; Moran, C.P., Jr. Structure, Assembly, and Function of the Spore Surface Layers. Annu. Rev. Microbiol. 2007, 61, 555–588. [Google Scholar] [CrossRef] [PubMed]
- Sylvestre, P.; Couture-Tosi, E.; Mock, M. A Collagen-like Surface Glycoprotein Is a Structural Component of the Bacillus Anthracis Exosporium. Mol. Microbiol. 2002, 45, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Stewart, G.C. The Exosporium Layer of Bacterial Spores: A Connection to the Environment and the Infected Host. Microbiol. Mol. Biol. Rev. 2015, 79, 437–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shuster, B.; Khemmani, M.; Abe, K.; Huang, X.; Nakaya, Y.; Maryn, N.; Buttar, S.; Gonzalez, A.N.; Driks, A.; Sato, T. Contributions of Crust Proteins to Spore Surface Properties in Bacillus Subtilis. Mol. Microbiol. 2019, 111, 825–843. [Google Scholar] [CrossRef]
- Bartels, J.; Blüher, A.; López Castellanos, S.; Richter, M.; Günther, M.; Mascher, T. The Bacillus Subtilis Endospore Crust: Protein Interaction Network, Architecture and Glycosylation State of a Potential Glycoprotein Layer. Mol. Microbiol. 2019, 112, 1576–1592. [Google Scholar] [CrossRef]
- Manetsberger, J.; Ghosh, A.; Hall, E.A.H.; Christie, G. Orthologues of Bacillus Subtilis Spore Crust Proteins Have a Structural Role in the Bacillus Megaterium QM B1551 Spore Exosporium. Appl. Environ. Microbiol. 2018, 84, e01734-18. [Google Scholar] [CrossRef] [Green Version]
- Gould, G.W.; Stubbs, J.M.; King, W.L. Structure and Composition of Resistant Layers in Bacterial Spore Coats. Microbiology 1970, 60, 347–355. [Google Scholar] [CrossRef] [Green Version]
- Permpoonpattana, P.; Phetcharaburanin, J.; Mikelsone, A.; Dembek, M.; Tan, S.; Brisson, M.-C.; La Ragione, R.; Brisson, A.R.; Fairweather, N.; Hong, H.A. Functional Characterization of Clostridium Difficile Spore Coat Proteins. J. Bacteriol. 2013, 195, 1492–1503. [Google Scholar] [CrossRef] [Green Version]
- Hullo, M.-F.; Moszer, I.; Danchin, A.; Martin-Verstraete, I. CotA of Bacillus Subtilis Is a Copper-Dependent Laccase. J. Bacteriol. 2001, 183, 5426–5430. [Google Scholar] [CrossRef] [Green Version]
- Driks, A. The Dynamic Spore. Proc. Natl. Acad. Sci. USA 2003, 100, 3007–3009. [Google Scholar] [CrossRef] [Green Version]
- Cybulski, R.J., Jr.; Sanz, P.; Alem, F.; Stibitz, S.; Bull, R.L.; O’Brien, A.D. Four Superoxide Dismutases Contribute to Bacillus Anthracis Virulence and Provide Spores with Redundant Protection from Oxidative Stress. Infect. Immun. 2009, 77, 274–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moeller, R.; Horneck, G.; Facius, R.; Stackebrandt, E. Role of Pigmentation in Protecting Bacillus sp. Endospores against Environmental UV Radiation. FEMS Microbiol. Ecol. 2005, 51, 231–236. [Google Scholar] [CrossRef]
- Chada, V.G.R.; Sanstad, E.A.; Wang, R.; Driks, A. Morphogenesis of Bacillus Spore Surfaces. J. Bacteriol. 2003, 185, 6255–6261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, B.T.; Halvorson, H.O. Studies on the Spores of Aerobic Bacteria I: The Occurrence of Alanine Racemase. J. Bacteriol. 1953, 65, 160–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woese, C.R.; Morowitz, H.J.; Hutchison, C.A., III. Analysis of Action of l-Alanine in Spore Germination. J. Bacteriol. 1958, 76, 578–588. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.A.; Ferreira, W.T.; Hosseini, S.; Anwar, S.; Hitri, K.; Wilkinson, A.J.; Vahjen, W.; Zentek, J.; Soloviev, M.; Cutting, S.M. The Spore Coat Protein CotE Facilitates Host Colonization by Clostridium Difficile. J. Infect. Dis. 2017, 216, 1452–1459. [Google Scholar] [CrossRef]
- Leggett, M.J.; McDonnell, G.; Denyer, S.P.; Setlow, P.; Maillard, J. Bacterial Spore Structures and Their Protective Role in Biocide Resistance. J. Appl. Microbiol. 2012, 113, 485–498. [Google Scholar] [CrossRef]
- Atrih, A.; Zöllner, P.; Allmaier, G.; Williamson, M.P.; Foster, S.J. Peptidoglycan Structural Dynamics during Germination of Bacillus Subtilis 168 Endospores. J. Bacteriol. 1998, 180, 4603–4612. [Google Scholar] [CrossRef] [Green Version]
- Warth, A.D.; Strominger, J.L. Structure of the Peptidoglycan of Bacterial Spores: Occurrence of the Lactam of Muramic Acid. Proc. Natl. Acad. Sci. USA 1969, 64, 528–535. [Google Scholar] [CrossRef] [Green Version]
- Atrih, A.; Foster, S.J. Analysis of the Role of Bacterial Endospore Cortex Structure in Resistance Properties and Demonstration of Its Conservation amongst Species. J. Appl. Microbiol. 2001, 91, 364–372. [Google Scholar] [CrossRef]
- Laaberki, M.-H.; Pfeffer, J.; Clarke, A.J.; Dworkin, J. O-Acetylation of Peptidoglycan Is Required for Proper Cell Separation and S-Layer Anchoring in Bacillus Anthracis. J. Biol. Chem. 2011, 286, 5278–5288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffiths, K.K.; Setlow, P. Effects of Modification of Membrane Lipid Composition on Bacillus Subtilis Sporulation and Spore Properties. J. Appl. Microbiol. 2009, 106, 2064–2078. [Google Scholar] [CrossRef] [PubMed]
- Sunde, E.P.; Setlow, P.; Hederstedt, L.; Halle, B. The Physical State of Water in Bacterial Spores. Proc. Natl. Acad. Sci. USA 2009, 106, 19334–19339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaieda, S.; Setlow, B.; Setlow, P.; Halle, B. Mobility of Core Water in Bacillus Subtilis Spores by 2H NMR. Biophys. J. 2013, 105, 2016–2023. [Google Scholar] [CrossRef] [Green Version]
- Knudsen, S.M.; Cermak, N.; Feijó Delgado, F.; Setlow, B.; Setlow, P.; Manalis, S.R. Water and Small-Molecule Permeation of Dormant Bacillus Subtilis Spores. J. Bacteriol. 2016, 198, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Cortezzo, D.E.; Setlow, P. Analysis of Factors That Influence the Sensitivity of Spores of Bacillus Subtilis to DNA Damaging Chemicals. J. Appl. Microbiol. 2005, 98, 606–617. [Google Scholar] [CrossRef]
- Cowan, A.E.; Olivastro, E.M.; Koppel, D.E.; Loshon, C.A.; Setlow, B.; Setlow, P. Lipids in the Inner Membrane of Dormant Spores of Bacillus Species Are Largely Immobile. Proc. Natl. Acad. Sci. USA 2004, 101, 7733–7738. [Google Scholar] [CrossRef] [Green Version]
