Expansion-Based Clearing of Golgi-Cox-Stained Tissue for Multi-Scale Imaging
Abstract
:1. Introduction
2. Results
2.1. Optimal Golgi-Cox Staining and Tissue Clearing Method for Rapid Clearing
2.2. Volume Imaging of Cleared Golgi-Cox-Stained Tissue with Confocal Reflection Mode
2.3. Volume Image of Cleared Golgi-Cox-Stained Tissue with Two-Photon Microscopy
2.4. Cleared Golgi-Cox Tissue Is Compatible with Immunostaining
2.5. Reconstruction of the Neural Circuit at the Dendritic Spine Level
2.6. Imaging of Single-Cell Morphology of the Human Brain Using Cleared Golgi-Cox-Stained Tissue
3. Discussion
4. Materials and Methods
4.1. Experimental Model and Subject Details
4.2. Human Tissue Treatment
4.3. Golgi-Cox Stain
4.4. Hydrogel Embedding
4.5. Tissue Clearing
4.6. Immunostaining of Cleared Tissue
4.7. Imaging and Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Golgi, C. Sulla sostanza grigia del cervello. Gazetta Med. Ital. 1873, 33, 244–246. [Google Scholar]
- Kang, H.W.; Kim, H.K.; Moon, B.H.; Lee, S.J.; Lee, S.J.; Rhyu, I.J. Comprehensive Review of Golgi Staining Methods for Nervous Tissue. Appl. Microsc. 2017, 47, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Zaqout, S.; Kaindl, A.M. Golgi-Cox Staining Step by Step. Front. Neuroanat. 2016, 10, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.W.; Kim, Y.; Kim, A.M.; Helmin, K.; Nairn, A.C.; Greengard, P. Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens. Proc. Natl. Acad. Sci. USA 2006, 103, 3399–3404. [Google Scholar] [CrossRef] [Green Version]
- Ku, T.; Swaney, J.; Park, J.Y.; Albanese, A.; Murray, E.; Cho, J.H.; Park, Y.G.; Mangena, V.; Chen, J.; Chung, K. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat. Biotechnol. 2016, 34, 973–981. [Google Scholar] [CrossRef] [Green Version]
- Murray, E.; Cho, J.H.; Goodwin, D.; Ku, T.; Swaney, J.; Kim, S.Y.; Choi, H.; Park, Y.G.; Park, J.Y.; Hubbert, A.; et al. Simple, Scalable Proteomic Imaging for High-Dimensional Profiling of Intact Systems. Cell 2015, 163, 1500–1514. [Google Scholar] [CrossRef] [Green Version]
- Richardson, D.S.; Lichtman, J.W. Clarifying Tissue Clearing. Cell 2015, 162, 246–257. [Google Scholar] [CrossRef] [Green Version]
- Chung, K.; Wallace, J.; Kim, S.Y.; Kalyanasundaram, S.; Andalman, A.S.; Davidson, T.J.; Mirzabekov, J.J.; Zalocusky, K.A.; Mattis, J.; Denisin, A.K.; et al. Structural and molecular interrogation of intact biological systems. Nature 2013, 497, 332–337. [Google Scholar] [CrossRef]
- Yang, B.; Treweek, J.B.; Kulkarni, R.P.; Deverman, B.E.; Chen, C.K.; Lubeck, E.; Shah, S.; Cai, L.; Gradinaru, V. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 2014, 158, 945–958. [Google Scholar] [CrossRef] [Green Version]
- Susaki, E.A.; Tainaka, K.; Perrin, D.; Kishino, F.; Tawara, T.; Watanabe, T.M.; Yokoyama, C.; Onoe, H.; Eguchi, M.; Yamaguchi, S.; et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 2014, 157, 726–739. [Google Scholar] [CrossRef] [Green Version]
- Renier, N.; Wu, Z.; Simon, D.J.; Yang, J.; Ariel, P.; Tessier-Lavigne, M. iDISCO: A simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 2014, 159, 896–910. [Google Scholar] [CrossRef] [Green Version]
- Hama, H.; Kurokawa, H.; Kawano, H.; Ando, R.; Shimogori, T.; Noda, H.; Fukami, K.; Sakaue-Sawano, A.; Miyawaki, A. Scale: A chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat. Neurosci. 2011, 14, 1481–1488. [Google Scholar] [CrossRef]
- Menegas, W.; Bergan, J.F.; Ogawa, S.K.; Isogai, Y.; Umadevi Venkataraju, K.; Osten, P.; Uchida, N.; Watabe-Uchida, M. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. eLife 2015, 4, e10032. [Google Scholar] [CrossRef] [PubMed]