- Laue, M.; Han, H.-M.; Dittmann, C.; Setlow, P. Intracellular Membranes of Bacterial Endospores Are Reservoirs for Spore Core Membrane Expansion during Spore Germination. Sci. Rep. 2018, 8, 11388. [Google Scholar] [CrossRef]
- Griffiths, K.K.; Zhang, J.; Cowan, A.E.; Yu, J.; Setlow, P. Germination Proteins in the Inner Membrane of Dormant Bacillus Subtilis Spores Colocalize in a Discrete Cluster. Mol. Microbiol. 2011, 81, 1061–1077. [Google Scholar] [CrossRef]
- Setlow, P.; Christie, G. Bacterial Spore MRNA—What’s up with That? Front. Microbiol. 2020, 11, 596092. [Google Scholar] [CrossRef]
- Sohail, A.; Hayes, C.S.; Divvela, P.; Setlow, P.; Bhagwat, A.S. Protection of DNA by α/β-Type Small, Acid-Soluble Proteins from Bacillus Subtilis Spores against Cytosine Deamination. Biochemistry 2002, 41, 11325–11330. [Google Scholar] [CrossRef]
- Setlow, P. I Will Survive: DNA Protection in Bacterial Spores. Trends Microbiol. 2007, 15, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.P.; Häder, D.-P. UV-Induced DNA Damage and Repair: A Review. Photochem. Photobiol. Sci. 2002, 1, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Rebeil, R.; Nicholson, W.L. The Subunit Structure and Catalytic Mechanism of the Bacillus Subtilis DNA Repair Enzyme Spore Photoproduct Lyase. Proc. Natl. Acad. Sci. USA 2001, 98, 9038–9043. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Ramirez-Peralta, A.; Gaidamakova, E.; Zhang, P.; Li, Y.; Daly, M.J.; Setlow, P. Effects of Mn Levels on Resistance of Bacillus Megaterium Spores to Heat, Radiation and Hydrogen Peroxide. J. Appl. Microbiol. 2011, 111, 663–670. [Google Scholar] [CrossRef]
- O’Neill, P. The Chemical Basis of Radiation Biology. Taylor Fr. 1987, 52, 976. [Google Scholar] [CrossRef]
- Foerster, H.F.; Foster, J.W. Response of Bacillus Spores to Combinations of Germinative Compounds. J. Bacteriol. 1966, 91, 1168–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, I.M.; Laaberki, M.-H.; Popham, D.L.; Dworkin, J. A Eukaryotic-like Ser/Thr Kinase Signals Bacteria to Exit Dormancy in Response to Peptidoglycan Fragments. Cell 2008, 135, 486–496. [Google Scholar] [CrossRef] [Green Version]
- Philippe, V.A.; Méndez, M.B.; Huang, I.-H.; Orsaria, L.M.; Sarker, M.R.; Grau, R.R. Inorganic Phosphate Induces Spore Morphogenesis and Enterotoxin Production in the Intestinal Pathogen Clostridium Perfringens. Infect. Immun. 2006, 74, 3651–3656. [Google Scholar] [CrossRef] [Green Version]
- Setlow, P. Spore Germination. Curr. Opin. Microbiol. 2003, 6, 550–556. [Google Scholar] [CrossRef]
- Hornstra, L.M.; de Vries, Y.P.; de Vos, W.M.; Abee, T.; Wells-Bennik, M.H.J. GerR, a Novel Ger Operon Involved in l-Alanine-and Inosine-Initiated Germination of Bacillus Cereus ATCC 14579. Appl. Environ. Microbiol. 2005, 71, 774–781. [Google Scholar] [CrossRef] [Green Version]
- Francis, M.B.; Allen, C.A.; Shrestha, R.; Sorg, J.A. Bile Acid Recognition by the Clostridium Difficile Germinant Receptor, CspC, Is Important for Establishing Infection. PLoS Pathog. 2013, 9, e1003356. [Google Scholar] [CrossRef]
- Zuberi, A.R.; Moir, A.; Feavers, I.M. The Nucleotide Sequence and Gene Organization of the GerA Spore Germination Operon of Bacillus Subtilis 168. Gene 1987, 51, 1–11. [Google Scholar] [CrossRef]
- Moir, A.; Cooper, G.; Eichenberger, P.; Driks, A. Spore Germination. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Modugno, C.; Peltier, C.; Simonin, H.; Dujourdy, L.; Capitani, F.; Sandt, C.; Perrier-Cornet, J.-M. Understanding the Effects of High Pressure on Bacterial Spores Using Synchrotron Infrared Spectroscopy. Front. Microbiol. 2020, 10, 3122. [Google Scholar] [CrossRef] [PubMed]
- Paidhungat, M.; Setlow, B.; Daniels, W.B.; Hoover, D.; Papafragkou, E.; Setlow, P. Mechanisms of Induction of Germination of Bacillus Subtilis Spores by High Pressure. Appl. Environ. Microbiol. 2002, 68, 3172–3175. [Google Scholar] [CrossRef] [Green Version]
- Lawler, A.J.; Lambert, P.A.; Worthington, T. A Revised Understanding of Clostridioides Difficile Spore Germination. Trends Microbiol. 2020, 28, 744–752. [Google Scholar] [CrossRef]
- Rohlfing, A.E.; Eckenroth, B.E.; Forster, E.R.; Kevorkian, Y.; Donnelly, M.L.; Benito de la Puebla, H.; Doublié, S.; Shen, A. The CspC Pseudoprotease Regulates Germination of Clostridioides Difficile Spores in Response to Multiple Environmental Signals. PLoS Genet. 2019, 15, e1008224. [Google Scholar] [CrossRef] [Green Version]
- Sorg, J.A.; Sonenshein, A.L. Bile Salts and Glycine as Cogerminants for Clostridium Difficile Spores. J. Bacteriol. 2008, 190, 2505–2512. [Google Scholar] [CrossRef] [Green Version]
- Koenigsknecht, M.J.; Theriot, C.M.; Bergin, I.L.; Schumacher, C.A.; Schloss, P.D.; Young, V.B. Dynamics and Establishment of Clostridium Difficile Infection in the Murine Gastrointestinal Tract. Infect. Immun. 2015, 83, 934–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kochan, T.J.; Somers, M.J.; Kaiser, A.M.; Shoshiev, M.S.; Hagan, A.K.; Hastie, J.L.; Giordano, N.P.; Smith, A.D.; Schubert, A.M.; Carlson, P.E., Jr.; et al. Intestinal Calcium and Bile Salts Facilitate Germination of Clostridium Difficile Spores. PLoS Pathog. 2017, 13, e1006443. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.; Dyson, P. Evolution of Transmembrane Protein Kinases Implicated in Coordinating Remodeling of Gram-Positive Peptidoglycan: Inside versus Outside. J. Bacteriol. 2006, 188, 7470–7476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cote, C.K.; Heffron, J.D.; Bozue, J.A.; Welkos, S.L. Bacillus Anthracis and Other Bacillus Species. In Molecular Medical Microbiology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1789–1844. [Google Scholar]
- Adibi, S.A.; Mercer, D.W. Protein Digestion in Human Intestine as Reflected in Luminal, Mucosal, and Plasma Amino Acid Concentrations after Meals. J. Clin. Investig. 1973, 52, 1586–1594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmann, A.F.; Eckmann, L. How Bile Acids Confer Gut Mucosal Protection against Bacteria. Proc. Natl. Acad. Sci. USA 2006, 103, 4333–4334. [Google Scholar] [CrossRef] [Green Version]
- Hyatt, M.T.; Levinson, H.S. Effect of Sugars and Other Carbon Compounds on Germination and Postgerminative Development of Bacillus Megaterium Spores. J. Bacteriol. 1964, 88, 1403–1415. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Garner, W.; Yi, X.; Yu, J.; Li, Y.; Setlow, P. Factors Affecting Variability in Time between Addition of Nutrient Germinants and Rapid Dipicolinic Acid Release during Germination of Spores of Bacillus Species. J. Bacteriol. 2010, 192, 3608–3619. [Google Scholar] [CrossRef] [Green Version]
- Tehri, N.; Kumar, N.; Yadav, A.; Raghu, H.; Singh, N. Sugars Mediated Germination in Spores of Bacillus Megaterium. Int. J. Microbiol. Res. 2018, 10, 1058–1061. [Google Scholar] [CrossRef] [Green Version]
- Barlass, P.J.; Houston, C.W.; Clements, M.O.; Moir, A. Germination of Bacillus Cereus Spores in Response to l-Alanine and to Inosine: The Roles of GerL and GerQ Operons. Microbiology 2002, 148, 2089–2095. [Google Scholar] [CrossRef] [Green Version]
- Broussolle, V.; Gauillard, F.; Nguyen-The, C.; Carlin, F. Diversity of Spore Germination in Response to Inosine and l-alanine and Its Interaction with NaCl and PH in the Bacillus Cereus Group. J. Appl. Microbiol. 2008, 105, 1081–1090. [Google Scholar] [CrossRef]
- Luu, H.; Akoachere, M.; Patra, M.; Abel-Santos, E. Cooperativity and Interference of Germination Pathways in Bacillus Anthracis Spores. J. Bacteriol. 2011, 193, 4192–4198. [Google Scholar] [CrossRef] [Green Version]
- Madslien, E.H.; Granum, P.E.; Blatny, J.M.; Lindbäck, T. l-Alanine-Induced Germination in Bacillus Licheniformis-the Impact of Native GerA Sequences. BMC Microbiol. 2014, 14, 101. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.H.; Harper, W.J. Germination Response of Bacillus Licheniformis Spores to Amino Acids. J. Dairy Sci. 1963, 46, 663–667. [Google Scholar] [CrossRef]
- Wang, G.; Chen, H.; Wang, X.; Peng, L.; Peng, Y.; Li, Y. Probing the Germination Kinetics of Ethanol-Treated Bacillus Thuringiensis Spores. Appl. Opt. 2017, 56, 3263–3269. [Google Scholar] [CrossRef] [PubMed]
- Brunt, J.; Plowman, J.; Gaskin, D.J.H.; Itchner, M.; Carter, A.T.; Peck, M.W. Functional Characterisation of Germinant Receptors in Clostridium Botulinum and Clostridium Sporogenes Presents Novel Insights into Spore Germination Systems. PLoS Pathog. 2014, 10, e1004382. [Google Scholar] [CrossRef] [PubMed]
- Alberto, F.; Broussolle, V.; Mason, D.R.; Carlin, F.; Peck, M.W. Variability in Spore Germination Response by Strains of Proteolytic Clostridium Botulinum Types A, B and F. Lett. Appl. Microbiol. 2003, 36, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, N.; Abel-Santos, E. Requirements for Germination of Clostridium Sordellii Spores In Vitro. J. Bacteriol. 2010, 192, 418–425. [Google Scholar] [CrossRef] [Green Version]
- Sayer, C.V.; Barat, B.; Popham, D.L. Identification of l-Valine-Initiated-Germination-Active Genes in Bacillus Subtilis Using Tn-Seq. PLoS ONE 2019, 14, e0218220. [Google Scholar] [CrossRef] [Green Version]
- Atluri, S.; Ragkousi, K.; Cortezzo, D.E.; Setlow, P. Cooperativity between Different Nutrient Receptors in Germination of Spores of Bacillus Subtilis and Reduction of This Cooperativity by Alterations in the GerB Receptor. J. Bacteriol. 2006, 188, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Udompijitkul, P.; Alnoman, M.; Banawas, S.; Paredes-Sabja, D.; Sarker, M.R. New Amino Acid Germinants for Spores of the Enterotoxigenic Clostridium Perfringens Type A Isolates. Food Microbiol. 2014, 44, 24–33. [Google Scholar] [CrossRef]
- Braconnier, A.; Broussolle, V.; Dargaignaratz, C.; Nguyen-The, C.; Carlin, F. Growth and Germination of Proteolytic Clostridium Botulinum in Vegetable-Based Media. J. Food Prot. 2003, 66, 833–839. [Google Scholar] [CrossRef]
- Liggins, M.; Ramirez, N.; Magnuson, N.; Abel-Santos, E. Progesterone Analogs Influence Germination of Clostridium Sordellii and Clostridium Difficile Spores In Vitro. J. Bacteriol. 2011, 193, 2776–2783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaye, M.; Ordal, Z.J. Germination Response of Spores of Bacillus Megaterium after Exposure to Calcium Dipicolinate at 60 °C. Can. J. Microbiol. 1966, 12, 199–201. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Peralta, A.; Zhang, P.; Li, Y.; Setlow, P. Effects of Sporulation Conditions on the Germination and Germination Protein Levels of Bacillus Subtilis Spores. Appl. Environ. Microbiol. 2012, 78, 2689–2697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setlow, B.; Peng, L.; Loshon, C.A.; Li, Y.; Christie, G.; Setlow, P. Characterization of the Germination of Bacillus Megaterium Spores Lacking Enzymes That Degrade the Spore Cortex. J. Appl. Microbiol. 2009, 107, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Setlow, B.; Cowan, A.E.; Setlow, P. Germination of Spores of Bacillus Subtilis with Dodecylamine. J. Appl. Microbiol. 2003, 95, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Suklim, K.; Flick, G.J.; Bourne, D.W.; Granata, L.A.; Eifert, J.; Williams, R.; Popham, D.; Wittman, R. Pressure-Induced Germination and Inactivation of Bacillus Cereus Spores and Their Survival in Fresh Blue Crab Meat (Callinectes Sapidus) during Storage. J. Aquat. Food Prod. Technol. 2008, 17, 322–337. [Google Scholar] [CrossRef]
- Tam, J.; Icho, S.; Utama, E.; Orrell, K.E.; Gómez-Biagi, R.F.; Theriot, C.M.; Kroh, H.K.; Rutherford, S.A.; Lacy, D.B.; Melnyk, R.A. Intestinal Bile Acids Directly Modulate the Structure and Function of C. Difficile TcdB Toxin. Proc. Natl. Acad. Sci. USA 2020, 117, 6792–6800. [Google Scholar] [CrossRef]
- Busta, F.F.; Ordal, Z.J. Heat-Activation Kinetics of Endospores of Bacillus Subtilis A. J. Food Sci. 1964, 29, 345–353. [Google Scholar] [CrossRef]