- Vints, K.; Vandael, D.; Baatsen, P.; Pavie, B.; Vernaillen, F.; Corthout, N.; Rybakin, V.; Munck, S.; Gounko, N.V. Modernization of Golgi staining techniques for high-resolution, 3-dimensional imaging of individual neurons. Sci. Rep. 2019, 9, 130. [Google Scholar] [CrossRef]
- Kassem, M.S.; Fok, S.Y.Y.; Smith, K.L.; Kuligowski, M.; Balleine, B.W. A novel, modernized Golgi-Cox stain optimized for CLARITY cleared tissue. J. Neurosci. Methods 2018, 294, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Spiga, S.; Acquas, E.; Puddu, M.C.; Mulas, G.; Lintas, A.; Diana, M. Simultaneous Golgi-Cox and immunofluorescence using confocal microscopy. Brain Struct. Funct. 2011, 216, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Tillberg, P.W.; Boyden, E.S. Optical imaging. Expansion microscopy. Science 2015, 347, 543–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truckenbrodt, S.; Maidorn, M.; Crzan, D.; Wildhagen, H.; Kabatas, S.; Rizzoli, S.O. X10 expansion microscopy enables 25-nm resolution on conventional microscopes. EMBO Rep. 2018, 19, e45836. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, A.; Yang, Z.; Wu, J.; Luo, Q.; Gong, H. Modified Golgi-Cox method for micrometer scale sectioning of the whole mouse brain. J. Neurosci. Methods 2011, 197, 1–5. [Google Scholar] [CrossRef]
- Kassem, M.S.; Balleine, B.W. A Novel Estimation Method for the Counting of Dendritic Spines. J. Neurosci. Methods 2021, 368, 109454. [Google Scholar] [CrossRef]
- Li, A.; Gong, H.; Zhang, B.; Wang, Q.; Yan, C.; Wu, J.; Liu, Q.; Zeng, S.; Luo, Q. Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science 2010, 330, 1404–1408. [Google Scholar] [CrossRef] [Green Version]
- Sivaguru, M.; Khaw, Y.M.; Inoue, M. A Confocal Reflection Super-Resolution Technique to Image Golgi-Cox Stained Neurons. J. Microsc. 2019, 275, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Pedrazzoli, M.; Medelin, M.; Marchiotto, F.; Cisterna, B.; Malatesta, M.; Buffelli, M. An improved and simplified protocol to combine Golgi-Cox staining with immunofluorescence and transmission electron microscopy techniques. Neurochem. Int. 2021, 142, 104922. [Google Scholar] [CrossRef] [PubMed]
- Nagy, J.I.; Rash, J.E. Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res. Brain Res. Rev. 2000, 32, 29–44. [Google Scholar] [CrossRef]
- Das, G.; Reuhl, K.; Zhou, R. The golgi–cox method. In Neural Development; Humana Press: Totowa, NJ, USA, 2013; pp. 313–321. [Google Scholar]
- Ramon-Moliner, E. A tungstate modification of the Golgi-Cox method. Stain Technol. 1958, 33, 19–29. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, Q.-H.; Qin, X.-Y.; Zhou, J.-N. Expansion-Based Clearing of Golgi-Cox-Stained Tissue for Multi-Scale Imaging. Int. J. Mol. Sci. 2022, 23, 3575. https://doi.org/10.3390/ijms23073575
Shan Q-H, Qin X-Y, Zhou J-N. Expansion-Based Clearing of Golgi-Cox-Stained Tissue for Multi-Scale Imaging. International Journal of Molecular Sciences. 2022; 23(7):3575. https://doi.org/10.3390/ijms23073575
Chicago/Turabian StyleShan, Qing-Hong, Xin-Ya Qin, and Jiang-Ning Zhou. 2022. "Expansion-Based Clearing of Golgi-Cox-Stained Tissue for Multi-Scale Imaging" International Journal of Molecular Sciences 23, no. 7: 3575. https://doi.org/10.3390/ijms23073575
APA StyleShan, Q. -H., Qin, X. -Y., & Zhou, J. -N. (2022). Expansion-Based Clearing of Golgi-Cox-Stained Tissue for Multi-Scale Imaging. International Journal of Molecular Sciences, 23(7), 3575. https://doi.org/10.3390/ijms23073575