- Luu, S.; Cruz-Mora, J.; Setlow, B.; Feeherry, F.E.; Doona, C.J.; Setlow, P. The Effects of Heat Activation on Bacillus Spore Germination, with Nutrients or under High Pressure, with or without Various Germination Proteins. Appl. Environ. Microbiol. 2015, 81, 2927–2938. [Google Scholar] [CrossRef] [Green Version]
- Keynan, A.; Evenchik, Z. The Bacterial Spore; Academic Press: London, UK, 1969. [Google Scholar]
- Magill, N.G.; Cowan, A.E.; Leyva-Vazquez, M.A.; Brown, M.; Koppel, D.E.; Setlow, P. Analysis of the Relationship between the Decrease in PH and Accumulation of 3-Phosphoglyceric Acid in Developing Forespores of Bacillus Species. J. Bacteriol. 1996, 178, 2204–2210. [Google Scholar] [CrossRef] [Green Version]
- Christie, G.; Setlow, P. Bacillus Spore Germination: Knowns, Unknowns and What We Need to Learn. Cell. Signal. 2020, 74, 109729. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Davis, A.; Korza, G.; Zhang, P.; Li, Y.; Setlow, B.; Setlow, P.; Hao, B. Role of a SpoVA Protein in Dipicolinic Acid Uptake into Developing Spores of Bacillus Subtilis. J. Bacteriol. 2012, 194, 1875–1884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chirakkal, H.; O’Rourke, M.; Atrih, A.; Foster, S.J.; Moir, A. Analysis of Spore Cortex Lytic Enzymes and Related Proteins in Bacillus Subtilis Endospore Germination. Microbiology 2002, 148, 2383–2392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Salas, J.L.; Santiago-Lara, M.L.; Setlow, B.; Sussman, M.D.; Setlow, P. Properties of Bacillus Megaterium and Bacillus Subtilis Mutants Which Lack the Protease That Degrades Small, Acid-Soluble Proteins during Spore Germination. J. Bacteriol. 1992, 174, 807–814. [Google Scholar] [CrossRef] [Green Version]
- Browne, H.P.; Almeida, A.; Kumar, N.; Vervier, K.; Adoum, A.T.; Viciani, E.; Dawson, N.J.R.; Forster, S.C.; Cormie, C.; Goulding, D.; et al. Host Adaptation in Gut Firmicutes Is Associated with Sporulation Loss and Altered Transmission Cycle. Genome Biol. 2021, 22, 204. [Google Scholar] [CrossRef]
- Appert, O.; Garcia, A.R.; Frei, R.; Roduit, C.; Constancias, F.; Neuzil-Bunesova, V.; Ferstl, R.; Zhang, J.; Akdis, C.; Lauener, R.; et al. Initial Butyrate Producers during Infant Gut Microbiota Development Are Endospore Formers. Environ. Microbiol. 2020, 22, 3909–3921. [Google Scholar] [CrossRef]
- Browne, H.P.; Neville, B.A.; Forster, S.C.; Lawley, T.D. Transmission of the Gut Microbiota: Spreading of Health. Nat. Rev. Microbiol. 2017, 15, 531–543. [Google Scholar] [CrossRef] [Green Version]
- Helgason, E.; Økstad, O.A.; Caugant, D.A.; Johansen, H.A.; Fouet, A.; Mock, M.; Hegna, I.; Kolstø, A.-B. Bacillus Anthracis, Bacillus Cereus, and Bacillus Thuringiensis—One Species on the Basis of Genetic Evidence. Appl. Environ. Microbiol. 2000, 66, 2627–2630. [Google Scholar] [CrossRef] [Green Version]
- Stenfors Arnesen, L.P.; Fagerlund, A.; Granum, P.E. From Soil to Gut: Bacillus Cereus and Its Food Poisoning Toxins. FEMS Microbiol. Rev. 2008, 32, 579–606. [Google Scholar] [CrossRef] [Green Version]
- Yutin, N.; Galperin, M.Y. A Genomic Update on Clostridial Phylogeny: Gram-negative Spore Formers and Other Misplaced Clostridia. Environ. Microbiol. 2013, 15, 2631–2641. [Google Scholar] [CrossRef]
- Hill, K.K.; Xie, G.; Foley, B.T.; Smith, T.J.; Munk, A.C.; Bruce, D.; Smith, L.A.; Brettin, T.S.; Detter, J.C. Recombination and Insertion Events Involving the Botulinum Neurotoxin Complex Genes in Clostridium Botulinum Types A, B, E and F and Clostridium Butyricum Type E Strains. BMC Biol. 2009, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Adams, V.; Bannam, T.L.; Miyamoto, K.; Garcia, J.P.; Uzal, F.A.; Rood, J.I.; McClane, B.A. Toxin Plasmids of Clostridium Perfringens. Microbiol. Mol. Biol. Rev. 2013, 77, 208–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mock, M.; Fouet, A. Anthrax. Annu. Rev. Microbiol. 2001, 55, 647–671. [Google Scholar] [CrossRef] [PubMed]
- Pilo, P.; Frey, J. Bacillus Anthracis: Molecular Taxonomy, Population Genetics, Phylogeny and Patho-Evolution. Infect. Genet. Evol. 2011, 11, 1218–1224. [Google Scholar] [CrossRef] [Green Version]
- Réty, S.; Salamitou, S.; Garcia-Verdugo, I.; Hulmes, D.J.S.; Le Hégarat, F.; Chaby, R.; Lewit-Bentley, A. The Crystal Structure of the Bacillus Anthracis Spore Surface Protein BclA Shows Remarkable Similarity to Mammalian Proteins. J. Biol. Chem. 2005, 280, 43073–43078. [Google Scholar] [CrossRef] [Green Version]
- Basu, S.; Kang, T.J.; Chen, W.H.; Fenton, M.J.; Baillie, L.; Hibbs, S.; Cross, A.S. Role of Bacillus Anthracis Spore Structures in Macrophage Cytokine Responses. Infect. Immun. 2007, 75, 2351–2358. [Google Scholar] [CrossRef] [Green Version]
- Gohar, M.; Faegri, K.; Perchat, S.; Ravnum, S.; Økstad, O.A.; Gominet, M.; Kolstø, A.-B.; Lereclus, D. The PlcR Virulence Regulon of Bacillus Cereus. PLoS ONE 2008, 3, e2793. [Google Scholar] [CrossRef]
- Ramarao, N.; Lereclus, D. Adhesion and Cytotoxicity of Bacillus Cereus and Bacillus Thuringiensis to Epithelial Cells Are FlhA and PlcR Dependent, Respectively. Microbes Infect. 2006, 8, 1483–1491. [Google Scholar] [CrossRef]
- Aronson, A.I.; Shai, Y. Why Bacillus thuringiensis Insecticidal Toxins Are so Effective: Unique Features of Their Mode of Action. FEMS Microbiol. Lett. 2001, 195, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Celandroni, F.; Salvetti, S.; Senesi, S.; Ghelardi, E. Bacillus Thuringiensis Membrane-Damaging Toxins Acting on Mammalian Cells. FEMS Microbiol. Lett. 2014, 361, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Marvaud, J.-C.; Eisel, U.; Binz, T.; Niemann, H.; Popoff, M.R. TetR Is a Positive Regulator of the Tetanus Toxin Gene in Clostridium Tetani and Is Homologous to BotR. Infect. Immun. 1998, 66, 5698–5702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, A.; Nagalli, S. Clostridium Botulinum. Available online: https://www.ncbi.nlm.nih.gov/books/NBK553081/%0A (accessed on 17 February 2022).
- Yao, P.; Annamaraju, P. Clostridium Perfringens. Available online: https://pubmed.ncbi.nlm.nih.gov/32644475/ (accessed on 17 February 2022).
- Kiu, R.; Hall, L.J. An Update on the Human and Animal Enteric Pathogen Clostridium Perfringens. Emerg. Microbes Infect. 2018, 7, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, A. Clostridium Difficile Toxins: Mediators of Inflammation. J. Innate Immun. 2012, 4, 149–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theriot, C.M.; Young, V.B. Interactions between the Gastrointestinal Microbiome and Clostridium Difficile. Annu. Rev. Microbiol. 2015, 69, 445–461. [Google Scholar] [CrossRef] [Green Version]
- Knight, D.R.; Elliott, B.; Chang, B.J.; Perkins, T.T.; Riley, T.V. Diversity and Evolution in the Genome of Clostridium Difficile. Clin. Microbiol. Rev. 2015, 28, 721–741. [Google Scholar] [CrossRef] [Green Version]
- Darkoh, C.; DuPont, H.L.; Norris, S.J.; Kaplan, H.B. Toxin Synthesis by Clostridium Difficile Is Regulated through Quorum Signaling. MBio 2015, 6, e02569-14. [Google Scholar]
- Schwan, C.; Stecher, B.; Tzivelekidis, T.; van Ham, M.; Rohde, M.; Hardt, W.-D.; Wehland, J.; Aktories, K. Clostridium Difficile Toxin CDT Induces Formation of Microtubule-Based Protrusions and Increases Adherence of Bacteria. PLoS Pathog. 2009, 5, e1000626. [Google Scholar] [CrossRef] [Green Version]
- Péchiné, S.; Collignon, A. Immune Responses Induced by Clostridium Difficile. Anaerobe 2016, 41, 68–78. [Google Scholar] [CrossRef]
- Burke, K.E.; Lamont, J.T. Clostridium Difficile Infection: A Worldwide Disease. Gut Liver 2014, 8, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhya, I.; Moraïs, S.; Laverde-Gomez, J.; Sheridan, P.O.; Walker, A.W.; Kelly, W.; Klieve, A.V.; Ouwerkerk, D.; Duncan, S.H.; Louis, P.; et al. Sporulation Capability and Amylosome Conservation among Diverse Human Colonic and Rumen Isolates of the Keystone Starch-degrader Ruminococcus bromii. Environ. Microbiol. 2018, 20, 324–336. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.H. Control of Lymphocyte Functions by Gut Microbiota-Derived Short-Chain Fatty Acids. Cell. Mol. Immunol. 2021, 18, 1161–1171. [Google Scholar] [CrossRef] [PubMed]
- van der Beek, C.M.; Dejong, C.H.C.; Troost, F.J.; Masclee, A.A.M.; Lenaerts, K. Role of Short-Chain Fatty Acids in Colonic Inflammation, Carcinogenesis, and Mucosal Protection and Healing. Nutr. Rev. 2017, 75, 286–305. [Google Scholar] [CrossRef] [PubMed]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 277. [Google Scholar] [CrossRef] [Green Version]
- Morrison, D.J.; Preston, T. Formation of Short Chain Fatty Acids by the Gut Microbiota and Their Impact on Human Metabolism. Gut Microbes 2016, 7, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Rhee, K.-J.; Sethupathi, P.; Driks, A.; Lanning, D.K.; Knight, K.L. Role of Commensal Bacteria in Development of Gut-Associated Lymphoid Tissues and Preimmune Antibody Repertoire. J. Immunol. 2004, 172, 1118–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Severson, K.M.; Mallozzi, M.; Driks, A.; Knight, K.L. B Cell Development in GALT: Role of Bacterial Superantigen-like Molecules. J. Immunol. 2010, 184, 6782–6789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, K.; Kawamoto, S.; Maruya, M.; Fagarasan, S. GALT: Organization and Dynamics Leading to IgA Synthesis. Adv. Immunol. 2010, 107, 153–185. [Google Scholar] [PubMed]
- Huang, J.-M.; La Ragione, R.M.; Nunez, A.; Cutting, S.M. Immunostimulatory Activity of Bacillus Spores. FEMS Immunol. Med. Microbiol. 2008, 53, 195–203. [Google Scholar] [CrossRef] [Green Version]
- D’Arienzo, R.; Maurano, F.; Mazzarella, G.; Luongo, D.; Stefanile, R.; Ricca, E.; Rossi, M. Bacillus Subtilis Spores Reduce Susceptibility to Citrobacter Rodentium-Mediated Enteropathy in a Mouse Model. Res. Microbiol. 2006, 157, 891–897. [Google Scholar] [CrossRef]
- Cutting, S.M. Bacillus Probiotics. Food Microbiol. 2011, 28, 214–220. [Google Scholar] [CrossRef]
- Piewngam, P.; Zheng, Y.; Nguyen, T.H.; Dickey, S.W.; Joo, H.-S.; Villaruz, A.E.; Glose, K.A.; Fisher, E.L.; Hunt, R.L.; Li, B.; et al. Pathogen Elimination by Probiotic Bacillus via Signalling Interference. Nature 2018, 562, 532–537. [Google Scholar] [CrossRef]
- Shi, N.; Li, N.; Duan, X.; Niu, H. Interaction between the Gut Microbiome and Mucosal Immune System. Mil. Med. Res. 2017, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Helper T Cells and Lymphocyte Activation. In Molecular Biology of the Cell, 4th ed.; Garland Science: New York, NY, USA, 2002. [Google Scholar]
- Kondělková, K.; Vokurková, D.; Krejsek, J.; Borská, L.; Fiala, Z.; Ctirad, A. Regulatory T Cells (TREG) and Their Roles in Immune System with Respect to Immunopathological Disorders. Acta Med. (Hradec Kral.) 2010, 53, 73–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.-J.; Wu, E. The Role of Gut Microbiota in Immune Homeostasis and Autoimmunity. Gut Microbes 2012, 3, 4–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reigstad, C.S.; Salmonson, C.E.; Rainey, J.F.; Szurszewski, J.H.; Linden, D.R.; Sonnenburg, J.L.; Farrugia, G.; Kashyap, P.C. Gut Microbes Promote Colonic Serotonin Production through an Effect of Short-Chain Fatty Acids on Enterochromaffin Cells. FASEB J. 2015, 29, 1395–1403. [Google Scholar] [CrossRef] [Green Version]
- Fung, T.C.; Vuong, H.E.; Luna, C.D.G.; Pronovost, G.N.; Aleksandrova, A.A.; Riley, N.G.; Vavilina, A.; McGinn, J.; Rendon, T.; Forrest, L.R.; et al. Intestinal Serotonin and Fluoxetine Exposure Modulate Bacterial Colonization in the Gut. Nat. Microbiol. 2019, 4, 2064–2073. [Google Scholar] [CrossRef]
- Canani, R.B.; Di Costanzo, M.; Leone, L.; Pedata, M.; Meli, R.; Calignano, A. Potential Beneficial Effects of Butyrate in Intestinal and Extraintestinal Diseases. World J. Gastroenterol. 2011, 17, 1519–1528. [Google Scholar] [CrossRef]
- Kim, S.K.; Guevarra, R.B.; Kim, Y.T.; Kwon, J.; Kim, H.; Cho, J.H.; Kim, H.B.; Lee, J.H. Role of Probiotics in Human Gut Microbiome-Associated Diseases. J. Microbiol. Biotechnol. 2019, 29, 1335–1340. [Google Scholar] [CrossRef]
- Dimidi, E.; Cox, S.R.; Rossi, M.; Whelan, K. Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease. Nutrients 2019, 11, 1806. [Google Scholar] [CrossRef] [Green Version]
- Catinean, A.; Neag, M.A.; Krishnan, K.; Muntean, D.M.; Bocsan, C.I.; Pop, R.M.; Mitre, A.O.; Melincovici, C.S.; Buzoianu, A.D. Probiotic Bacillus Spores Together with Amino Acids and Immunoglobulins Exert Protective Effects on a Rat Model of Ulcerative Colitis. Nutrients 2020, 12, 3607. [Google Scholar] [CrossRef]
- Shinde, T.; Perera, A.P.; Vemuri, R.; Gondalia, S.V.; Karpe, A.V.; Beale, D.J.; Shastri, S.; Southam, B.; Eri, R.; Stanley, R. Synbiotic Supplementation Containing Whole Plant Sugar Cane Fibre and Probiotic Spores Potentiates Protective Synergistic Effects in Mouse Model of IBD. Nutrients 2019, 11, 818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wauters, L.; Slaets, H.; De Paepe, K.; Ceulemans, M.; Wetzels, S.; Geboers, K.; Toth, J.; Thys, W.; Dybajlo, R.; Walgraeve, D.; et al. Efficacy and Safety of Spore-Forming Probiotics in the Treatment of Functional Dyspepsia: A Pilot Randomised, Double-Blind, Placebo-Controlled Trial. Lancet Gastroenterol. Hepatol. 2021, 6, 784–792. [Google Scholar] [CrossRef]
- Catinean, A.; Neag, A.M.; Nita, A.; Buzea, M.; Buzoianu, A.D. Bacillus Spp. Spores-a Promising Treatment Option for Patients with Irritable Bowel Syndrome. Nutrients 2019, 11, 1968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ianiro, G.; Rizzatti, G.; Plomer, M.; Lopetuso, L.; Scaldaferri, F.; Franceschi, F.; Cammarota, G.; Gasbarrini, A. Bacillus Clausii for the Treatment of Acute Diarrhea in Children: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2018, 10, 1074. [Google Scholar] [CrossRef] [Green Version]
- Nyangale, E.P.; Farmer, S.; Keller, D.; Chernoff, D.; Gibson, G.R. Effect of Prebiotics on the Fecal Microbiota of Elderly Volunteers after Dietary Supplementation of Bacillus Coagulans GBI-30, 6086. Anaerobe 2014, 30, 75–81. [Google Scholar] [CrossRef]
- Hatanaka, M.; Yamamoto, K.; Suzuki, N.; Iio, S.; Takara, T.; Morita, H.; Takimoto, T.; Nakamura, T. Effect of Bacillus Subtilis C-3102 on Loose Stools in Healthy Volunteers. Benef. Microbes 2018, 9, 357–365. [Google Scholar] [CrossRef]
- Khanna, S.; Pardi, D.S.; Kelly, C.R.; Kraft, C.S.; Dhere, T.; Henn, M.R.; Lombardo, M.-J.; Vulic, M.; Ohsumi, T.; Winkler, J.; et al. A Novel Microbiome Therapeutic Increases Gut Microbial Diversity and Prevents Recurrent Clostridium Difficile Infection. J. Infect. Dis. 2016, 214, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Henn, M.R.; O’Brien, E.J.; Diao, L.; Feagan, B.G.; Sandborn, W.J.; Huttenhower, C.; Wortman, J.R.; McGovern, B.H.; Wang-Weigand, S.; Lichter, D.I.; et al. A Phase 1b Safety Study of SER-287, a Spore-Based Microbiome Therapeutic, for Active Mild to Moderate Ulcerative Colitis. Gastroenterology 2021, 160, 115–127.e30. [Google Scholar] [CrossRef]
- Ricca, E.; Baccigalupi, L.; Isticato, R. Spore-Adsorption: Mechanism and Applications of a Non-Recombinant Display System. Biotechnol. Adv. 2021, 47, 107693. [Google Scholar] [CrossRef]
- Cutting, S.M.; Hong, H.A.; Baccigalupi, L.; Ricca, E. Oral Vaccine Delivery by Recombinant Spore Probiotics. Int. Rev. Immunol. 2009, 28, 487–505. [Google Scholar] [CrossRef]
- Zhang, G.; An, Y.; Zabed, H.M.; Guo, Q.; Yang, M.; Yuan, J.; Li, W.; Sun, W.; Qi, X. Bacillus Subtilis Spore Surface Display Technology: A Review of Its Development and Applications. J. Microbiol. Biotechnol. 2019, 29, 179–190. [Google Scholar] [CrossRef]
- Potot, S.; Serra, C.R.; Henriques, A.O.; Schyns, G. Display of Recombinant Proteins on Bacillus Subtilis Spores, Using a Coat-Associated Enzyme as the Carrier. Appl. Environ. Microbiol. 2010, 76, 5926–5933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwanicki, A.; Piątek, I.; Stasiłojć, M.; Grela, A.; Łęga, T.; Obuchowski, M.; Hinc, K. A System of Vectors for Bacillus Subtilis Spore Surface Display. Microb. Cell Fact. 2014, 13, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Al-Dossary, A.; Hussain, M.; Setlow, P.; Li, J.; Pettinari, J.M. Applications of Bacillus Subtilis Spores in Biotechnology and Advanced Materials. Appl. Environ. Microbiol. 2022, 86, e01096-20. [Google Scholar] [CrossRef]
- Sun, H.; Lin, Z.; Zhao, L.; Chen, T.; Shang, M.; Jiang, H.; Tang, Z.; Zhou, X.; Shi, M.; Zhou, L.; et al. Bacillus Subtilis Spore with Surface Display of Paramyosin from Clonorchis Sinensis Potentializes a Promising Oral Vaccine Candidate. Parasit. Vectors 2018, 11, 156. [Google Scholar] [CrossRef]
- Huang, J.-M.; Hong, H.A.; Van Tong, H.; Hoang, T.H.; Brisson, A.; Cutting, S.M. Mucosal Delivery of Antigens Using Adsorption to Bacterial Spores. Vaccine 2010, 28, 1021–1030. [Google Scholar] [CrossRef]
- Sirec, T.; Strazzulli, A.; Isticato, R.; De Felice, M.; Moracci, M.; Ricca, E. Adsorption of β-Galactosidase of Alicyclobacillus Acidocaldarius on Wild Type and Mutants Spores of Bacillus Subtilis. Microb. Cell Fact. 2012, 11, 100. [Google Scholar] [CrossRef] [Green Version]
- Isticato, R.; Ricca, E.; Baccigalupi, L. Spore Adsorption as a Nonrecombinant Display System for Enzymes and Antigens. JoVE 2019, 145, e59102. [Google Scholar] [CrossRef]
- Maia, A.R.; Reyes-Ramírez, R.; Pizarro-Guajardo, M.; Saggese, A.; Ricca, E.; Baccigalupi, L.; Paredes-Sabja, D. Nasal Immunization with the C-Terminal Domain of Bcla3 Induced Specific IgG Production and Attenuated Disease Symptoms in Mice Infected with Clostridioides Difficile Spores. Int. J. Mol. Sci. 2020, 21, 6696. [Google Scholar] [CrossRef]
- Duc, L.H.; Hong, H.A.; Fairweather, N.; Ricca, E.; Cutting, S.M. Bacterial Spores as Vaccine Vehicles. Infect. Immun. 2003, 71, 2810–2818. [Google Scholar] [CrossRef] [Green Version]
- Hoang, T.H.; Hong, H.A.; Clark, G.C.; Titball, R.W.; Cutting, S.M. Recombinant Bacillus Subtilis Expressing the Clostridium Perfringens Alpha Toxoid Is a Candidate Orally Delivered Vaccine against Necrotic Enteritis. Infect. Immun. 2008, 76, 5257–5265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Permpoonpattana, P.; Hong, H.A.; Phetcharaburanin, J.; Huang, J.-M.; Cook, J.; Fairweather, N.F.; Cutting, S.M. Immunization with Bacillus Spores Expressing Toxin A Peptide Repeats Protects against Infection with Clostridium Difficile Strains Producing Toxins A and B. Infect. Immun. 2011, 79, 2295–2302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negri, A.; Potocki, W.; Iwanicki, A.; Obuchowski, M.; Hinc, K. Expression and Display of Clostridium Difficile Protein FliD on the Surface of Bacillus Subtilis Spores. J. Med. Microbiol. 2013, 62, 1379–1385. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.-G.; Li, Z.-H.; Yue, Y.-Y.; Song, N.-N.; Peng, L.; Wang, L.-X.; Lu, X. Construction and Evaluation of a Novel Bacillus Subtilis Spores-Based Enterovirus 71 Vaccine. J. Appl. Biomed. 2013, 11, 105–113. [Google Scholar] [CrossRef]
- Zhao, G.; Miao, Y.; Guo, Y.; Qiu, H.; Sun, S.; Kou, Z.; Yu, H.; Li, J.; Chen, Y.; Jiang, S.; et al. Development of a Heat-Stable and Orally Delivered Recombinant M2e-Expressing B. Subtilis Spore-Based Influenza Vaccine. Hum. Vaccin. Immunother. 2014, 10, 3649–3658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sibley, L.; Reljic, R.; Radford, D.S.; Huang, J.-M.; Hong, H.A.; Cranenburgh, R.M.; Cutting, S.M. Recombinant Bacillus Subtilis Spores Expressing MPT64 Evaluated as a Vaccine against Tuberculosis in the Murine Model. FEMS Microbiol. Lett. 2014, 358, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Mauriello, E.M.F.; Duc, L.H.; Isticato, R.; Cangiano, G.; Hong, H.A.; De Felice, M.; Ricca, E.; Cutting, S.M. Display of Heterologous Antigens on the Bacillus Subtilis Spore Coat Using CotC as a Fusion Partner. Vaccine 2004, 22, 1177–1187. [Google Scholar] [CrossRef]
- Zhou, Z.; Xia, H.; Hu, X.; Huang, Y.; Li, Y.; Li, L.; Ma, C.; Chen, X.; Hu, F.; Xu, J.; et al. Oral Administration of a Bacillus Subtilis Spore-Based Vaccine Expressing Clonorchis Sinensis Tegumental Protein 22.3 kDa Confers Protection against Clonorchis Sinensis. Vaccine 2008, 26, 1817–1825. [Google Scholar] [CrossRef]
- Li, L.; Hu, X.; Wu, Z.; Xiong, S.; Zhou, Z.; Wang, X.; Xu, J.; Lu, F.; Yu, X. Immunogenicity of Self-Adjuvanticity Oral Vaccine Candidate Based on Use of Bacillus Subtilis Spore Displaying Schistosoma Japonicum 26 KDa GST Protein. Parasitol. Res. 2009, 105, 1643. [Google Scholar] [CrossRef]
- Zhou, Z.; Dong, H.; Huang, Y.; Yao, S.; Liang, B.; Xie, Y.; Long, Y.; Mai, J.; Gong, S. Recombinant Bacillus Subtilis Spores Expressing Cholera Toxin B Subunit and Helicobacter Pylori Urease B Confer Protection against H. Pylori in Mice. J. Med. Microbiol. 2017, 66, 83–89. [Google Scholar] [CrossRef]
- Wang, X.; Chen, W.; Tian, Y.; Mao, Q.; Lv, X.; Shang, M.; Li, X.; Yu, X.; Huang, Y. Surface Display of Clonorchis Sinensis Enolase on Bacillus Subtilis Spores Potentializes an Oral Vaccine Candidate. Vaccine 2014, 32, 1338–1345. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.A.; Hitri, K.; Hosseini, S.; Kotowicz, N.; Bryan, D.; Mawas, F.; Wilkinson, A.J.; van Broekhoven, A.; Kearsey, J.; Cutting, S.M. Mucosal Antibodies to the C Terminus of Toxin A Prevent Colonization of Clostridium Difficile. Infect. Immun. 2017, 85, e01060-16. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Liu, M.; Pan, K.; Yang, J. Surface Display of OmpC of Salmonella Serovar Pullorum on Bacillus Subtilis Spores. PLoS ONE 2018, 13, e0191627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; Tang, Z.; Shang, M.; Zhao, L.; Zhou, L.; Kong, X.; Lin, Z.; Sun, H.; Chen, T.; Xu, J.R.; et al. Comparative Analysis of Immune Effects in Mice Model: Clonorchis Sinensis Cysteine Protease Generated from Recombinant Escherichia Coli and Bacillus Subtilis Spores. Parasitol. Res. 2017, 116, 1811–1822. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Xia, H.; Hu, X.; Huang, Y.; Ma, C.; Chen, X.; Hu, F.; Xu, J.; Lu, F.; Wu, Z.; et al. Immunogenicity of Recombinant Bacillus Subtilis Spores Expressing Clonorchis Sinensis Tegumental Protein. Parasitol. Res. 2008, 102, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Xu, Y.; Sun, H.; Lin, J.; Yu, J.; Tang, Z.; Shen, J.; Liang, C.; Li, S.; Chen, W.; et al. Systemic and Local Mucosal Immune Responses Induced by Orally Delivered Bacillus Subtilis Spore Expressing Leucine Aminopeptidase 2 of Clonorchis Sinensis. Parasitol. Res. 2014, 113, 3095–3103. [Google Scholar] [CrossRef]
- Hinc, K.; Isticato, R.; Dembek, M.; Karczewska, J.; Iwanicki, A.; Peszyńska-Sularz, G.; De Felice, M.; Obuchowski, M.; Ricca, E. Expression and Display of UreA of Helicobacter Acinonychis on the Surface of Bacillus Subtilis Spores. Microb. Cell Fact. 2010, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Z.; Mai, J.; Li, F.; Liang, B.; Yao, S.; Liang, Z.; Zhang, C.; Gao, F.; Ai, X.; Wang, J.; et al. Oral Administration of Recombinant Bacillus Subtilis Spores Expressing Mutant Staphylococcal Enterotoxin B Provides Potent Protection against Lethal Enterotoxin Challenge. AMB Express 2020, 10, 215. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Zhang, E.; Zhou, M.; Lin, J.; Yang, Q. Intranasal Administration with Recombinant Bacillus Subtilis Induces Strong Mucosal Immune Responses against Pseudorabies. Microb. Cell Fact. 2019, 18, 103. [Google Scholar] [CrossRef]
- Lin, Z.; Sun, H.; Ma, Y.; Zhou, X.; Jiang, H.; Wang, X.; Song, J.; Tang, Z.; Bian, Q.; Zhang, Z.; et al. Evaluation of Immune Response to Bacillus Subtilis Spores Expressing Clonorchis Sinensis Serpin3. Parasitology 2020, 147, 1080–1087. [Google Scholar] [CrossRef]
- Oh, Y.; Kim, J.A.; Kim, C.-H.; Choi, S.-K.; Pan, J.-G. Bacillus Subtilis Spore Vaccines Displaying Protective Antigen Induce Functional Antibodies and Protective Potency. BMC Vet. Res. 2020, 16, 259. [Google Scholar] [CrossRef] [PubMed]
- Nwagu, T.N.; Ugwuodo, C.J. Stabilizing Bromelain for Therapeutic Applications by Adsorption Immobilization on Spores of Probiotic Bacillus. Int. J. Biol. Macromol. 2019, 127, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Feng, F.; Ge, Q.; Zhu, F.; Chen, L.; Lv, P.; Ma, S.; Yao, Q.; Chen, K. Display of Quintuple Glucagon-like Peptide 1 (28–36) Nonapeptide on Bacillus Subtilis Spore for Oral Administration in the Treatment of Type 2 Diabetes. J. Appl. Microbiol. 2021, 130, 314–324. [Google Scholar] [CrossRef]
- Feng, F.; Hu, P.; Chen, L.; Tang, Q.; Lian, C.; Yao, Q.; Chen, K. Display of Human Proinsulin on the Bacillus Subtilis Spore Surface for Oral Administration. Curr. Microbiol. 2013, 67, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lemmon, M.J.; van Zijl, P.; Fox, M.E.; Mauchline, M.L.; Giaccia, A.J.; Minton, N.P.; Brown, J.M. Anaerobic Bacteria as a Gene Delivery System That Is Controlled by the Tumor Microenvironment. Gene Ther. 1997, 4, 791–796. [Google Scholar] [CrossRef] [Green Version]
- Janku, F.; Zhang, H.H.; Pezeshki, A.; Goel, S.; Murthy, R.; Wang-Gillam, A.; Shepard, D.R.; Helgason, T.; Masters, T.; Hong, D.S.; et al. Intratumoral Injection of Clostridium Novyi-NT Spores in Patients with Treatment-Refractory Advanced Solid Tumors. Clin. Cancer Res. 2021, 27, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Meng, Z.; Zhang, Y.; Hu, K.; Chen, W.; Han, K.; Wu, B.-Y.; You, R.; Li, C.-H.; Jin, Y.; et al. Bacillus Spore-Based Oral Carriers Loading Curcumin for the Therapy of Colon Cancer. J. Control. Release 2018, 271, 31–44. [Google Scholar] [CrossRef]
- Yang, M.; Zhu, G.; Korza, G.; Sun, X.; Setlow, P.; Li, J. Engineering Bacillus Subtilis as a Versatile and Stable Platform for Production of Nanobodies. Appl. Environ. Microbiol. 2020, 86, e02938-19. [Google Scholar] [CrossRef]
- Berendsen, E.M.; Boekhorst, J.; Kuipers, O.P.; Wells-Bennik, M.H.J. A Mobile Genetic Element Profoundly Increases Heat Resistance of Bacterial Spores. ISME J. 2016, 10, 2633–2642. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, X.; Qian, Y.; Yin, L. Constructing an Efficient Bacillus Subtilis Spore Display by Using Cohesin-Dockerin Interactions. Molecules 2021, 26, 1186. [Google Scholar] [CrossRef]
- Tavares Batista, M.; Souza, R.D.; Paccez, J.D.; Luiz, W.B.; Ferreira, E.L.; Cavalcante, R.C.M.; Ferreira, R.C.C.; Ferreira, L.C.S. Gut Adhesive Bacillus Subtilis Spores as a Platform for Mucosal Delivery of Antigens. Infect. Immun. 2014, 82, 1414–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseini, S.; Curilovs, A.; Cutting, S.M. Biological Containment of Genetically Modified Bacillus Subtilis. Appl. Environ. Microbiol. 2018, 84, e02334-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setlow, P.; Christie, G. What’s New and Notable in Bacterial Spore Killing! World J. Microbiol. Biotechnol. 2021, 37, 144. [Google Scholar] [CrossRef] [PubMed]
Germinant | Activated Protein | Bacteria | Reference |
---|---|---|---|
Sugars | GR | ||
d-glucose | Bacillus megaterium | [96,97] | |
d-mannose | Bacillus megaterium | [96] | |
2-deoxy-d-glucose | Bacillus megaterium | [96,98] | |
d-glucosamine | Bacillus megaterium | [96,98] | |
N-acetyl-d-glucosamine | Bacillus megaterium | [98] | |
Cellobiose | Bacillus megaterium | [98] | |
Dextrose | Bacillus megaterium | [98] | |
Maltose | Bacillus megaterium | [98] | |
Methyl-alpha-d-glucoside | Bacillus megaterium | [98] | |
Sorbose | Bacillus megaterium | [98] | |
Starch | Bacillus megaterium | [98] | |
Xylose | Bacillus megaterium | [98] | |
Purine nucleosides | GR | ||
Inosine | Bacillus cereus | [99,100] | |
Bacillus anthracis | [101] | ||
Amino Acids | GR | ||
l-alanine | Bacillus subtilis | [99,100] | |
Bacillus anthracis | [101] | ||
Bacillus cereus | [99,101] | ||
Bacillus licheniformis | [102,103] | ||
Bacillus thuringiensis | [104] | ||
Clostridium botulinum | [105,106] | ||
Clostridium sordellii | [107] | ||
Clostridium sporogenes | [105] | ||
l-valine | Bacillus subtilis | [108] | |
Bacillus licheniformis | [103] | ||
l-asparagine | Bacillus subtilis | [109] | |
Clostridium perfringens | [110] | ||
l-proline | Bacillus megaterium | [97] | |
l-cysteine | Clostridium perfringens | [110] | |
Clostridium botulinum | [111] | ||
Bacillus licheniformis | [103] | ||
l-threonine | Clostridium perfringens | [110] | |
l-serine | Clostridium perfringens | [110] | |
Clostridium botulinum | [105] | ||
l-asparagine | Clostridium perfringens | [110] | |
l-methionine | Clostridium botulinum | [105] | |
l-phenylalanine | Clostridium botulinum | [105] | |
Clostridium sordellii | [107,112] | ||
l-arginine | Clostridium sordellii | [112] | |
Glycine | Clostridium botulinum | [105] | |
l-glutamine | Clostridium perfringens | [110] | |
CaDPA | CwIJ | ||
Bacillus megaterium | [113] | ||
Bacillus subtilis | [114] | ||
Clostridium sporogenes | [105] | ||
Dodecyclamine | SpoVA channel | ||
Bacillus thuringiensis | [104] | ||
Bacillus megaterium | [115] | ||
Bacillus subtilis | [114,116] | ||
Peptidoglycan | Protein Kinase | ||
Bacillus subtilis | [60,78] | ||
Pressure | |||
Low Pressure (100–350 mPa) | GR | Bacillus subtilis | [85,86] |
Bacillus cereus | [117] | ||
High Pressure (500–1000 mPa) | SpoVA channel | Bacillus subtilis | [85,86] |
Bile salts | Csp | ||
Taurocholate | Clostridioides difficile | [2] | |
Clostridium innocuum | [2] | ||
Clostrdium hathewayi | [2] | ||
Flavinofractor plautii | [2] | ||
Clostridium baratii | [2] | ||
Clostridium thermocellum | [2] | ||
Clostridiaceae | [11] | ||
Cholate | Clostridioides difficile | [2] | |
Clostridium innocuum | [2] | ||
Glycocholate | Clostridioides difficile | [2] | |
Clostridium innocuum | [2] | ||
Lachnospiraceae | [11] | ||
Clostridiaceae | [11] | ||
Taurochenodeoxycholate | Clostridiaceae | [11] | |
Glycochenodeoxycholic acid | Clostridioides difficile | [118] | |
Clostridiaceae | [11] | ||
Glycodeoxycholic acid | Clostridioides difficile | [118] | |
Clostridiaceae | [11] | ||
Salts | GR | ||
KBr | Bacillus megaterium | [97] |
Target Protein | Disease/Pathogen | Vector | Carrier | Model | Reference |
---|---|---|---|---|---|
TTFC | Clostridium tetani | pGEM | CotB | Mouse | [193] |
PA | Bacillus anthracis | pDG364 | CotB/CotC | Mouse | [195] |
GST-Cpa247-370 | Necrotic enteritis | pDG1664 | CotB | Mouse | [196] |
Toxin A/B | Clostridioides difficile | - | CotB | Mouse | [197] |
FliD | Clostridioides difficile | pDL | CotB | - | [198] |
VP1 | Enterovirus 71 | pDG1662 | CotB | Mouse | [199] |
M2e3 | Influenza virus | pDG1664 | CotB | Mouse | [200] |
MPT64 | Mycobacterium tuberculosis | pcotVac | CotB | Mouse | [201] |
TTFC/LFB | Clostridium tetani/E. coli | pRH22/pIM51 | CotC | Mouse | [202] |
CsTP22.3 | Clonorchis sinensis | pGEX | CotC | Rat | [203] |
SjGST | Schistosomias | pGEX | CotC | Mouse | [204] |
UreB | Helicobacter pylori | pUS186 | CotC | Mouse | [205] |
Enolase | Clonorchis sinensis | PEB03 | CotC | Rat | [206] |
CsPmy | Clonorchis sinensis | PEB03 | CotC | Mice | [190] |
CagA | Helicobacter pylori | - | CgeA | - | [188] |
TTFC | Clostridium tetani | pET28b | CotB | Mouse | [195] |
TcdA | Clostridioides difficile | pET28b | CotB/CotC | Mouse | [207] |
OmpC | Salmonella-serovar Pullorum/Typhimurium | pDG364 | CotC | Mouse | [208] |
CsCP | Clonorchis sinensis | pEB03 | CotC | Mouse | [209] |
TP20.8 | Clonorchis sinensis | pGEX | CotC | Rat | [210] |
CsLAP2 | Clonorchis sinensis | PEB03 | CotC | Mouse | [211] |
UreA | Helicobacter pylori | pGEM | CotC | - | [212] |
SEB | Staphyloccocus aureus | pET28a | CotC | Mouse | [213] |
gC/gD | Pseudorabies virus | p43NMK | - | Mouse | [214] |
CsSerpin3 | Clonorchis sinensis | PEB03 | CotC | Mouse | [215] |
PA | Bacillus anthracis | pMar3g | - | Mouse | [216] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koopman, N.; Remijas, L.; Seppen, J.; Setlow, P.; Brul, S. Mechanisms and Applications of Bacterial Sporulation and Germination in the Intestine. Int. J. Mol. Sci. 2022, 23, 3405. https://doi.org/10.3390/ijms23063405
Koopman N, Remijas L, Seppen J, Setlow P, Brul S. Mechanisms and Applications of Bacterial Sporulation and Germination in the Intestine. International Journal of Molecular Sciences. 2022; 23(6):3405. https://doi.org/10.3390/ijms23063405
Chicago/Turabian StyleKoopman, Nienke, Lauren Remijas, Jurgen Seppen, Peter Setlow, and Stanley Brul. 2022. "Mechanisms and Applications of Bacterial Sporulation and Germination in the Intestine" International Journal of Molecular Sciences 23, no. 6: 3405. https://doi.org/10.3390/ijms23063405
APA StyleKoopman, N., Remijas, L., Seppen, J., Setlow, P., & Brul, S. (2022). Mechanisms and Applications of Bacterial Sporulation and Germination in the Intestine. International Journal of Molecular Sciences, 23(6), 3405. https://doi.org/10.3390/ijms23063405